通过现场数据统计分析、理论分析计算和现场实验,对过程工艺参数、关键设备配合策略等核心技术进行优化改进,达到降低板材厚度质量缺陷的目的。通过上述研究方法的实施,可实现成品卷材和板材厚度精度的提高,达到促进热轧铝板产品生产技术人才梯队建设、技术储备、产品质量精度提升的目的。
形成轮盘类构件扩收挤压、内筋壳体构件旋转挤压、异形高筋构件轴向分流开放成形、薄板高筋构件分流导流挤压、枝桠类构件多向主动加载等精确成形技术及装置,在铝、镁合金构件控制成形技术方面取得一定创新成果,研发的轮毂、轮辋、舱段、座钣、翼片等40余种高性能构件,在军民领域高端装备上获得应用,部分产品填补了国内外空白,取得明显的经济、社会和军事效益。先后授权发明专利52项,制定工艺规范40个,获国家科技进步二等奖1项、山西省技术发明一等奖2项。
针对现代先进航天器设计对航天材料提出的轻质、高强、高可靠等要求,选择钛基非晶合金作为研究对象,以克服制约钛基非晶合金在航天领域广泛应用的瓶颈问题为出发点,针对下列三个关键科学问题展开高性能钛基非晶合金材料基础研究。
目前新电积过程中使用的铅银合金阳极板还存在析氧电位高、能耗高、强度低、银含量高产生的阳极成本高等问题,昆明冶金研究院自主研发锌电积用新型多元合金阳极板,包括研究锌电积铅银稀土阳极板中稀土元素作用机制及合金成分设计,研究锌电积铅银稀土阳极板浇铸工艺、镀膜工艺和工业化生产技术;
锰基新材料中的高纯硫酸锰是电池领域的基础材料,随电动汽车的快速发展和环保的要求,其市场需求剧增。球形四氧化三锰具有与正极材料相同的结构,比电解二氧化锰具有明显的优势,因此市场前景广阔。随着对特性钢材质量的要求越来越严格和人们对日常生活用品要求的提高,高纯电解锰用于一些高级合金钢的需求也明显增加。因此,锰基新材料的应用前景非常好。
高导耐热抗蠕变铝合金,通过微合金化、形变热处理,控制合金中有效强化相及耐热相,在保证合金导电性能同时,提高合金的强度和耐热性能。
目前国内外使用的渔网材料有聚酰胺等(俗称尼龙网) 耐腐蚀性能较好,但微生物附着比较严重,严重时甚至堵塞渔网,既影响网箱内外水体交换、影响养殖户日常操作维护,又影响养殖鱼类生长、导致养殖鱼类生病。
新型铌钨合金及其高温抗氧化涂层项目,研制了我国第二代宇航材料铌钨合金的制备加工工艺以及性能影响机理、与新型铌钨合金相匹配的抗高温氧化材料及其制备工艺,解决了合金高温强度不足、加工难度大、合金在大气环境下抗高温氧化等技术难点问题。目前合金及其涂层已经成为我国二代宇航材料,广泛应用于各类型号宇航发动机及导弹武器型号,应用前景十分广阔。
一种用于Mg-Al系合金的铝包覆纳米Al4C3颗粒状晶粒细化剂,属于镁合金铸造技术领域。其特征是,首先将一定比例的Al粉、C粉与Mg粉混合装入球磨罐中,放入大、中、小三种不同规格的氧化锆磨球,将球磨罐进行真空处理后安装到球磨机上进行球磨。先采用低转速球磨,然后进行高速间歇性球磨,球磨一定时间后,Al粉与C粉将在球磨过程中发生机械合金化,生成纳米尺寸的Al4C3粒子。
完成了盐酸常压浸出、溶液净化、高纯镍和三元材料制备、介质再生循环等关键技术研发,并完成了中试。产品高纯镍主要用于高温合金,三元前驱体材料主要用于三元锂电池。随着国家新能源汽车和航天航空事业的发展,高温合金与三元电池应用市场前景广大。
随着通讯装备轻量化和电子产品轻薄化的发展,对镁的需求越来越多,也对导电、导热、绝缘、抗静电、电磁屏蔽提出了更高要求,处理不当极易引发电磁干扰、仪器失灵、绝缘击穿、燃烧、爆炸等事故。如何保证抗蚀导电是制约镁合金应用的关键。
射频等离子球化制粉技术是利用等离子的高温特性把送入到等离子中的不规则形状粉末颗粒迅速加热熔化,熔融的颗粒在表面张力和极高的温度梯度共同作用下迅速凝固而形成球形粉体。等离子具有温度高(~104K)、等离子炬体积大、能量密度高、无电极污染、传热和冷却速度快等优点,是制备组分均匀、球形度高、流动性好的高品质球形微米粉末良好途径,尤其在制备钨、钼、钽等金属及其化合物粉末方面优势明显。
目前:汽车发动机活塞环材料主要靠进口,随着国内汽车尾气排放升级,开发我国自主知识产权的专利技术制造出国外同类产品迫在眉睫。
在钛合金紧固件棒材研制领域,先后承担三项国家级重点项目,完成了TC16钛合金冷镦棒丝材和高质量TC4钛合金棒丝材的研制,以及大规格TC4钛合金棒材的研制,突破了高端紧固件用钛合金棒丝材生产过程中存在的关键技术难题,成功制备出性能优异的紧固件用钛合金棒丝材。研制的材料已稳定小批量供货,未来市场在50吨-200吨。
通过相图计算优化合金成分以及合理调控工艺,成功设计出了一款6XXX系铝合金。该合金不添加稀有元素及贵金属,只添加6000系常见元素,成本不增加。该合金在固溶后屈服强度极低,为72 MPa,延伸率达33%;预时效及自然时效之后,屈服强度为149 MPa,延伸率为26%,优于现有的6016及6063合金,适合加工成复杂形状,烤漆时效(180摄氏度30分钟)后屈服强度为277 MPa,与6013合金持平。该合金尤其适合汽车车身板、手机及笔记本电脑外壳的生产。该研究成果目前已提交专利申请。
本项目以运载火箭用高强铝合金薄壁高筋大型壁板强流变精确成形制造技术科学基础为主线,通过材料工程、机械工程、力学以及宇航工程等多学科融合,建立薄壁高筋整体成形单元承力板高性能、高精度成形及高稳定性精确制造的基础理论与方法体系,在微观组织模式设计与成分优化、铸锭组织调控、异型复杂截面金属流变均匀性及特征微结构调控等方面展开基础研究,发展异型断面形/性协同制造的新原理、新技术与新工艺,实现航天高强铝合金薄壁高筋大型壁板快速整体复杂成形成性的全流程协同调控。
在铝合金中添加微量钪(0.15~0.25wt%),能大幅度提高铝合金强度,显著改善其冷热加工性、抗腐蚀性,是制备新一代航空航天、电子等领域用的新型材料。本项目以从钛白废水及钨渣中提炼的氧化钪为原料,金属铝锭为还原剂,加以特别熔剂,在非真空条件下进行铝热还原,经保温浇注、表面处理制得高质量的铝钪中间合金。
软磁材料从纯铁、Fe-Si合金(硅钢)、Fe-Ni合金(坡莫合金)到Fe-Co合金已有100多年的历史。传统上这些软磁合金是经过冶炼、锻造、热轧或冷轧、热处理等繁杂工艺制成晶态合金,生产成本高、产品规格(特别是薄带幅宽、厚度)受限、磁性能也不很理想。近年来开发的非晶态合金和纳米晶软磁薄带金属材料生产技术,是采用急冷技术,由熔态合金在旋转的辊面上急冷直接形成数十个微米厚的薄带,虽然磁性能显著提高,但目前生产成本很高,产品幅宽很窄,厚度不易调控,表面粗糙,应用受到局限。
钨是战略金属且50%以上的钨用来制造硬质合金。超细晶结构WC-Co 硬质合金复合材料具有"高硬度、高强度"的特性,其综合性能高于传统硬质合金。其制备存在两大技术难题:一是需制备性能优良的纳米晶WC-Co 复合粉体;二是需控制烧结过程中纳米WC 晶粒的长大行为。针对上述技术关键,课题组创新性研发出了一条完整的高性能纳米碳化钨-钴复合材料的成套制备路线,在材料理论、制备工艺和装备方面取得了一系列重要发现、发明和重大创新:
钨铜合金因其导电导热性好、密度大、强度硬度高、耐电弧烧蚀性能优异,被广泛用作工具电极、电子封装和高压电器的触头材料,科技水平的日新月异,对钨铜材料提出了越来越高的要求,课题组通过综合国内外参考文献认为提出功能梯度材料和细晶/纳米材料是钨铜合金的发展趋势。鉴于此,课题组采用溶液混合、添加晶粒长大抑制剂等手段,成功制备出W晶粒度从0.2微米-2微米的钨铜合金,致密度达到99.5%,晶粒分布均匀。在公司试用效果接近国外进口同牌号水平,具有较大的市场应用前景。
采用剪切/振动耦合熔体处理制备的半固态金属作为原料,在高固相率条件下注入由旋转挤压轮与固定靴组成的挤压轮槽,在挤压轮槽中合金受到轮槽侧壁和固定靴方向相反的摩擦力的作用,产生搓动剪切变形,并在轮槽出口经过扩展挤压模具挤压成形,实现了从液态金属到产品的一步挤压成形。
3D打印无疑是当今材料近终形制造技术最重要的发展领域,目前主要以高能激光或电子束熔融打印为主,工作温度高,打印效率低。“极速金属3D打印技术”是将粉床铺粉3D打印技术与粉末注射成形技术相结合而创立的一项低温、低成本、快速3D打印新技术,该技术与基于高能束熔融打印技术相比,打印速度可提高100倍,打印温度降低约一个数量级(至150℃),制造成本降低一半。特别适用于不锈钢、钛合金、镍基高温合金、难熔金属、硬质合金等特种金属材料。
氧化铝弥散强化铜合金的研究开发一直是国内外电子及军工新材料的研究课题。早在在20世纪50年代,国外开始了弥散强化铜的研究。在70到80年代,开发了许多专利技术,并迅速将专利技术实现工程化。美国SCM公司应用内氧化法成功地生产出“GLIDCOP”系列弥散强化铜产品。日本也开发并制造、销售商品名为DEM IRA S 的弥散强化铜电极材料。
技术内容、研究并实现镁合金棒材、坯材的连续化生产,使生产线连续化、智能化。研究镁合金调制过程中的有效降铁和除铁,大家知道铁元素在镁合金中是最有害的一种元素,铁元素的存在会因与镁的电位差产生电耦腐蚀,腐蚀对镁合金的应用是不利的,但若在生产中把铁元素在镁合金中的占比降到0.005%以下,镁合金的抗腐蚀性将大大增加,并且可以减少稀土元素的使用量,抗腐蚀性能比肩铝合金。研究镁合金棒(坯)在重组结晶过程中的晶粒粗糙及晶体不细化的问题
本项成果解决了高强高导铜合金在高温条件下强度明显降低的难题。该铜合金在450度下的抗拉强度比CuCrZr提高了75%。
本项目针对石油化工产生的FCC废催化剂排放量大、成分复杂以及现有处理方式利用率低、毒害成分处理不彻底等特点,研发了多种低能耗的FCC废催化剂的活化工艺,大幅提高了其利用率,同时采用了较为温和的工艺实现了毒害金属元素的分离,初步解决了FCC废催化剂对环境的污染问题。
摘要: 采用数值模拟和实验相结合的方式,对ZK60镁合金筒形件反挤压成形进行研究,优化工艺参数。结果表明:随着挤压温度的升高,镁合金内部晶粒细化程度越大,但温度越高动态再结晶程度愈不明显;坯料温度在290℃时最高应力可达400 MPa,零件整体应力大约在180 Mpa,380℃时最高应力为130 MPa,零件整体应力约为80 MPa;其次,随着坯料高度的减小和直径增大,成形中坯料的等效应力也随之增加,但尺寸过大或过小均会产生应力集中现象,容易产生缺陷。经过模拟分析和实验验证,坯料直径为φ70,坯料温度为350℃时,筒形件成形质量更佳。
摘要: 生物镁合金具有优良的综合力学性能,生物可降解吸收性和良好的生物相容性,在骨修复、心血管支架等方面具有光明的应用前景。然而,目前,生物镁合金在生理体液中仍存在耐腐蚀性差,降解速度过快的不足。本文综述了国内外关于提高镁合金耐腐蚀性常见的改良方法与制备工艺以及具体研究进展情况,概括了各研究方向存在的问题,且展望了镁合金在生物医疗领域的发展方向。
中冶有色为您提供最新的有色金属合金材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!