本发明公开了一种分离并回收废弃线路板中金属的方法,包括以下步骤:1)热解;2)破碎与筛分;3)摇床与磁选。本发明利用铜与锡机械强度的差异,通过破碎筛分的方式,首先将废弃线路板中的铜分为两个部分①大颗粒铜单质、②小颗粒铜与铜锡合金混合物大颗粒铜单质单独分离可以避免进一步进行铜锡分离,从而降低后期铜锡分离的总量,达到降低成本,简化步骤的效果。本发明利用金属与碳与玻璃纤维混合物的特性,通过摇床分离,使得金属物料与非金属物料进行分离。本发明通过磁选步骤使得铁与铜、铜锡合金得到分离,最终回收线路板中的铁金属。本发明中也使得锡合金得到了富集,可以使后续锡的回收更方便,提高金属回收效果。
本发明涉及资源综合利用领域,涉及一种浮选分离微细粒铅氧化合物与铁氧化合物的药剂组及其应用。所述药剂组包括润湿分散剂、捕收剂、抑制剂;所述润湿分散剂为表面活性剂;所述捕收剂为烷基硫酸盐;所述抑制剂选自磷酸盐、磷酸二氢盐、焦磷酸盐、三聚磷酸盐、多聚磷酸盐、六偏磷酸盐中的至少一种。在浮选过程中使用本发明所设计的药剂组,通过浮选,能高效分离微细粒铅氧化合物与铁氧化合物。采用本发明的药剂组可达到微细粒浮选精矿团聚显著,浮选速率快,过滤性能优越的效果。本发明解决了传统分离过程精矿浮选时间长、产品脱水难的问题。
一种真空条件下高效回收废弃电路板的方法及装置,是将废弃电路板置于真空容器中,升温热解,大部分热解挥发物冷却液化为液体油,另一部分进入气体收集器;热解时,利用离心分离装置将焊锡与电路板分离;分类收集热解后的电路板基板和电子元件作进一步分离与回收。该装置包括真空热解和离心复合机、冷阱、气体收集器、真空泵,所述真空热解和离心复合机的真空容器通过管道依次与冷阱、真空泵、气体收集器相连;本发明具有工艺方法简单、无污染、成本低、效率高、废弃电路板废弃资源回收率高。同步回收废弃电路板焊锡和有机物质,使焊锡与其它金属高效分离,为其它金属高效回收创造良好的条件。适于工业化应用,可实现大规模回收废弃电路板。
本发明公开了一种熔体流化冷激器及其应用系统和系统应用方法,冷激器箱体的前端板中部连接有溜槽和氮气喷嘴;箱体底部分为独立的托流区和集料区,托流区的底面和两侧分别设置有循环风喷嘴,两侧的循环风喷嘴倾斜朝上对称设置,底面的循环风喷嘴朝上设置,托流区的底面为下倾斜面,其后端最低位置处有出料口;集料区的后端底面连接有集料锥斗;箱体的顶部有上升烟道;热熔体从溜槽进入箱体中时,氮气喷嘴往熔体流中喷入氮气,托流区的循环风喷嘴同时往箱体中喷入循环风。其应用系统还包括旋风分离器、余热锅炉、省煤器、收尘器、循环风机和刮板机。热熔体的热量回收为干法回收,最大化回收了高温熔体的热量,环境干燥,密封性好,生产条件干净。
本发明公开了一种钴酸锂复合材料及其制备方法与应用,该复合材料:由内至外包括以下各层:钴酸锂和磷酸盐;其中,所述钴酸锂表面存在SEI膜。本发明利用了钴酸锂材料中部分尖晶石结构的钴酸锂及SEI膜具有高稳定性,提高了正极材料的稳定性;同时加入少量的磷酸盐,进一步提升了正极材料的循环稳定性。
本发明提供了一种砷碱渣水热浸出脱砷的方法,具体步骤包括:将砷碱渣破碎至5mm以下后进行第一次水热浸出;过滤分离第一次浸出母液与滤渣,收集第一次浸出母液用于回收碳酸钠、砷酸钠或硫酸钠等;对滤渣进行淋滤,使过滤渣含水率降低至30%~50%,淋滤母液回用作第一次浸出用水;淋滤后的滤渣研磨破碎至粒度小于0.35mm(42目),然后加入脱砷剂进行第二次水热浸出,过滤后得到的第二次浸出母液回用作第一次浸出用水;过滤后滤渣含水率降低到30%~50%即可。本发明的砷碱渣中砷浸出率达到95%以上,浸出渣含砷低于0.5%,提高了砷浸出率、降低浸出渣中的含砷率,解决了浸出渣中砷含量过高对锑冶炼工艺的不良影响,且有效地实现砷碱渣综合利用。
本发明涉及一种钒矿的富集方法,特别涉及一种沉积型钒矿的富集方法,属于钒选矿领域。本发明为解决低品位的沉积型钒矿难以利用的技术问题,提供一种沉积型钒矿的富集方法,依次包括以下步骤:(1)将粒度为-300?mm的沉积型钒矿石和洗水加入圆筒洗矿机进行浸泡和擦洗;经过圆筒洗矿机的格筛分选,-50?mm的矿石及洗水进入槽式洗矿机;(2)槽式洗矿机补加洗水对矿石擦洗,擦洗完成后,槽式洗矿机中的沉砂进行筛分脱水,筛下产品与槽式洗矿机的溢流矿浆合并进行浓密、过滤,脱水后成为钒精矿。本发明沉积型钒矿的富集方法可以提高钒精矿的品位、产率和回收率。
本发明提出一种从含铋溶液中用溶剂萃取法提取铋及制备氧化铋的方法,包括步骤:(1)Fe3+还原;(2)铋水解;(3)铋水解渣盐酸重溶;(4)萃取;(5)洗涤;(6)反萃沉淀(7)热分解等步骤。本发明提出的方法,实现了铋的充分回收,可以直接得到三氧化二铋。与其他现有的湿法提铋流程相比,具有工艺流程短、适用性广,生产成本低、易实现产业化等优点。
一种含铜固废资源化利用的富集熔炼方法,含铜固废在石灰溶液中通入氧气氧化转化,转化渣与其他含铜固废配料混合,使混合物料的水分、铜含量和FeO∶SiO2∶CaO质量比分别保持在要求范围,同时加入淀粉后制备砖块,将混合料砖块与焦炭交替加入到熔炼炉中,通入富氧空气进行富集熔炼,熔炼产出的重相熔体控制冷却制度分离产出粗铜与冰铜,熔炼渣在烟化炉中造锍贫化和烟化分别回收铜和锡,熔炼渣再磨细后选矿进一步回收铜。本发明的核心首先是硫酸钙作为新型固硫剂,其次是采用淀粉同时作为粘结剂和还原剂,再次是通过控制熔炼渣中铜含量实现含铜固废的无害化与资源化利用,最后是采用造锍贫化和烟化过程实现熔炼渣中铜和锡的回收。
本发明公开了一种废旧锂离子动力电池的再利用方法,该方法是将废旧锂离子动力电池进行放电和切段预处理后,置于保护气氛下进行热解处理;热解处理过程中产生的挥发组分中回收热解油和热解气作为热解处理过程的燃料;热解处理过程中产生的热解残渣经过剪切式破碎后进行筛分,得到粗粒级物料、中间粒级物料和细粒级物料;粗粒级物料通过色选或重选分离出金属铜和金属铝;细粒级物料通过浮选分离正极活性物质和碳颗粒;该方法能够实现废旧锂离子动力电池中铝、铜、活性材料和石墨等得到充分回收,同时充分实现废物再利,降低能耗,减少环境污染,且流程简单、适用的电池种类广、金属及正负极活性物质等的回收率高。
本发明公开了一种镍钴协同萃取剂及其用于镍钴与杂质萃取分离的方法,协同萃取剂包括吡啶基磷酰胺化合物和二烷基萘磺酸;以含镍钴协同萃取剂的有机相对含镍离子和/或钴离子及杂质金属离子的水溶液进行萃取,萃取有机相经过反萃取,即得脱除杂质金属离子的含镍离子和/或钴离子的溶液;该协同萃取剂能实现镍和钴的分离以及镍钴与杂质金属离子(如镁、锰、钙等)的有效分离,且具有选择性高,分相快等优点。
本发明公开了一种以沥青为黏结剂的粉矿制取团矿的方法,包括以下步骤:1)以粉矿为原料、以沥青为黏结剂制成生团矿;2)对所述生团矿进行干燥脱水;3)对所述干燥脱水后的生团矿依次进行一次脱氢和二次脱氢;其中一次脱氢在强氧化性介质中进行,二次脱氢在弱氧化性或中性介质中进行;4)对步骤3)后的团矿进行碳化固结,碳化固结后的团矿焖炉缓冷至温度低于300℃,即制得成品团矿。本发明的工艺制备的团矿,可应用于高炉冶炼、电炉冶炼、竖炉冶炼、回转窑冶炼、底转炉冶炼。本发明工艺过程通过一次脱氢、二次脱氢并碳化固结,使制备的团矿中脱氢彻底并不发生氧化,成品球团不含焦油及其他有毒有害的化合物,安全环保。
本发明公开了一种高铁废渣或矿物的磁化焙烧的方法,该方法以燃气为燃料,采用回转式气氛炉进行焙烧,在回转式气氛炉在炉体内部一端设有烧嘴和助燃风机;进行磁化焙烧时,先将燃气与空气在烧嘴内预混后点燃,控制燃气流量与空气流量及二者比例,使炉内燃气不完全燃烧,利用燃烧产生的热量维持炉内的温度,同时以保持燃烧尾气为还原气氛;燃烧尾气和高铁废渣和/或矿物同向或逆向接触进行磁化焙烧;该方法设备和操作简单,低成本实现了高铁废渣或矿物的高效磁化。
一种废弃电路板有价资源的回收方法,包括如下步骤:(1)真空裂解:将带有电子元件的废弃电路板置于真空裂解装置中,进行热裂解,收集热裂解挥发产物冷凝成液态油。(2)加热真空离心分离:将裂解后的固态产物置于真空离心机械中加热使焊锡与裂解渣高效分离。(3)收集步骤2所得裂解渣:分别回收贵金属和其他有价金属,分离回收铜箔、玻璃纤维、碳渣等物质。本发明根据废弃电路板的结构特性分阶段处理、优化废弃电路板处理的工序和条件、方法简单、使得废弃电路板的回收成本更低、效率更高、废弃电路板废弃资源回收率更高、更符合工业化的要求,适合废弃电路板的大规模回收。
本发明公开了一种基于原电池的生物冶金方法及装置,所述方法是基于原电池以浸出剂与原电池的负极槽循环连通,以微生物菌液与原电池正极槽循环连通,将待浸出原料置于浸出剂中,利用浸出剂和菌液的电位差可转换待浸出原料的部分化学能为电能。原电池槽将菌液和浸出剂分开,待浸出原料和其中的有毒离子不能直接接触微生物,微生物也不会随浸出废料进入自然环境。本发明用含有高浓度酸和氧化剂的浸出剂提升溶解速率,用可再生氧化剂的菌液维持溶液高电位,用原电池槽将微生物和环境隔离,同时再生浸出剂中的氧化剂,杜绝了微生物泄漏,提升了物料浸出效率。
本发明涉及一种黄铁矿处理含铅废水的方法,将黄铁矿进行破碎,然后进行粉磨,再用去离子水进行洗涤;将洗涤后的黄铁矿溶于硫酸溶液中,得到沉淀溶剂;将含铅废水放入搅拌池中;向所述搅拌池中加入稀硫酸进行调节pH值;向废水中加入所述沉淀溶剂,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,然后进行过滤,得到沉淀污泥;将所述沉淀污泥放入焙烧室进行焙烧,将焙烧后的固体溶于硝酸中,得到初级溶液;将所述初级溶液进行萃取、反萃、蒸发结晶,得到结晶物;将所述结晶物与碳粉进行混合,再放入电炉中进行焙烧,并将产生的气体排走,最终得到金属铅。本发明工艺简单,反应条件容易达到,反应也易控制,处理废水量大。
红土镍矿中镍钴、铁和镁综合开发利用的方法,以红土镍矿为原料,采用采矿、磨浆制矿、加压湿法氯化浸出、萃取镍(钴)铁分离、氯化镁高温水解、浸出渣磁化焙烧和磁选等工艺流程来提取镍钴中间产品、回收轻质氧化镁及用于炼铁的原料。主要技术要点是对红土镍矿中的镍钴先用加压盐酸溶解浸出,在溶液中的镍钴用沉淀法得到中间产品,沉镍钴后母液经过高温水解得到轻质氧化镁,并回收氯化氢得到盐酸,浸出渣经还原磁化焙烧、弱磁选得到炼铁用原料,回收盐酸进入浸出工段从而使盐酸闭路循环。本发明综合回收镍钴、镁和铁,具有镍钴浸出率高、成本低、投资少、盐酸闭路循环。整个工艺简要、清洁,对环境友好。本发明尤其适应大规模工业生产。
本发明提供一种含铬污泥中重金属选择性分离方法,包括步骤:S1,将所述含铬污泥与氯化剂混合,得预处理混合物;S2,将所述预处理混合物在空气气氛下焙烧,得含铬的焙烧污泥和含锌铜的冷凝液;S3,对所述焙烧污泥依次进行酸浸处理和固液分离处理,得含铬溶液和浸出渣。本发明利用氯化、空气气氛焙烧和酸浸等处理方式,不仅可以避免含铬污泥造成的环境污染,而且可以回收含铬污泥中的重金属资源并进行选择性分离。
本发明公开了一种基于极化特征的铁水流速检测装置,包括高速相机视频捕捉单元、与所述高速相机视频捕捉单元依次连接的视频采集单元、视频预处理单元、极高光特征位移场计算单元以及铁水流速检测单元,视频预处理单元,提取帧图像组中帧图像的极高光特征,极高光特征位移场计算单元,用于根据极高光特征获取亚像素级位移场,铁水流速检测单元,用于根据亚像素级位移场,获取铁水流的流速,解决了现有对具有高温、高速、高光的铁水流的流速检测精度不高的技术问题,提供了在恶劣检测环境下检测超高温、高速、高光的铁水流速的实时检测装置,该装置安装方便,操作简单灵活,且能适应更恶劣下的环境,检测对象应用范围广。
本发明涉及资源环境领域,具体提供了一种采用电位控制从砷碱渣浸出液中深度回收锑的方法。该方法具体包括以下步骤:(1)加料:首先将砷碱渣浸出液加入氧化罐中,然后将脱锑剂双氧水由氧化罐底部加入氧化罐中,控制双氧水加入时间占总氧化时间的1/3-1/2,当电位达到-530mv~-640mv时,停止脱锑剂的加入;(2)氧化:在加入脱锑剂的同时不断搅拌,发生氧化反应,总氧化时间为40min~90min,氧化过程保持20℃~80℃;(3)过滤:滤渣为锑酸钠产品,滤液用于回收砷和碱。本发明能准确控制溶液中锑的氧化程度,得到的锑酸钠作为产品出售,或返回锑冶炼系统作为锑原料循环利用,能最大程度的回收浸出液中的锑,避免锑资源的浪费,不产生二次污染。
一种从含硒污酸泥中回收硒碲的方法,本发明先将含硒污酸泥和添加剂硫酸钠混合后在一定流量的氮气气氛中进行中温焙烧,污酸泥中的硒以单质形式挥发进入水溶液中;焙烧产物中的铜、碲则在硫酸溶液进行控电位氧化浸出后,再用亚硫酸钠进行碲的还原,实现碲与铜的分离;浸出渣主要为硫酸铅,可通过还原熔炼的方法产出粗铅。本发明通过控制焙烧温度,有效避免了硫酸铅的分解,实现了硒与污酸泥中其他元素的分离,焙烧过程硒的挥发率达到96%以上,且产出的硒粉纯度达到了97%以上;硫酸体系控电位氧化浸出能够高效浸出焙烧产物中的铜和碲,铜、碲的浸出率分别达到95%和94%以上,且在还原分离过程中碲的回收率达到91%。
本发明涉及一种纯碱处理含铅废水的方法,包括以下步骤:将含铅废水放入搅拌池中;向所述搅拌池中加入纯碱,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,然后进行过滤,得到沉淀污泥;将所述沉淀污泥进行离心处理;将离心后的沉淀污泥溶于稀硫酸中,得到初级溶液,产生的气体再通入所述搅拌池中;将所述初级溶液进行萃取,得到萃取液;将所述萃取液进行反萃,得到反萃液;将所述反萃液进行蒸发结晶,得到结晶物;将所述结晶物与碳粉进行混合,再放入电炉中进行焙烧,并将产生的气体排走,最终得到金属铅。本发明工艺简单,反应条件容易达到,反应也易控制,处理废水量大。
本发明属于湿法冶金电沉积技术领域,本发明提供了一种采用并联式隔膜电沉积模组制备金属铋的方法,甲基磺酸体系电积液由储液槽经换热器泵至高位槽中,再由高位槽流入分配槽经料液支管、阴极室供液管输送至隔膜电沉积模组的阴极室;阴极室的料液经阴极室溢流口通过阴极室排液管流至循环槽,再通过循环泵经阳极室供液管输送至隔膜电沉积模组的阳极室;阳极室的料液经阳极室溢流口流至回收槽。本发明的方法通过阴离子隔膜设置和电积液流动方式控制可避免电沉积过程中亚铁离子在阴、阳极之间来回迁移,导致电流效率大幅降低,阳极室甲基磺酸铁‑甲基磺酸溶液可返回含铋物料湿法浸出工序作为浸出剂循环利用。
本发明公开了一种炉渣结晶过程热重测试设备及测试方法,测试设备包括反应室;所述反应室上方固定有成像装置;所述反应室设在质量测量单元上;所述反应室两侧对称各设有一个导管,两个导管内均设有温度采集和测试装置;所述温度采集和测试装置的测温元件与中央处理器电连接;所述温度采集和测试装置的加热元件与加热控制装置电连接;所述成像装置、加热控制装置均与所述中央处理器电连接。本发明设备简单、操作方便、通过两支热电偶对保护渣进行加热、测温,模拟连铸结晶器内铸坯、保护渣、结晶器壁之间的实际工况,实现原位观察、记录、测量保护渣的熔化与相变过程的热物性。
本发明公开了一种以废锂离子电池负极材料为原料制备高容量高倍率石墨方法,包括:将所述负极材料剪成碎片后放入炉中进行加热,得到粉末;将粉末在水中混合和进行超声波振动处理,然后过滤烘干,得到剩余粉末;将所述剩余的粉末通过不同网目筛网筛分,得到铜粒和高纯石墨,后续再将高纯石墨放入水中超声分散,再加入溶解了有机糖原的水中,通过水浴加热搅拌蒸干水分,再进行烘干,最后通过管式炉无氧加热碳化,得到具有更好电化学性能的石墨。本发明提供了一种回收电化学性能好且可用于工业生产的锂离子电池负极材料回收利用方法,通过对废锂离子电池负极进行高温热处理、超声波振动、过、筛分和碳包覆来实现负极中电池级石墨的回收。
本发明涉及一种锡阳极泥的处理方法,属于有色金属真空冶金技术领域;本发明以自然堆放氧化的锡阳极泥为原料,通过两步真空冶炼,即将锡阳极泥中的铅锑复合化合物炭还原并分解为氧化铅和氧化锑后迅速蒸发除去,得到蒸余物;然后再对蒸余物进行还原,蒸余物中的二氧化锡被还原,得到粗锡。本发明锡阳极泥铅脱除率≥99%,锑脱除率≥92%,锡直收率≥94%,粗锡含锡量≥94wt%。本发明实现了铅和锑的一步同时脱除,简化了锡阳极泥的处理流程,降低了生产成本;本发明与现有锡阳极泥的处理工艺相比,具有流程简单、能耗低和烟气污染小等优点。
本发明涉及一种含氟硅酸的药剂组及其应用。所述药剂组包括润湿分散剂、捕收剂、抑制剂;所述润湿分散剂选自非离子表面活性剂;所述捕收剂选自烷基硫酸盐;所述抑制剂选自氟硅酸、氟硅酸钠、氟硅酸钾中的至少一种。在循环生产中使用本发明设计的药剂组,通过浮选分离,能够高效分离微细粒铅氧化合物和铁氧化合物,达到微细粒浮选精矿团聚显著,浮选速率快,过滤性能优越的效果,解决了传统资源综合利用领域浮选分离精矿时间长、产品脱水难的问题。
本发明公开了一种废旧镍钴锰酸锂三元正极材料再生的方法。该方法是将废旧镍钴锰酸锂三元正极材料采用磷酸‑柠檬酸混酸溶液浸出,得到浸出液;浸出液通过镍盐、钴盐和锰盐调节其金属离子比例后,添加至草酸溶液中进行共沉淀反应,所得沉淀经过预煅烧得到镍钴锰氧化物,再与锂源通过研磨混合后,煅烧,即得再生镍钴锰酸锂三元正极材料;该方法采用混酸浸出过程,酸耗小,浸出时间短,成本低,对环境影响小,并且无需添加还原剂,工艺简单;且混酸浸出液直接用于合成三元正极材料,避免了现有技术中对浸出液中各种金属进行分离提纯的复杂流程,实现了金属的闭环循环利用。
本发明涉及一种氧化铁吸附处理含铅废水的方法,先得氧化铁胶体,将陶瓷颗粒放入制得的所述氧化铁胶体溶液中,反应得到氧化铁覆膜陶瓷;将含铅废水放入搅拌池中;向所述搅拌池中加入氨水进行调节pH值;向废水中加入氧化铁覆膜陶瓷,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,沉淀池底部铺满所述氧化铁覆膜陶瓷,废水从沉淀池底经氧化铁覆膜陶瓷被抽走;将所述搅拌池和沉淀池中的氧化铁覆膜陶瓷放入稀硫酸溶液中,反应一段时间,过滤,得到初级溶液,将所述初级溶液进行萃取、反萃、蒸发结晶;将所述结晶物与碳粉进行混合,再放入电炉中进行焙烧,最终得到金属铅。本发明工艺流程绿色环保,能耗小,易于实现工业化规模生产。
本发明涉及一种石灰处理含铅废水的方法,包括以下步骤:将天然的石灰石进行破碎、煅烧,得到生石灰;将含铅废水放入搅拌池中;向所述搅拌池中加入生石灰,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,然后进行过滤,得到沉淀污泥;将所述沉淀污泥放入干燥室进行干燥;将干燥后的沉淀污泥溶于稀盐酸中,得到初级溶液;将所述初级溶液进行萃取,得到萃取液;将所述萃取液进行反萃,得到反萃液;将所述反萃液进行蒸发结晶,得到结晶物;将所述结晶物与碳粉进行混合,再放入电炉中进行焙烧,并将产生的气体排走,最终得到金属铅。本发明工艺简单,反应条件容易达到,反应也易控制,处理废水量大。
中冶有色为您提供最新的湖南长沙有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!