本发明公开了一种高温耐磨耐蚀Co-Ti-Si金 属间化合物合金材料,该合金材料主要由Co、Ti、Si三种金 属元素组成,其中Co的重量百分比为15~57、Ti的重量百分 比为39~67、Si的重量百分比为4~18。该合金材料主要组织 组成相是 (a)Ti5Si3金属硅化物固溶体+TiCo金属间化合物固溶体,或 (b)Ti5Si3金属硅化物固溶体+TiCo金属间化合物固溶体 +Co3Ti2Si金属硅化物固溶体,或 (c)Ti5Si3金属硅化物固溶体+TiCo金属间化合物固溶体 +Ti2Co金属间化合物固溶体。该 合金材料可应用于冶金、能源、石油、化工、电力等工业中大 量存在的、在高温氧化及腐蚀等环境下承受摩擦磨损作用的机 械运动副零部件铸锭及铸件的铸造成形与采用激光熔覆、等离 子喷涂、火焰喷涂等方法使用雾化合金粉末在金属机械零部件 表面制备耐磨耐蚀防护涂层或对耐磨耐蚀零部件进行表面改 性与修复。
本发明公开一种改善Nb-Si基多元合金高温抗氧化性的方法,属于超高温合金材料领域。本发明利用激光熔化设备,通过合理的预热和熔化工艺参数设置,在氩气的保护下,将高能激光束作用于Nb-Si基多元合金试样表面,使得合金表面熔化和快速凝固,生成一层组织细小、均匀且致密的表面重熔层,从而通过细化组织改善了Nb-Si基多元合金的高温抗氧化性。本发明通过增加预热工序,有效克服了脆性合金在快速凝固过程中容易产生裂纹的现象,同时表面重熔层与基体以冶金方式结合,服役过程中不容易脱落,实用性较强。
本申请提供一种新型δ相强化镍基高温合金及其制备方法。新型δ相强化镍基高温合金,以质量百分比计算,包括:8%‑18%Cr、8%‑18%Co、2.5%‑6.5%W、3%‑6%Mo、30%‑45.5%Nb、3%‑10%Al和30%‑45%Ni;其中,新型δ相强化镍基高温合金以金属间化合物Nb3Al作为强化相。新型δ相强化镍基高温合金的制备方法,包括:将基体合金粉末和金属间化合物Nb3Al粉末混合,处理后通过热等静压法成型得到镍基高温合金。该镍基高温合金具有稳定的组织,合金中强化相在基体中分布均匀并且与γ‑基体形成了良好的冶金结合,可以满足更高的使用温度。
本发明涉及一种二氧化钼直接合金化冶炼工艺,属于钢铁冶金合金钢(铁)冶炼技术领域。其特点在于:以含二氧化钼的原料为钼源加入到钢液或铁液或渣中,在钢液或铁液或渣中加入一定量的还原剂,利用还原剂还原二氧化钼,到了冶炼后期待钢液或铁液中的钼元素含量稳定后,加入含钼合金调节钢液或者铁液的成分。该方法与现有技术相比,克服了钼铁冶炼合金化工艺冶炼含钼钢种的高成本,高污染,以及用三氧化钼直接合金化炼钢时三氧化钼容易挥发的缺点,具有钼收得率高和经济效益显著等特点。
本发明公开了属于镁合金冶金技术领域的一种用于回收镁合金切屑的熔剂及其制备和应用方法,该熔剂主要由无水光卤石、?氯化镁、氯化钾、碳酸镁和碳酸钙组成,上述各成分所占的质量百分数分别为10-80%、?0-40%、5-40%、0.5-3%、0-2%,根据镁屑粗细及加热条件的具体要求,也可添加不多于40%的氯化钠、氯化钙等其它成分。本发明是在镁屑入炉前,将镁屑与熔剂充分混和,然后加入熔炉中,随炉升温,熔剂熔化附在镁屑的表面,阻隔镁表面与气体的接触氧化,同时熔剂产生的阻燃气体,进一步有效防止镁屑氧化燃烧,提高镁屑的回收率和生产安全性。
本发明提供了一种(ScAl3+Al2O3+Sc2O3)/Al基复合孕育剂、其制备方法和应用。包括:步骤S1,将三氧化二钪粉末和纯铝进行铸锭,得到铝钪氧中间合金铸锭;步骤S2,对铝钪氧中间合金铸锭进行快速凝固处理,得到(ScAl3+Al2O3+Sc2O3)/Al基复合孕育剂。上述制备方法只需两个步骤即可得到(ScAl3+Al2O3+Sc2O3)/Al基复合孕育剂,制备工艺简单;铸锭和快速凝固处理均为冶金领域的常用技术,生产效率较高,便于工业化应用。得到的(ScAl3+Al2O3+Sc2O3)/Al基孕育剂中增强相颗粒尺寸细小、分布弥散,克服了现有孕育剂中增强相颗粒尺寸粗大,易偏聚的缺点。
本发明属于粉末冶金制品领域,涉及气体催化过滤材料及其制备方法。本发明一种金属多孔催化过滤材料由多孔金属或合金基体、中间过渡层和活性组分组成;本发明所述的金属多孔催化过滤材料的制备方法,其工艺步骤包括多孔金属或合金基体制备、制备中间过渡层和负载活性组分。本发明以多孔金属为载体、以过渡金属氧化物为活性组分,具有密度低、比表面大、孔隙率高和导热性能好等优异特性;并且活性组分分布均匀、负载牢固,催化活性好、热稳定性好。该催化过滤材料的制备过程简单,成本较低,易于实现工业化。适用于对高温气体中VOC、HC、NOx的净化以及高温含硫氧化物、氮氧化物烟气的同时除尘、脱硫、脱硝净化过程。
本发明属于有色金属冶金领域,涉及镍铜冶炼转炉溅渣护炉方法。本发明的主要特征是在镍铜转炉加入含氧化镁熔渣后,分批向渣中加入调渣剂(如轻烧镁球、轻烧菱镁矿、氢氧化镁块或其他含氧化镁物料),加入量约0~50千克/吨渣;向炉渣吹入高压空气或高压惰性气体,同时转动炉子,使炉渣飞溅在炉衬上,形成溅渣层。溅渣层在整个冶炼期对炉衬具有保护作用。
本发明涉及一种用于电渣重熔含B的9Cr转子钢锭的低氟渣系及其使用方法,属于电渣特种冶金技术领域,解决了现有技术中电渣重熔含B的9Cr高压转子钢锭用低氟渣系含氟量高,环境污染大的问题。一种用于电渣重熔含B的9Cr转子钢锭的低氟渣系,渣系中各组分的质量百分含量为:CaF2;5%~30%,CaO;25%~35%,Al2O3:40%~50%,MgO:2%~5%,B2O3:0.1%~3%,其余为杂质;杂质中SiO2<0.5%。电渣重熔含B的9Cr转子钢锭的低氟渣系节能减排效果明显,电效率高,环境污染小。
一种在纯铝及合金铸件表面制备耐磨涂层的工艺方法,属于金属基复合材料制备技术领域。本发明采用自蔓延反应Ti+C=TiC,按照化学计量比称取Ti粉与C粉,并添加30%-40%的调控粉末进行混料,调控粉末控制反应热量与强化涂层粘结相,调控粉末组分质量配比为Cu:0-10%,Mg:0-5%,Si:0-5%,Ti:0-5%,Zn:0-10%,其余为Al;添加粘结剂后置于塑料泡沫表面,利用外置点火装置与真空消失模铸造技术完成表面耐磨涂层与基体材料的同步制备。本方法通过外部热源引发材料表面预置粉末的自蔓延反应,并依靠反应热量与浇铸热量实现基体与强化层冶金结合,保证强化层与基体的结合强度;产物原位生成,避免了污染与夹杂,保证强化区域的力学与物理性能。
本发明的自还原球团熔融还原包括用铁矿粉、煤粉和粘结剂制成的自还原球团,以及冶金型煤,在竖炉中进行熔融还原,实现了以煤代焦和高风温代氧的炼铁工艺。自还原球团由铁矿粉60~90份(重量,下同)、煤粉(或焦粉)10~40份以及粘结剂4~12份所组成。冶金型煤由适当配比的煤粉(或焦粉)与特制的粘结剂(4~12份)所组成。所得铁水适用于炼钢和铸造,最适于为电炉炼钢热装铁水。
本发明属于仪器仪表技术领域,涉及一种惯性仪表用永磁力矩器组件的制造技术,具体为一种稀土-钴基辐向永磁环组件及其制造方法。该永磁环组件采用稀土-钴基永磁合金材料,通过粉末冶金方法制备制得多个辐向磁极块(1),每个辐向磁极块(1)具有单一的磁极方向A,通过将多个辐向磁极块(1)粘结固定形成圆筒状结构的永磁环组件制得。永磁环组件机械强度可靠,中性状态下易于实现磁性元件的精密工艺制造,充磁后磁极表面辐向磁场强度大,均匀度好,解决了辐向永磁环表面磁性能低,均匀稳定性差,装配精度不高的问题。
一种铝电解用的复合合金惰性阳极,该铝电解用的复合合金惰性阳极的基体组成为(x)A(y)B,其中x为A的质量百分比含量,y为B的质量百分比含量,x为40~100%,y为0~60%;A由Cu、Ni、Fe、Co、Al、Mn、W、Cr、Ti、Sn和Zn中的单一或多种元素组成,B由Mo、Pd、Ag、Cd、Au、Pt、Sb、Mg、Ir、Bi、Pb、Si、N、C及稀土元素中的单一或多种元素组成。在基体上包覆着致密保护膜,该致密保护膜为氧化薄膜和/或渗层。电解过程中采用复合合金惰性阳极不仅可以解决陶瓷类阳极导电性能及抗热震性能差的问题,而且较单一合金阳极具有更好的耐腐蚀性能。另外,该复合合金惰性阳极特别适合在低温铝电解体系中应用,也可在稀土、Mg等熔盐电解冶金领域。
本发明涉及一种轻质碳酸镁制备工艺,尤其是涉及一种利用生石灰和湿法冶金过程产出的硫酸镁溶液生产轻质碳酸镁制备工艺,包括以下步骤:消化生石灰以便得到石灰乳;用石灰乳沉镁以便沉淀出结晶形式的硫酸钙和凝胶状的氢氧化镁;将硫酸钙与氢氧化镁分离以便得到硫酸钙和氢氧化镁浆料;向氢氧化镁浆料内通入二氧化碳以便得到碳酸氢镁溶液;加热碳酸氢镁溶液从而使碳酸氢镁分解生成碱式碳酸镁并释放出二氧化碳;和将碱式碳酸镁滤出并进行洗涤和干燥从而得到轻质碳酸镁。根据本发明的制备工艺简单,成本低,且能够处理湿法冶金产生的废液。
本发明公开了一种处理净化钴渣的工艺方法,锌精矿经硫酸化焙烧和浸出后,铜、镉、镍、钴、砷、锑、铁等杂质进入中性浸出液,其中钴是一种难以除去的杂质,本发明所针对的净化钴渣是经过有机物除钴后所得到的渣。经过本工艺方法的处理后,锌、钴的回收率可分别达到95%、90%以上。首先将湿法炼锌净化工序产出的净化钴渣进行第一段浸出,采取方法为酸浸—水洗,锌的浸出率可以达到95%以上,浓缩后的锌溶液进入锌电积工序。对一段浸出渣进行第二段浸出,采取烘干—加温酸浸的方法,钴的浸出率可以达到90%以上。
本发明公开了一种利用熔融气化炉直接还原回收锌的方法,首先采用碱激发剂激发镍渣、粉煤灰、炉渣制备胶凝材料,再与含铁/锌粉尘、钢渣混合后压制成球团块,并通过熔融气化炉对球团块进行处理,本发明冷固结球团养护时间短,生产效率高,且原料来源广泛稳定,价格低廉,有利于提高固体废弃物的利用;在室温下造块,避免高温焙烧过程即可获得抗压强度较高的球团块,从而可避免其在还原过程中产生破损和粉化,以实现含锌粉尘的再资源化利用及有效消纳处理,并提高高价高质锌的回收率以取得良好的经济效益。按本发明的工艺方法处理含铁粉尘,可分别获得金属铁和锌/氧化锌,实现了资源的高效回收利用,且工艺过程能耗低、物耗低、无环境污染。
本发明提供了一种利用回转窑进行锌富集回收的方法。将预热的入窑原料送入变径回转窑窑尾,并于窑尾鼓入煤粉和富氧空气,进行煅烧反应80~100min;在窑头抽风机的作用下,煅烧反应产生的烟气的流动方向与所述入窑原料的运动方向保持一致,均从所述窑尾运动至所述窑头;收集焙烧矿,磨矿磁选得到铁精矿;对抽风机抽出的烟气进行收集净化处理,使用收尘系统收集含锌粉尘,并将其与入窑原料混合制粒,得到混合入窑物料,送入变径回转窑,循环进行煅烧工序和含锌粉尘收集工序,实现对锌的循环富集;当烟气中锌含量达到10%以上后,直接收集烟气中的含锌粉尘,利用酸浸工艺进行锌的回收。该方法能够有效提高铁和锌的回收率、防止回转窑结圈,且高效节能。
本发明公开了一种MO掺杂的FECO基软磁合金,属于高温软磁合金材料,该合金为具有高硬度的软磁合金FE44-XCO44ZR7B5MOX(0
本发明涉及一种镁铜复合铸造材料及其制备方法,属于合金材料领域。复合材料包括镁合金和铜合金两个组元,通过铸造冶金结合在一起,界面处形成两种层状组织,靠近铜侧的亚层组织厚度比较薄,大约为10‑50μm,主要为Mg2Cu相,其上分布一些MgCu枝状相,靠近镁的附近的亚层结构组织大约为100‑200μm,呈均匀网状分布,其主要为Mg‑Mg2Cu共晶相。本发明的镁铜复合材料,以铜合金棒作为铸芯,镁合金作为熔体浇注于铜芯后通循环水冷却制备,该材料保持铜合金和镁合金一些优良的导电导热性能和轻质高强性能的同时,在镁合金和铜合金之间形成大的电势差,成为电偶腐蚀,从而加速镁合金和铜合金更快地降解。本发明的镁铜复合材料将有望在航空航天、石油冶金等领域得到应用。
一种抗冻抗泛碱赤泥基免烧砖及制备方法。各原料组分:赤泥20~40%,电厂粉煤灰10~25%,电解锰渣5~15%,冶金渣20~30%,42.5硅酸盐水泥5~9%,级配煤矸石20~30%,激发剂3~9%,改性剂0.5~2%,萘系减水剂0.1~0.2%,复合相变材料微胶囊3~10%。本发明中复合相变材料微胶囊是由改性粉煤灰作为支撑材料吸附相变材料,再由有机树脂包覆制得。添加复合相变材料微胶囊,能够有效降低免烧砖对温度的敏感性,从而降低其在冻融过程中造成的膨胀、开裂程度。本发明基于多种固废资源的复合协同效应理论,充分激发电厂粉煤灰、冶金渣等固体废弃物的火山灰活性,形成晶态或非晶态的水化产物,不仅可以填充基体内部孔隙结构,而且有效固化基体中的Na+,从而抑制免烧砖的泛碱。
本发明公开了一种高温耐磨耐腐蚀Cr-Ni-Si 金属硅化物合金材料,该合金材料主要由Cr、Ni、Si三种金属 元素组成,其Ni的重量百分比为30~53、Cr的重量百分比为 42~65、Si的重量百分比为3.6~10;该合金材料的主要组织 组成相是:(a)Cr13Ni5Si2金属硅化物固溶体+镍基固溶体;(b)Cr13Ni5Si2金属硅化物固溶体+Cr3Si金属硅化物固溶体;(c)Cr3Si金属硅化物固溶体+Cr13Ni5Si2金属硅化物固溶体+镍基固溶体。该合金材料可广泛应用于电力、能源、石油、化工、有色金属冶金、钢铁冶金等工业中大量存在的、在高温氧化及腐蚀等环境下承受摩擦磨损作用的机械运动副零部件。
本发明提供了一种稀土磁致伸缩材料的制备新工艺。该工艺利用速凝成晶技术制备出磁致伸缩合金速凝片,将速凝片制成粉末,采用粘结或烧结等粉末冶金方法制备出高性能的稀土磁致伸缩材料。速凝成晶技术制备的磁致伸缩合金主相为柱状晶,并能有效地控制合金柱状晶的取向。在粉末冶金法制备磁致伸缩材料过程中,能使合金的柱状晶完整地保存,制备出高性能的磁致伸缩材料。该技术能有效地降低稀土磁致伸缩材料的制备成本,提高材料的磁致伸缩性能。
本发明属于空间系统控制技术领域,具体涉及一种自锁阀用锁闭磁环的制造方法及其制造的锁闭磁环。该锁闭磁环的合金原料成分按质量百分比为R:29.8%~31.5%、Co:1%~4%、Ga:0.1%~0.5%、Al:0.5%~1.5%、Cu:0.2%~0.4%、Nb:0%~0.3%、B:1%~1.1%,余量为Fe;所述R为(Nd1‑xPrx)1‑a(Dy1‑y‑zGdyHoz)a的混合物,其中0≤x≤0.2,0≤y≤0.15,0≤z≤0.1,0.1≤a≤0.3;锁闭磁环经熔炼→氢破、气流磨粉→磁场成型→烧结热处理→表面抛光处理→真空处理、涂覆耐蚀涂层→充磁工艺制备。本发明制备的锁闭磁环结构简单、稳定,使用温度高、耐环境腐蚀性好,且制作成本低,易装配,可广泛应用于低功耗、使用环境恶劣的自锁阀中,适于小型化及规模化制造。
本发明属于高熵合金和耐高温合金领域,尤其涉及一种(NbMoTaW)100‑xMx系难熔高熵合金及制备方法,合金的化学成分如下:(NbMoTaW)100‑xMx,(0<X≤5%),M是B、C、O三种元素中的一种或两种;其中除元素M外,每种元素的含量均不低于5%,不高于35%。本发明的制备方法包括:首先将所需原料去除表面氧化皮等杂质,并按照原子比称量。再通过真空电弧熔炼将合金成分熔炼成铸锭即可。本发明的高熵合金在室温下具有良好的塑性,同时具有优异的高温强度和塑性,可用于特殊工况环境下的高温结构件等,在高温领域具有广阔的应用前景。
一种高强韧CrMnFeNi双相高熵合金及其制备方法,属于高熵合金领域。其成分原子百分比为CraMnbFecNid,28≤a≤34,22≤b≤24,22≤c≤24,22≤d≤24,a+b+c+d=100。制备工艺为:原料金属Cr、Fe、Ni和Mn去氧化皮后按原子百分比称量,在真空感应炉里进行熔炼和真空保护浇铸;将制备的高熵合金铸锭在高温热处理炉中均匀化处理后进行热锻处理,空冷;随后将其放入高温热处理炉中进行回复再结晶退火,水冷,即可获得高熵合金材料。本发明通过成分调控、均匀化、热锻和再结晶处理,确保合金为均匀的双相组织,使得合金具有高强度(屈服强度超过490MPa,抗拉强度超过760MPa),良好的强塑性匹配,解决了现有单相CrMnFeNi高熵合金屈服强度低的问题,制备方法简单可靠,安全性好,适合工业化生产,经济价值高。
本发明属于储氢材料领域,涉及一种BCC结构为主的储氢高熵合金及其制备方法。该高熵合金的成分表达式为:(TiaZrbNbc)xMy, 5≤a≤35 at%,5≤5 at at%,5≤c≤35 at%, a+b+c=x,15≤x≤100 at%,M是Hf、Fe、Co、Cr、Mn、Ni、Mo及W中的任意一种或多种,每种M的原子百分比在0‑35%之间,且x+y=100。本发明合金的制备方法是采用非自耗真空电弧炉熔炼制备合金;采用真空吸铸,将合金吸铸到水冷铜模中,获得高熵合金棒。本发明的高熵合金具有高的储氢容量(3 mass%以上)及优异的吸放氢动力学性能;在大的吸放氢量的情况下,相比于纯元素而言,高熵合金无需完全提纯,在很大程度上能够节省成本。本发明具有高熵合金的特性,在新能源、交通运输领域具有广阔的应用前景。
本发明涉及一种硅固溶强化VNbMoTaSi高熵合金及其制备方法,属于金属材料及其制备领域。该种合金成分的原子百分比表达式为VaNbbMocTadSie,其中20≤a≤35,20≤b≤35,20≤c≤35,20≤d≤35,0.01≤e≤3。所需原料为纯金属,Si以硅单质形式加入。将原料去除氧化皮后,放入真空电弧炉进行熔炼,熔炼4~6次后,可获得单相BCC机构的固溶体合金。本发明将Si固溶到VNbMoTa晶格中,显著地提高了高熵合金的室温和高温强度。尤其是(VNbMoTa)97.5Si2.5在1200℃下仍具有超过1Ga的屈服强度,优于目前报道的其他体系的难熔高熵合金。
本发明公开了一种Fe‑Mn‑Al‑C‑Cr‑Mo轻质耐热钢及其制备方法,适合600℃构件使用,属于金属材料领域。其特征在于合金化学成分按原子百分比为:Fe41~53%,Mn18~28%,Al18~23%,Cr2.0‑6.0%,C4.0~5.0%,Mo0.1~1.5%。该耐热钢可采用感应熔炼或电弧熔炼方法,经过固溶和失效处理后,室温拉伸强度可达1030MPa,经过600℃时效处理后,耐热钢的抗拉强度可1079MPa。在600℃下的高温拉伸强度可达547MPa。固溶处理工艺是,加热温度为1000~1100℃,保温0.5~4h,然后水淬。时效处理工艺是,加热温度为450~650℃,保温0.5~48h,然后空冷至室温。该合金钢具有轻质、高强、耐热耐腐蚀等优点,可用于交通、机械和能源等工业领域的耐热构件。
一种晶体硅可控化生长及提纯的方法,属于冶金提纯及晶体生长交叉技术领域。该方法构建具有三明治结构“冶金硅‑溶剂金属‑籽晶”的样品原料,放置于具有温度梯度的热场中进行加热、保温,待保温结束后快速淬火冷却至室温,最终分离得到生长速度可控、品质(纯度、杂质分布)可控、晶体取向可控的块状晶体硅,并将冶金硅源、硅合金及籽晶回收重复利用。本发明主要通过添加冶金硅源以促进晶体硅稳定生长,提高生长速率;添加籽晶衬底以有效调控生长硅晶体取向;其次通过添加低熔点溶剂金属与冶金硅形成合金熔体,有效降低晶体硅生长温度,降低能耗,降低生长硅中杂质含量,提高提纯效果。本发明生长提纯晶体硅满足太阳能级硅的要求,节能降耗环保,生产效率高。
本发明涉及一种耐高温VNbMoTa高熵合金及其制备方法,属于金属材料及其制备领域。该种合金成分的原子百分比表达式为VaNbbMocTad,其中10≤a≤35,20≤b≤45,5≤c≤25,20≤d≤45。所需原料为纯金属钒、铌、钼、钽。将原料去除氧化皮后,放入真空电弧炉进行熔炼,熔炼4~6次后,可获得单相BCC机构的固溶体合金。本发明制备的VaNbbMocTad系高熵合金兼具良好的室温塑性和高温强度,可在1200℃的高温下长期服役,未来可在航空航天、汽车、石油勘探领域内作为高温承载件广泛的应用。
中冶有色为您提供最新的北京有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!