本发明提供一种不锈钢粉末的高密度低温温压 成形方法。该方法将≤147μm的国产304L、316L、410L、430L 不锈钢粉末与按总质量百分比计0.1-0.3%的低温润滑剂混合 均匀,将模具加热到80-100℃,采用静电喷涂法将EBS蜡粉 喷涂于模具内腔,然后将混有润滑剂的不锈钢粉末预热到70 -90℃,装入模腔中在600~800MPa压力下压制成形。生坯 密度比常规冷压生坯密度高0.12~ 0.30g/cm3,生坯强度比冷压提高 了10~38%。本方法具有节能、高密度、低成本、温控范围宽、 操作易控等特点,可较大提高不锈钢粉末冶金零件的密度和性 能,本发明生产的高密度粉末冶金不锈钢零件可广泛用于机 械、化工、仪器仪表、医疗器械、办公机械、食品和汽车等行 业。
本发明公开了一种废线路板金属富集体回收制备再生铜合金的方法。该方法包括以下步骤:(1)除铁:磁选去除铁磁性物质;(2)破碎、摇床分选:对除铁之后的物料进行破碎,再摇床分选去除树脂等非金属,得到金属品位更高的金属富集体;(3)球磨、筛分除杂:去除高品位金属富集体中混杂的脆性陶瓷颗粒;(4)高能球磨细化:细化金属颗粒至粉末冶金级别;(5)材料化应用:对再生金属粉末进行粉末冶金加工,制备得到再生铜合金。本发明利用机械物理法回收废线路板中的有价金属资源,并直接进行材料化应用。该方法工艺流程短、成本低、污染小,具有良好的应用前景。
本发明是一种镍氢电池用薄膜电极及其制备方法,薄膜电极由基体薄膜外覆保护膜组成,基体薄膜的主要成分为镁和镍,化学组成为(见上式)保护膜为Pd、Pt、Ag、Au、Co或者它们的二元或多元合金;该制备方法是首先用感应熔炼或粉末冶金方法预制合金靶,然后用物理气相沉积方法在基片上制成基体薄膜,并在基体薄膜表面覆盖一层保护膜。该薄膜可用于镍氢电池的负极。这种储氢薄膜电极的特点是:薄膜晶粒细小(约50nm),具有很大的比表面积,因此薄膜对氢敏感性高,动力学性能好;薄膜作镍氢电池负极可以节约传统电池中泡沫镍所占用的空间,提高了镍氢电池的能量密度。
本发明公开了一种低成本生产X65管线钢的方法,该方法针对电炉薄板坯连铸连轧流程特点进行了合理的冶金成分设计,并采用EAF+LF炼钢技术、薄板坯高效连铸、热连轧机组再结晶区+未再结晶区的控制轧制以及控制冷却技术。其中钢水化学成分范围(WT.%):C:0.046~0.060%,SI:0.15~0.30%,MN:1.4~1.60%,P:0.006~0.015%,S:0.001~0.008%,NB:0.045~0.050%,TI:0.015~0.025%,N:0.005~0.007%。通过使用本发明方法可在电炉薄板坯连铸连轧流程低成本生产厚度6.0~10.0MM、符合API SPEC 5L规范的X65管线钢热轧板卷。
本发明涉及塑性成形技术及粉末冶金技术,具体是指一种WC-增韧增强 Ni3Al硬质合金及其制备方法。该材料配比中以增韧增强Ni3Al金属间化合物 代替传统粘结相钴,其组分及其质量百分比含量如下:WC 89.00~94.00%, 增韧增强Ni3Al 6.00~11.00%,其余为不可避免的微量杂质。该制备方法包括: 先按上述原料粉末配比投料进行高能球磨,直至球磨粉末中WC粉末晶粒平 均尺寸细化至小于200nm;再采用放电等离子快速烧结高能球磨后的硬质合 金粉末。本发明制备的碳化钨硬质合金,不仅综合性能优异,而且性价比高; 本发明工艺简便,且能充分发挥以增韧增强Ni3Al为粘结相的碳化钨硬质合 金的性能优势。
本发明是一种纳米复合铝锡硅轴承合金的制造方法,用高纯度的Si粉在氩气保护下用球磨机破碎,获得弥散的Si粉体;用高纯度的Al、Sn粉与上述球磨获得的Si粉按Al+Sn+Si的重量百分比在氩气保护下,进行二次球磨,获得纳米相复合结构的MA?Al-Sn-Si合金粉体;将获得的MA?Al-Sn-Si粉体冷压制成型,然后烧结,再冷却而制成。Si相的加入一方面通过形成Al-Si共晶相,破除Al粉颗粒表面的氧化层,促进冶金结合;另一方面弥散分布的Si相抑制Sn相由于离异共晶而产生的网状组织和Sn相长大。本发明获得纳米晶的硬质Si粒子和软质Sn粒子均匀弥散分布于高强度的Al基体中,有效提高合金性能。
本发明属于粉磨工艺技术。它克服了以恒定转速的调整来提高粉磨效率的传统方法的不足之处,而提供了一种变转速提高粉磨效率的方法。总结出采用转速比与时间比的对应关系来表达的分段变转速规率。在启动段、混合均化段、冲击粉碎段、冲击兼研磨段和研磨段中的转速比分别为0.16~0.87、0.67~1.10、0.90~1.35、0.67~1.21和0.54~1.00;时间比分别为0.10%~0.50%、0.50%~8.30%、8.30~21.88%、14.70%~29.17%和50.00~67.60%。本方案可广泛用于陶瓷、搪瓷、造纸、冶金、化工及选矿等工业。
本发明属于金属氧化物涂层技术领域,公开了一种低温反应溅射沉积纳米α‑Al2O3涂层的方法。将Al粉及α‑Al2O3粉用粉末冶金的方法制成复合材料,切割成设备所需的尺寸后作为沉积靶材和工件基体分别安装在射频磁控溅射的靶工位和沉积腔室样品台上,排除沉积腔室残留的水蒸汽后抽至本底真空,然后注入Ar+O2混合气体进行预氧化处理;调整Ar+O2混合气中的O2分压至15%~25%范围,并调整工件基体温度至550~750℃范围,启动射频磁控溅射镀膜系统,开始反应沉积得到所述纳米α‑Al2O3涂层。本发明所得涂层为纳米晶结构涂层,韧性好,与基体结合牢固,涂层在相对较低的温度下具有稳定的α相结构。
本发明提供了一种废旧电路板贵金属的高效生物浸出方法和装置,选取产CN‑菌菌种,培养至对数生长期后接至培养罐,控制培养液的温度、酸碱度和通气强度,促进菌种代谢产生的CN‑水解生成HCN,HCN由无菌空气从培养液中吹脱出来并形成混合气体,将混合气体从培养罐中导出后通入吸收捕集装置中,HCN与捕集装置中的氢氧化钠溶液生成浸出剂;将浸出剂溶液泵入贵金属浸出反应器,向反应器内投加废旧电路板贵金属富集体,进行贵金属浸出。本发明通过“边产出边富集边提取”的方式,可大幅度提高生物冶金技术对废旧电路板中贵金属的回收效率,同时具备环保和易于实施的优点,具有良好的应用前景。
本发明是对铸钢轧辊表面激光强化的处理方法。本发明由于采用单纯将材料表面用激光束加热至熔化,使熔凝层与材料基体是天然的冶金结合的处理方法,因此,工件表面在熔凝过程中,不仅可排除其杂质和气体,而且其急冷重结晶可获得较为细化均质的组织和较高的硬度,且其耐磨性和抗腐蚀性均较好;另外,由于其熔层薄,热作用区小,对工件表面的粗糙度和工件尺寸影响较小,一般情况可以不需进行后续磨光而直接使用。本发明是一种使用灵活方便,工艺合理,社会效益及经济效益均较显著的一种铸钢轧辊表面激光强化处理方法。
本发明公开了一种废旧电路板电子元器件高附加值资源化的技术方法及其应用。该方法是将真空热解、真空冶金和分级冷凝法相联用的方法,真空热解使非金属组分热解成油气,真空冶金使金属组分气化,分级冷凝分别获得各种油气和各种金属组分,多相结合实现对废旧电路板电子元器件中金属和非金属的高附加值回收。本发明的方法可以以废旧电路板电子元器件为原料,最终获得各种热解油气和各种单质金属,实现废旧电路板电子元器件的高附加值资源化利用,而且工艺简单、回收效率高,且回收的金属和非金属资源附加值高、无二次污染物排放,具有显著的经济效益和环境效益。
一种激光与热喷涂复合工艺制备铜基钨涂层的方法。其特征是采用低压等离子体喷涂系统在铜基体表面制备镍基合金过渡底层,激光束重熔过渡底层;然后采用低压等离子体喷涂系统制备Ni-W合金中间过渡层和钨涂层,激光束重熔得到所述钨涂层。本发明采用梯度涂层结构,有效缓解了铜、钨热膨胀系数不匹配而造成的热应力问题,提高了钨涂层与基体以及钨涂层的内聚结合强度。采用激光束重熔可使涂层与基体达到冶金结合,提高结合性能,并获得表层致密的钨涂层。本方法制备的钨涂层具有较好的抗热辐照和抗热冲击性能,适合作为装备中的热端部件材料,如射线靶材、火箭喷嘴、飞机喷管喉衬、核聚变装置中的第一壁材料等。
本发明公开了一种基于薄板坯连铸连轧工艺生产700MPa级V-N微合金化高强耐候钢板的方法,该方法针对薄板坯连铸连轧特点及冶金成分,采用电炉或转炉冶炼、精炼、薄板坯连铸、铸坯凝固后直接进入辊底式加热或均热炉、热轧、层流冷却、卷取。其中钢水化学成分范围为(Wt.%):C:≤0.08%;Si:0.25~0.75%;Mn:0.8~2.0%;P:0.070~0.150%;S:≤0.040%;Cu:0.25~0.60%;Cr:0.30~1.25wt%;Ni:≤0.65%;V:0.05~0.20%;N:0.015~0.030%。本发明的的优点在于,可稳定地获得钢板的高强度、高成形性能、高耐候性和良好的焊接性能,钢的冶金成分较简单,合金化生产成本较低,是用于生产集装箱、铁路车厢和需要耐候高强度的工业设施建设的理想板材。
本发明是对冷硬轧辊、球墨铸铁件、灰口铸铁件表面的激光处理方法,该方法通过对工件表面进行激光处理,从而提高工件表面的硬度,使其耐磨性好,使用寿命长。本发明不仅应用范围广,使用灵活,可实现对大型工件和复杂外形工件进行表面强化处理,而且可对铸铁件表面进行强化处理,该方法应用于冶金工业对其生产配件及设备配件进行处理,可提高其配件的使用寿命,降低配件的消耗费用,从而使企业的生产成本大大降低,本发明工艺合理、使用方便,其社会效益及经济效益均较显著。
本发明属于增材制造及粉末冶金技术领域,公开了一种高性能7050铝合金3D打印选区激光熔化成形件及其应用。所述成形件是先将Ta粉和过筛的7050铝合金粉末混合;再采用单激光器打印,激光器功率为450~500W,预热温度为200~250℃,在基板上打印,得到含Ta的7050铝合金件;最后使用切割机将含Ta的7050铝合金件从基板上切下制得。该成形件可在粉末冶金及增材制造领域中的应用。
本发明公开了一种提高700MPA级V-N微合金化高强耐候钢性能的方法,该方法针对薄板坯连铸连轧工艺的特点及冶金成分,采用电炉或转炉冶炼、精炼、薄板坯连铸、铸坯凝固后直接进入辊底式加热或均热炉、热轧、层流冷却和卷取工艺流程,其中钢水化学成分范围为:C:≤0.08WT.%、SI:0.25~0.75WT.%、MN:0.2~2.0WT.%、P:≤0.025WT.%、S:≤0.040WT.%、CU:0.25~0.60WT.%、CR:0.30~1.25WT.%、NI:≤0.65WT.%、V:0.02~0.20WT.%、N:0.015~0.030WT.%。本发明充分发挥薄板坯连铸连轧短流程工艺的特点,利用V-N微合金化技术,在薄板坯连铸连轧流程的铸坯中VN、V(C,N)纳米尺寸析出物对晶粒的细化作用与析出强化的原理生产出700MPA级高强度耐候钢板。本发明通过对V-N微合金化700MPA级高强耐候钢板的冶金成分优化设计,使钢卷的低温冲击韧性增加、成形性能提高。
本发明属于高熵合金技术领域,公开了一种含稀土Gd的超细晶高强韧CoCrFeMnNiGdx高熵合金及其制备方法。本发明高熵合金的各元素原子百分含量为Co 18%‑20%,Cr 18%‑20%,Fe 19%‑22%,Mn 19%‑22%,Ni 18%‑22%,Gd 1%‑3%。本发明还提供一种上述高熵合金的制备方法,采用机械合金化和放电等离子烧结相结合。本发明通过稀土元素Gd的掺入,控制制备过程中引入的杂质氧的不良影响,析出强化相,并结合粉末冶金制备工艺,细化晶粒,从而使高熵合金具有十分优异的综合力学性能,最佳室温压缩屈服强度达到1621MPa,塑性应变为35.4%,最大抗压强度为2685MPa。
一种尾矿砂超声波辅助矿浆电解方法。矿浆电解技术的应用,大大简化了湿法冶金流程,它可以有效的克服湿法冶金流程长、能耗高的缺点,适合于处理量不是很大,但成分复杂、附加值高的矿物,矿浆电解技术使得矿粉的浸出、浸出液净化、目标金属电解沉积、杂质成分的分离等过程结合在矿浆电解槽中进行。本发明所要解决的技术问题在于利用超声波的辅助作用提高矿粉的浸出速率,使得矿物中目标金属的浸出率提高到90%以上,且时间更短。通过超声波作用,还可以促进金属离子在电解液中的分散均匀,消除阳离子的阴极钝化现象,提高了电流效率和析出金属的纯度,使得阴极上析出金属的纯度达到98%以上,且超声技术无污染、易操作、成本低,提高了矿浆电解的效率,环保效应明显。
本发明公开了一种基于电炉薄板坯连铸连轧流程生产J55钢级石油套管用钢的方法,该方法针对电炉薄板坯连铸连轧特点及冶金成分,采用电炉冶炼、精炼、薄板坯连铸、铸坯凝固后直接进入辊底式加热或均热炉、高压水除鳞、热轧、层流冷却、卷取。其中钢水化学成分范围为(Wt.%):C:0.15~0.22%,Si:≤0.45%,Mn:0.70~1.60%,P:≤0.025%,S:≤0.020%,Nb:≤0.06%,Ti:≤0.035%。通过使用该方法可在电炉薄板坯连铸连轧流程生产C含量0.15~0.22Wt.%,具有高强度、高韧性和可焊性的Nb、Ti复合微合金J55钢级石油套管用钢。
本发明涉及冶金领域,具体涉及一种可单独更换热管的膜式水冷壁组合式余热回收装置。所述余热回收装置包括上箱体、多段余热回收段、中间过渡段、以及灰斗,所述的上箱体设置有高温烟气入口,所述的余热回收段的壳体为膜式水冷壁,在所述的余热回收段的膜式水冷壁上设有由外插入的可单独更换的热管,所述可单独更换的热管的受热面覆有耐热和耐腐蚀涂层。每根换热热管可单独进行维修和更换,有效确保余热回收装置和后部脉冲喷吹布袋式除尘器的正常稳定和可靠地运行。
本发明公开一种切圆式螺旋喷射湿法烟气脱硫装置,包括吸收塔,在吸收塔内自下而上依次设置有切圆式螺旋喷射紊流吸收层、常规喷淋层和除雾层;所述切圆式螺旋喷射紊流吸收层由多组沿圆形管路布置的对冲切圆的超声波雾化喷嘴构成;所述常规喷淋层由数个阵列布置的机械式喷嘴构成;在切圆式螺旋喷射紊流吸收层设置高效雾化喷嘴,形成切圆式喷射紊流吸收场,产生的50~400μm雾化微粒螺旋上升,增强了反应物混合均匀性,延长了接触时间,加快了吸收反应速度,提高了脱硫效率;本专利可降低脱硫液气比,大大减少雾化喷嘴的数量,减小脱硫塔体积,降低脱硫成本和能耗,可广泛应用于电力、石化、冶金、水泥等行业的湿法烟气脱硫系统中。
一种金属层状复合锭的铸造装置及方法,铸造装置包括模具和隔离板,模具是由形状结构相对称的两个模块组合而成,模具的中心设置有一个模腔,模腔的内壁前后两面和底面上分别设置插槽,当隔离板沿插槽插入模腔后,模腔被分隔成两个腔体。铸造方法步骤是:首先,将模具锁紧固定,插入隔离板,涂覆脱模剂后,在200-400℃预热2-3小时;然后,将两种金属液通过浇口同时浇入到两个腔体内;最后,停留10-30秒钟后,将隔离板以10-20毫米/秒钟的速度匀速抽出,两种金属液凝固后得到金属层状复合锭。采用本发明制备金属层状复合锭,两种金属液是以半凝固状态且以从下到上的顺序逐渐接触复合成冶金结合的金属层状复合锭,复合界面清晰平整,且铸造工艺简单。
本发明属化工冶金生产化合物的生产方法,是 从锡精矿直接转化成粗锡酸钠;并解决了粗锡酸钠 的浸出、净化、精制液的浓缩结晶,及产品烘干等技 术问题。可获得符合广州Q/HGI-58-84企业标准 的一级品和外贸出口要求的产品。Sn的直收率达 80.15,总回收率为95.88%。本发明解决了经典法用精锡制锡酸钠的逆加工 问题。节约能源与材料,Sn回收率高、成本低,经济效 益显著,流程短,设备简单,母液能返回使用,不污染 环境。
本发明公开了一种亲水—憎水双极复合膜及其制备方法。本发明的亲水—憎水双极复合膜具有双层结构,底层为多孔支撑体层,上层为超薄皮层;多孔支撑体层是憎水膜,是非极性膜,避免水蒸汽凝结;超薄皮层是亲水膜,是极性膜,为增加极性,可掺杂占主要成分质量1%~5%的LiCl,使其具有强极性吸水能力;多孔支撑体层的厚度为30~100μm,超薄皮层的厚度为5~20μm。本发明制备方法采用涂敷法,工艺简单,设备成本低。本发明所制得的双极复合膜具有良好的透过性和气体选择性,有较高的强度,可广泛用于水处理技术,空调工程、能源、化工、冶金,生化工程等领域,特别适合于空气除湿和空调新风全热回收。
一种从含锗煤中提锗的新工艺,属于冶金化工领域。本发明是利用含锗煤本身燃烧时产生的温度和气氛,使煤中锗在燃烧过程中得到充分挥发并在经二次燃烧后的冷却烟气中得到高度富集的工艺。本发明同现有技术相比,原材料消耗大幅度下降,流程大为简化,锗回收率大幅度提高。对于含Ge>0.02%的煤,锗挥发率>90%,锗尘含Ge>6%,本工艺适应于从含Ge>0.005%,发热量>12000KJ/kg的煤中提锗。
本发明公开了一种稀土金属掺杂的复合变质剂及其制备方法、Al‑Si铸造铝合金的制备方法,涉及铸造铝合金技术领域;该变质剂包括按照质量百分比计的Sr8.5‑10.5%,RE12%‑20%,杂质元素≤0.30%,余量为Al,RE为La、Ce中的一种或两种;且该方法包括依次进行的冶金步骤、雾化制粉步骤以及冷压步骤。该方法针对该配方的复合变质剂,采用冶金、雾化制粉和冷压的方法相结合的方式,可制备得到高Sr、RE含量的Al‑Sr‑RE复合变质剂,且变质剂中含有晶粒细小、且分布均匀的Al‑Sr‑RE金属粉末,相较传统Sr变质剂而言具有变质时的添加量更低,孕育时间短、时效时间长、可重熔的优点。
本发明公开了高效脱尘废热回收节能装置,可广泛应用于电力、冶金等领域。包括封头和封头、管箱、壳体、保温填充材料、传热管束、旋风机6、挡灰板、支撑板、导流筒及支架。首先利用旋风机将高温烟气导入装置中,高温烟气在压力的作用下,沿导流筒向下旋转流动,使烟气中的尘埃在惯性力的作用下沿筒壁向下滑落;经过脱尘的高温烟气在引力的作用下沿变空间紊流换热器壳侧的螺旋形通道向上流动,与在换热管内介质通过管壁交换热量,实现高温烟气的脱尘及废热回收。本高效脱尘废热回收装置巧妙的利用换热器壳侧变空间紊流设计技术,将惯性力旋风分离脱尘和换热器壳侧变流道传热合为一体,使得整个装置在运行过程中压降低,阻力小,节约运行成本。
本发明涉及一种钢铁冶金领域内连续热浸镀锌生产线中锌锅辊子用轴套、轴瓦及其制造方法,采用氧-燃气喷焊或等离子喷焊或激光熔覆方法,将钴基或镍基线材或粉末喷焊或熔覆在轴套、轴瓦的配合面形成厚度为2-5MM表面强化层。本发明方法制造的轴套、轴瓦,大大提高了耐锌或锌铝腐蚀和耐磨损性能,并且结合性能好,不易脱落,延长了其使用寿命。该方法可适用于厚涂层的制备,并且简单方便,成本较低,可直接降低企业的使用成本和生产成本。该方法还可作为类似服役于锌或锌铝熔液腐蚀环境中相互接触并存在相对运动的部件的加工方法来延长其使用寿命。
中冶有色为您提供最新的广东广州有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!