一种炼镁还原渣的综合利用方法,包括以下步骤:(1)将粉末状的炼镁还原渣、硅石粉、炭质还原剂和粘结剂混合;(2)制成球团后烘干;(3)采用电弧炉进行熔炼,熔炼后形成液态的硅钙铁合金沉积在电弧炉底部;(4)将液态的硅钙铁合金排出后,倒入铸锭机中浇注成硅钙铁合金块;硅钙铁合金块直接作为成品或进行步骤(5);(5)将硅钙铁合金块破碎放入真空蒸馏罐中,进行真空蒸馏,钙被蒸馏出来,剩余物料为硅铁合金。本发明的工艺可实现还原渣的综合利用,是一种绿色的处理工艺。
一种抗腐蚀调压器,即提供了一种用于强腐蚀性气体的耐蚀调压器及该调压器的制取工艺。其主要特征为采用Monel合金制取主阀体中的预紧弹簧,锥形阀、主阀体隔膜片及弹簧管,其中弹簧管的制取工艺主要由熔炼→锻造→冷拉→退火组成。
软接触电磁连铸用两段式无切缝结晶器套管的制造方法,采用电解铜、CU-50MN合金、硅粒、金属铝、TI-50SI合金和CU-14P合金为原料,通过真空感应加热熔炼铸造法制备高透磁效果的铜基合金管,然后采用焊接法与传统连铸结晶器中普遍使用的铜质管材料连接成两段式无切缝结晶器套管;或采用电解铜、MN粉、硅粉、铝粉、TI粉和CU-14P合金为原料,分别通过焊接法或梯度连接法制备成两段式无切缝结晶器套管。采用本发明方法制备的两段式结晶器套管比传统连铸用纯铜结晶器的透磁效果增大71.3%,可以较好的满足软接触结晶器透磁效果的要求。
本发明涉及多元合金材料及铸造材料领域,特别涉及一种含有多元金属相的高铬铸铁耐磨材料的制备方法。该制备方法包括以下步骤:步骤一、采用了物理或化学方法制备指定多元合金纳米粉末;步骤二、所述表面处理为包覆处理,包括C、N物理包覆或其他化学包覆方法;步骤三、按一定质量百分比将高铬铸铁原料在中频感应电炉进行熔炼搅拌,熔炼金属料全部熔化后加入锰铁进行脱氧处理,得到所述精炼金属液;步骤四、关闭加热,同时将处理好的粉体加进金属液体中,在熔融状态下浇注成型得到所要的耐磨材料。本发明通过纳米多元合金的添加,改善高铬铸铁组织,提高力学性能,降低材料磨损失效速率。
本发明提供一种去除多晶硅中硼的方法,包括以下步骤:向待提纯硅料中添加金属,制成混合料;将混合料加热至熔融态成为改性的硅液,向改性的硅液中加入SiO2-CaO-X渣剂进行造渣熔炼提纯;熔炼提纯后,倾倒分离渣和硅液,将所述硅液冷却后得到硼含量较低的多晶硅;其中,所述金属为Ti、Sn、Al、Fe、Cu和Mn中一种或多种;所述SiO2-CaO-X渣剂中X为Na2SiO3、Na2CO3、Al2O3、Li2O、BaO、TiO2和CaF2中的一种。本发明步骤科学、合理,克服了现有技术的诸多缺点,采用该方法制备的多晶硅中硼含量符合太阳能级多晶硅的要求。
本发明涉及有色金属加工技术领域,一种生产铝合金复合管材、棒材及线材的方法,包括以下步骤:1、熔炼,按芯材和皮材化学成分分别配制铝合金原料,并分别在两个熔炼炉中进行熔炼2、复合铸造,先将芯材熔体浇注到芯材结晶器中,再将皮材熔体浇注到芯材凝固壳与皮材结晶器形成的空腔中,启车铸造,获得复合铸棒或管坯;3、均匀化退火,将复合铸棒或管坯加热到均匀化温度;4、热加工,将复合铸棒或管坯经过锯切、车皮、加热,再进行反向挤压得到复合棒材或进行穿孔加反向挤压得到复合管材;5、冷加工,将复合管材或棒材进行加热、拉伸,得到H状态的复合管材或棒材,6、控制产品状态,将步骤4得到的复合管材或棒材退火加热,得到O状态复合管材或棒材。本发明降低了生产成本、确保了产品品质的稳定性。
本发明涉及一种碳热还原氟碳铈矿制取稀土硅 铁合金的工艺方法,其主要工艺过程是将氟碳铈精矿 在550—750℃焙烧,然后在过量碳质还原剂条件下 造球;以稀土球团、硅石、木炭、焦碳按如下原则配制 批料,其稀土金属与硅的比率为0.3—0.6,碳质还原 剂的量为理论值的0.9—1.0倍,均匀入矿热炉,开炉 初期在入料的同时用硅石造假炉衬并在炉子极心圆 功率密度1400—2000A/M2、二次电流与二次电压 比应大于300的供电条件下冶炼。其实现无渣、炉 底无明显上涨、合金质好、品优降低成本之效果,适于 矿热炉生产稀土硅铁合金。
本发明属于负极材料制备技术领域,尤其为锂离子电池负极原材料再生制备方法,制备步骤如下:步骤一:负极原材料在专用设备粉碎过程中,进行跟踪收集超细尾料;步骤二:将炭素生产混捏锅作为混合设备,将从步骤一中收集的超细尾料与沥青进行混合,按照超细尾料:沥青=60‑90:40‑10进行混合;步骤三:步骤二中得到的混合物利用液压模压成型机进行成型,成型块尺寸任意。本发明,将超细尾料与一定的沥青混合,制备成具有一定粘接性能的糊料,利用压力机将糊料压制成块,然后将这些糊料块放置到温度在1000℃左右的炭素焙烧炉内在基本隔绝空气的条件下进行焙烧处理,制备成具有一定体积密度、机械强度、低挥发分的焦块。
本发明公开了一种超高功率石墨电极及其制造方法,制备所述超高功率石墨电极的原料包括石墨烯、针状焦、粘结剂、焙烧碎和石墨碎,原料经过煅烧及配料、混捏、压型、一次焙烧、浸渍、二次焙烧、石墨化、机械加工至成品。本发明的超高功率石墨电极生产时加入了石墨烯粉体改性,石墨烯粉体分散在石墨电极生坯中,进行石墨化工序时,石墨烯粉体既可以作为晶核使周边的碳原子在其上继续进行晶体生长,形成尺寸更大的石墨层状晶体,或生成多晶,又可以诱导周边碳原子从非晶质向晶质进行转化,生成新的石墨层状晶体,从而大幅度提高产品的石墨化程度,降低产品的电阻率,同时提高了产品的抗折强度。
本发明提供了一种以含钛高炉渣为原料,生产人造金红石的方法,该方法反应时间短、钛回收率高、生产成本低、处理量大、环境友好,产品附加值高。该方法包括以下步骤:配料:将熔融或冷凝含钛高炉渣、含钛物料、硅石矿、添加剂加入熔炼炉;熔炼:利用熔炼炉进行熔炼,使其保持熔融状态;氧化:向熔炼炉内熔渣喷吹氧化性气体,或将熔渣倒入保温渣罐或保温地坑,向保温渣罐或保温地坑中熔渣喷吹氧化性气体,使渣中含钛物相转化为金红石相中;冷却:将氧化后熔渣在保温渣罐或保温地坑中保温,控制降温速率使熔渣冷却至室温,使金红石相长大;分离:最后将氧化改性凝渣经破碎、磨细,将金红石相分离出来,得到TiO2品位高的人造金红石。
本实用新型属于造粒焚烧领域,具体地说是一种焚烧造粒一体炉装置,包括点火装置、进料器、整流板、雾化装置、挡板及炉体,炉体分为焙烧室、热风室及流化造粒室,热风室位于流化造粒室下方,热风室与流化造粒室之间设有整流板;流化造粒室顶部开设有烟气出口,烟气出口的下方设有安装于流化造粒室内的挡板,挡板与整流板之间的流化造粒室内壁上安装有雾化装置;热风室底部的进风管道伸入焙烧室的前端内部,进料器的进料口位于炉体外部,进料器的出料口伸入焙烧室的前端内部,焙烧室内设有点火装置。本实用新型实现热能合理运用,实现固废焚烧和造粒两种同时进行,节约能源。
本发明涉及一种高密度炭素制品的生产工艺,其特征在于:高密度炭素制品包括:高密度预焙阳极、或高密度石墨化电极、或砌筑炭块用高密度半石墨质炭糊及半石墨质阴极糊,通过采用体积密度大于1.6g/cm3高密度型焦炭为主要原料,采用大颗粒高密度型焦炭整球加入方式,达到降低粉料和结合剂煤沥青加入量,改变炭素制品颗粒结构,生产出体积密度大于1.6g/cm3炭素焙烧品,其生产工艺按下列步骤:原料选择;颗粒级配、结合剂选择、结合剂含有量控制;混捏;成型、焙烧、浸渍、石墨化按常规炭素制品生产方法进行。利用本发明生产的高密度炭素制品,焙烧后炭素定型制品的体积密度大于1.6g/cm3,可实现节能、减排、高效,低投入、高产出。
本发明涉及一种降低煤沥青含量生产炭素制品的方法,其特征是:炭素制品包括预焙阳极、石墨化电极、炭电极、砌筑炭块、电极糊、半石墨质炭糊、冷捣糊、普通炭糊、阴极糊,生产工艺按下列步骤:原料选择、采用压球工艺生产压球焦技术、配料、混捏;成型、焙烧、浸渍、石墨化按常规炭素制品生产方法。采用颗粒大于10mm的高密度压球焦加入量大于20%,使预焙阳极煤沥青加入量降至11%;石墨化电极煤沥青加入量降至17%;不定形炭素糊料煤沥青加入量降至20%,焙烧后炭素定型制品的体积密度大于1.62g/cm3,炭素糊料经捣打、1000℃焙烧后体积密度大于1.50g/cm3。本发明是一种可降低煤沥青含量,节能减排,高效生产炭素制品的方法。
本发明涉及一种湿法处理高硫铜烟灰回收铜的方法,其特点是:(1)高硫铜烟灰进行一段低酸浸出,部分铜和大部分锌和镉进入浸出液,从浸出液回收铜、锌和镉、铅、铋和银几乎全部进入浸出渣,浸出渣送二段氧化浸出进一步浸出铜;(2)一段浸出渣进行通空气二段氧化浸出,铜的硫化物大部分被浸出,铅、铋和银留在浸出渣中,得到富集的浸出渣送火法冶炼回收铅、铋和银,二段浸出液返回一段低酸浸出;(3)一段浸出液通过萃取-电解过程得到阴极铜。本发明采用湿法冶金技术处理高硫铜烟灰,具有环境友好、铜锌和镉浸出率高﹑铅铋和银入渣率高、生产成本低的特点。
本发明涉及湿法冶金技术领域,尤其涉及一种浸金贵液中金的测定方法。本发明用玻璃容器量取待测贵液的体积,烘干至恒重后,将玻璃容器敲碎,将全部碎渣磨成粉末,用火法试金法测出其中金含量,利用公式计算出贵液中金浓度。本方法是将液相中金转化为固相,对固体样品进行火法试金测定,与化学法与原子吸收分光光度法相比,具有流程简单、操作方便、精确度高,测定范围宽、环境污染小等优点。
本发明公开了一种在出铁场砂口后喷涌的铁水 上分撒苏打大幅脱硫脱磷脱硅乃至炼钒钛矿时提钒的铁水预 处理新工艺。铁水所含元素在此都连续全面展露出来的,因而 该喷涌的铁水可被用来取代现行喷粉冶金。熔渣易熔且流动性 好,特别适合及时挡渣与铁水分离以防回磷等;从熔渣和溢出 烟尘中可全部回收苏打中的 Na2O(所有管道均沿地平走向不 影响炉前操作),并付产磷肥等,因而使三脱成本大为降低(竟 可使苏达费用为负且铁损为零)。该工艺大大简化现有三脱工 艺,堪称循环经济式节约资源型、环保型、可持续发展型完全 符合科学发展观的铁水三脱新工艺。为降低纯净钢、普通钢成 本、保证钢材质量、彻底解放高炉(出铁无硫磺限制)和转炉(少 渣、智能炼钢)创造前所未有的有利条件。是目前钢铁生产中一 个全新的强有力的经济增长点。基于同样机理本发明还可用于 其它适宜的火法、湿法冶金及适宜的液-固、液-液相反应等 化工过程的优化改造。
本实用新型提供一种真空感应炉用小空间长流程浇注装置,解决钢液流动距离短造成的浇注系统挡渣效果下降和夹杂物上浮时间不足问题。真空感应炉用小空间长流程浇注装置采用环形流槽设计,在有限空间内增加了钢液流动的距离,给予夹杂物充足上浮时间;在环形流槽内设置两道耐火材料制成的挡渣坝,阻挡钢液面的浮渣和夹杂物,在离心作用下,浮渣和夹杂物会被甩向环形流槽的外侧内壁,并吸附于外侧内壁的预制耐火材料层上。本实用新型的有益处在于:装置简单实用,便于现场操作、维护和更换;该装置可有效提升浇注后电极的纯净度,为二次熔炼(真空电弧重熔)提供了有利的冶金基础。
本实用新型属于用物理冶金技术提纯多晶硅的技术领域。一种电子束除磷、除金属的耦合提纯多晶硅的设备,设备采用真空盖、真空炉壁及装粉盖构成真空设备,真空设备内腔为真空室;真空室内上部装有装粉桶,装粉桶底部带有出料口,出料口装配有外驱式挡粉板,装粉桶出料口底部装有坩埚,坩埚底部装有拉锭机构,拉锭机构上装有硅锭,电子枪安装在真空室上部,电子束流对准硅锭。本实用新型设备结构简单,同时进行电子束熔炼粉体硅料和定向凝固,用电子束快速去除杂质磷,用定向凝固将分凝系数较小的金属杂质去除,有效提高了多晶硅的纯度,达到了太阳能级硅的使用要求。本实用新型成本低,适合批量生产。
本实用新型属中频感应温度测控仪器,特别涉及一种在机械制造和冶金工业方面应用,如淬火、透热、熔炼、钎焊和烧结等中频感应加热温度智能测控仪,由电源电路(1)、模入通道电路(2)、键盘显示电路(5)和报警电路(6)组成,整个检测控制系统中设置了中央处理电路(3)、同步脉冲电路(7)和触发脉冲形成电路(4);采用此智能测控仪对中频感应加热温度的测控,技术先进,随机、实时性好,保证了生产质量,提高了工件应用场所的安全生产。
本实用新型属真空冶金设备领域,尤其涉及一种应用于真空自耗电极电弧炉熔炼时弧区放电状态的电动调节观弧摄像装置,它包括底固定架(1);在底固定架(1)上设有导轨(3)、摄像头活动架(2)、固接于底固定架(1)上的减速电机(5)及丝杠旋转移动机构(4);丝杠旋转移动机构(4)一端与减速电机(5)的动力输出端配接,其另一端与摄像头活动架(2)活动相接;摄像头(6)置于摄像头活动架(2)之上;所述摄像头活动架(2)与导轨(3)活动相接;在所述底固定架(1)上,于摄像头活动架(2)的侧面固定设有行程开关(7);所述导轨(3)的横截面呈V形结构。本实用新型结构简单,维修维护方便,摄像位置可随时进行远程电动调整。
本实用新型涉及冶金设备技术领域,具体涉及一种具有旋转电极的固定横臂式电渣炉,包括固定横臂、导电料杆、结晶器及升降机构;所述固定横臂一端固定,另一端设有电极卡头,所述电极卡头通过滑动导电组件夹持导电料杆,所述导电料杆的杆头上部设有电极旋转机构以及电极振动机构,该导电料杆的下部连接自耗电极,所述自耗电极下方设置有结晶器,所述结晶器在升降机构的驱动下做上下运动。本实用新型所述电渣炉在熔铸中工作状态非常稳固,避免了电极旋转加振动同电极上升下降之间运动干扰,保证了金属熔炼工作能顺利进行。
本发明提供一种电渣重熔自耗电极熔化速率的预测方法,涉及冶金熔炼技术领域。该方法首先收集电渣重熔设备的设备参数和工艺参数,并采用ANSYS的EMAG电磁模块对电渣重熔体系内的电极、渣池、铸锭和周围空气进行电磁场分析,确定电渣重熔体系内电磁力和焦耳热分布;然后采用ANSYS FLUENT软件确定电渣重熔体系内温度场和流场分布;最后根据电渣重熔过程电极端部温度分布,确定自耗电极熔化速度。本发明提供的电渣重熔自耗电极熔化速率的预测方法,能够定量预测电渣重熔过程电极熔化速率,避免了实验测定时操作困难、精度较差、成本较高的缺点,为优化连铸工艺,控制电渣重熔过程熔化速率提供了理论指导。
本发明提供一种电渣重熔铸锭凝固微观组织的预测方法,涉及冶金熔炼技术领域。一种电渣重熔铸锭凝固微观组织的预测方法,首先收集电渣重熔的设备参数与工艺参数,并根据电渣重熔钢种成分,采用溶质微观偏析模型,获得钢种热物性参数数据;然后建立电渣重溶过程的宏微观多尺度数学模型;最后将电渣重熔过程工艺参数和钢热物性参数数据作为电渣重溶过程的宏微观多尺度数学模型的输入值,预测不同电渣重熔过程工艺条件下铸锭凝固组织的形貌。本发明提供的电渣重熔铸锭凝固微观组织的预测方法,较实验测量法具有成本低、效率高、分析全面等优点,能够为优化电渣重熔工艺条件提供直观可靠的信息。
一种抗拉强度1000MPa级热轧超高强钢板及其制备方法,属于冶金技术领域。该抗拉强度1000MPa级热轧超高强钢板,其含有的成分及其质量百分比为:C:0.06~0.12%;Mn:1.0~2.0%;Si:0.08~0.2%;Ti:0.05~0.13%;Cr:0.7~1.5%;P≤0.02%;S≤0.01%;余量为Fe及不可避免的杂质。制备方法:1)按照热轧钢板的化学成分配比,熔炼成铸坯;2)将铸坯保温,进行热轧,以一定冷却速率,冷却至适当温度,随后在线升温至卷取。得到的抗拉强度1000MPa级热轧超高强钢板,微观组织主要包括贝氏体、残余奥氏体、纳米级碳化物,碳化物弥散分布在贝氏体基体上,屈服强度为≥750MPa,抗拉强度为≥1000MPa,延伸率A≥15%。
一种含有球状纳米含Fe相铝合金的制备方法,属于铝合金材料加工技术领域;方法:1)将原料进行熔炼;2)将熔体进行连续流变挤压,制备出铝合金杆;3)对铝合金杆进行热处理;本发明结合连续流变挤压和热处理的方法制备含有球状纳米尺寸含Fe相的铝合金,铝合金中的Fe元素的含量可以为0.01‑20%,并且合金中Fe元素来源没有限制;本发明制备的铝合金中含有的球状纳米含Fe相,可以显著提高铝合金的力学性能,并为铝合金材料的后续加工奠定良好基础,将铝合金中的Fe元素变废为宝,为消除铝合金冶金和生产过程中Fe元素的有害影响,并使其成为对铝合金力学性能的有益元素找到了一种新方法。
一种用于厨具的高Fe含量Al‑Fe‑Mn合金及其制法,属于金属材料及冶金领域。一种用于厨具的高Fe含量Al‑Fe‑Mn合金,其含有的成分及各个成分的质量百分比为:Fe为1.0‑1.5%,Mn为0.3‑0.7%,Si≤0.5%,Cu≤0.25%,Zn≤0.25%,Ti≤0.25%,Sr为0.1‑0.35wt%,余量为Al和不可避免的杂质,其中,杂质总含量≤1.0%,同时,满足Fe+Mn的质量百分比≤2.0%。该制备方法为:配料、熔炼、浇铸,根据铸锭的不同进行后续处理。该方法通过变质处理,改变合金中的粗大金属间化合物相Al6(FeMn)以及All5(MnFe)3Si2相的尺寸和形貌,减轻它们对合金力学性能的损害,提高了合金中Fe的含量,充分发挥Fe元素的优势。
本发明涉及一种新型含锡(Sn)与锌(Zn)的高强韧性镁合金及其制备方法,属于金属材料类及冶金领域,解决现有技术中AZ91系列合金普遍存在塑性较差的问题,以及AM60/50合金存在强度不高的缺陷。镁合金的组分及重量百分比为:1-5%Sn,4-6%Zn,剩余部分为Mg和不可避免的杂质。熔炼过程在气体保护下进行,将工业纯美熔化后,分别加入纯Sn、纯Zn,等合金元素完全溶解后精炼,保温除渣后进行铸造。本发明合金在铸态下,抗拉强度σb达到220-242MPa,屈服强度σ0.2达到68-91MPa,延伸率δ达到12-16%,具有高的抗拉强度与优良的塑性。本发明合金在固溶+时效处理后,抗拉强度σb达到290MPa,屈服强度σ0.2达到226MPa,延伸率δ达到11%。
本发明属于高温合金母合金纯净化冶炼及铸造领域,具体涉及一种用于高W镍基高温合金冶炼的镍铬钨中间合金的制备方法与应用。将Cr和W通过真空感应熔炼以及加入适量Al单质预合金化处理,制备成Ni‑Cr‑W三主元中间合金,再通过中间合金制备母合金。所述中间合金的成分可根据母合金中的Cr/W比灵活设计,达到冶炼母合金时不添加Cr、W单质的目的。本发明适用于大多数高W镍基高温合金母合金的冶炼,在保证合金纯净化程度的同时,能够提高Cr、W等易偏析元素的均匀化程度,并降低易挥发元素的烧损率,大幅度提高了母合金的冶金质量,经济效益显著。
中冶有色为您提供最新的辽宁有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!