本发明公开了一种动力电池的真空裂解设备及其裂解方法,裂解设备包括筒体,还包括从上至下设置的:辊压装置、第一密封装置、裂解装置,第二密封装置、热解装置、第三密封装置。本发明的动力电池的真空裂解设备安装有第一、二、三密封装置,将裂解装置和热解装置隔离,并且能实现物料传输和气体隔离相互不干扰,避免无氧区和有氧区之间的串气;将电池裂解与热解相结合,利用裂解后排出的裂解气作为热解和裂解的燃料或预热热解装置,充分利用了资源。
本发明公开了一种回收废旧锂离子电池有价金属的方法,该方法先电池粉加入浓硫酸进行熟化浸出,再加水进行水浸,固液分离后将第一石墨渣加入稀硫酸进行酸浸,然后加入还原剂进行还原浸出,再加碱沉淀杂质,最后固液分离得到第二石墨渣和第二有价金属液。本发明利用浓硫酸的碳化作用,碳化分解电池粉中的有机物,解决有机物包覆电池粉活性物质和水浸、酸浸过程中由于有机物质引起的起泡、冒槽等问题;本发明的浸出与除杂同步进行,简化了废旧锂电池有价金属回收工艺,降低了生产成本。
一种固体粉料的管式浸出方法及装置,将待浸出溶液流经设于槽式容器内的一种管道式浸出装置,采用管式浸出方法完成浸出过程;所述的管式浸出方法是指将待浸出溶液输送至一带有超声波发生装置的管道式浸出装置的管道内,使待浸出溶液在不可逆流经设有超声波能量场的管道的过程中,完成固体粉料的不可逆浸出过程。所述的不可逆浸出过程,是指设定粒度的固体粉料在历经相同的浸出时间时,绝大部分颗粒流经的路程趋向相等,残余的颗粒质量、颗粒粒径及颗粒目标成分亦趋向相等,且后进浸出反应区的固体粉料难以混入到先进浸出反应区的固体粉料之中。所述的固体粉料为矿物粉料和(或)动植物粉料。其中,矿物粉料为氧化矿物粉料和(或)硫化矿物粉料,动植物粉料至少包括中药材粉料。
本发明公开了一种废旧锂离子电池负极材料中石墨与铜片的分离及回收方法,包括以下步骤:(1)分离石墨与铜片;(2)除去铜片上的分离溶剂:(3)除去石墨粗产品中的杂质;(4)对石墨产品高温处理,最后得到高纯度铜片和高碳石墨。本发明工艺流程简单,原材料丰富且廉价,回收率与产品附加值高。
本发明公开了一种含镍废水中回收镍的方法,其特征在于,它是采用离子交换树脂,从含镍废水中吸附离子态镍,然后使用酸来反洗,得到高镍含量酸液。本发明在生产过程中,操作简单,需要人手少,可产生一定的经济效益,同时还能安全处理含镍废水,以达到国家尾液排放标准。
本发明属于电池材料技术领域,公开了一种掺铝型针状四氧化三钴及其制备方法,该制备方法包括以下步骤:将废旧电池粉和氨基酸混合,调pH至碱性,固液分离,得到除铝电池粉和第一滤液;将除铝电池粉加酸混合,固液分离,得到含钴酸溶液和含铜渣;向含钴酸溶液中滴加模板剂,再加碱调pH,离心,热处理,得到掺铝型针状四氧化三钴。本发明利用氨基酸有效的回收了废旧电池中的铝,在加入模板剂的情况下,并调pH后,进行热处理,利用热处理产生的碳、铝等包裹了钴,缓解进一步的团聚和封装过程中的模板剂与钴离子的耦合,得到形貌较好的针状四氧化三钴。
本发明针对现有技术中废旧手机线路板中金属回收存在的问题,提供一种废旧手机线路板中的IC芯片和元器件中金钯无氰回收工艺,于所得含金钯的滤渣中加入无氰浸出液浸出金离子和钯离子,然后加入金还原剂将金离子还原,过滤分离得到金和含钯离子的滤液;其中,所述无氰浸出液以水为溶剂,其中各组分的浓度如下:H2SO4 80~120g/L、氯酸钠20~40g/L以及过氧化氢3~7g/L;所述金还原剂为草酸、亚硫酸钠或亚硫酸氢钠;于所得含钯离子的滤液中加入锌粉,置换还原得到钯;金、钯回收率达到95%以上,本发明各个工艺单元不产生氮氧化物、二氧化硫等国家严格进行总量控制的污染物,从源头上减少了环境污染。
本发明公开了一种壳聚糖混凝剂的制备方法,其特征是采用壳聚糖絮凝剂包裹铝铁系絮凝剂来制得;该方法包括如下步骤:(1)制备铝铁系絮凝剂;(2)制备壳聚糖絮凝剂;(3)将壳聚糖絮凝剂包裹铝铁系絮凝剂得到壳聚糖混凝剂。本发明具有产率高,成本较低,混凝效果好等特点。
本发明公开了一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,先经酸浸得到的含镍钴锰磷铁锂酸浸液通过树脂吸附分离、硫酸洗涤得到硫酸镍钴锰混合液,该混合液可通过沉淀得到镍钴锰酸锂正极材料前驱体,得到的磷铁锂溶液可进行沉锂得到锂盐沉淀,将沉淀后液进行浓缩、通过静电纺丝得到磷酸铁/碳材料。本发明的工艺可对镍钴锰酸锂和磷酸铁锂混合废料进行全面性的回收,可实现废旧镍钴锰酸锂材料和磷酸铁锂材料的定向循环,并且通过静电纺丝的方法制备磷酸铁可减少材料的团聚现象,所制备的材料为纤维网状结构,可以提高材料的比表面积,从而提高材料的表面性能。
本发明公开了一种废旧钴酸锂电池的回收方法,包括将钴酸锂电池黑粉装至柱型容器,向柱型容器中加入第一酸进行热淋浸,直至柱型容器中的固体不再减少,得到第一浸出液和浸出渣,第一酸为弱酸,柱型容器的底部设有过滤结构,向装有浸出渣的柱型容器中加入第二酸进行热淋浸,直至柱型容器中的固体不再减少,得到第二浸出液和石墨,第二酸为强酸。本发明通过改变电池黑粉的浸出方式,选用耐酸柱型容器配合第一酸、第二酸进行选择性热淋浸进行浸出,一方面可以减少无机强酸的消耗,减少强酸气体排放,绿色低碳热淋浸黑粉,另一方采用带过滤结构的柱形容器可节约酸用量。
本发明提供一种硫酸锂料液回收制备氢氧化锂的方法,向硫酸锂料液中加入酸液调节pH至2.5‑5.0,再加入除氟剂和活性炭反应,固液分离,向滤液中加入碳酸钠溶液进行沉锂反应,得到的第一碳酸锂固体与氢氧化钡溶液混合反应,得到的第二碳酸锂固体制浆,加入氢氧化钙进行苛化反应,得到氢氧化锂溶液和苛化渣。本发明同时加入活性炭和除氟剂进行除氟除油,不需要将除油和除氟工序分开,为锂电池回收后端的锂产品制造提供了一个除氟的新思路;在碳酸锂中加入少量Ba(OH)2生成硫酸钡,固液分离后与碳酸锂混在一起,后续苛化反应以固体形式存在于苛化渣中,能有效降低后端氢氧化锂产品中硫的含量。
本发明属于催化剂领域,本发明公开了一种利用废旧电池负极石墨的氧还原催化剂的制备方法,包括以下步骤:(1)从废旧电池中回收石墨渣,再对石墨渣进行热处理;(2)将处理后的石墨渣、铁盐和含氮有机物进行球磨混合,得到催化剂前体;(3)将催化剂前体在惰性气体氛围下进行碳化处理,得到含铁氮的碳基混合物;(4)将含铁氮的碳基混合物溶于酸溶液,过滤并干燥,在惰性气体氛围下再次进行碳化处理,即可得到所述的利用废旧电池负极石墨的氧还原催化剂。本发明采用废旧锂离子电池回收过程中产生的石墨渣为原料,其来源广泛,成本低廉,既可以减少环境污染,又有良好的经济效益。
本发明针对现有技术中废旧手机线路板中金属回收存在的问题,提供一种废旧手机线路板光板剥金工艺,将废旧手机电路板拆解为IC芯片和贴片元器件以及光板,首先进行废旧手机线路板的拆解,分为芯片和贴片元器件以及光板,然后对所得光板进行如下剥金处理:采用剥金剂将金镀层底下的铜和镍部分溶解,将金镀层剥离并过滤得到金;其中,所述剥金剂以水为溶剂,且剥金剂中,Cu(NH3)2Cl的浓度为0.5~1.5mol/L、NH3浓度为0.5~1.5mol/L。本发明对于光板上的金镀层,选用合适的剥金剂进行剥离,能够提高金的回收率,且能保持较高的纯度。
本发明属于灭火剂技术领域,公开了一种可扑灭铝渣燃烧的灭火剂及其制备方法和应用。该灭火剂包括以下原料:硫酸盐、氯盐、矿物、硅胶、表面活性剂、硬脂酸盐。本发明中灭火剂的主要材料为硫酸盐、氯盐,为废旧锂电池正极材料再合成过程中产生的高盐废水分离得到的含硫酸盐、氯盐的固废,含硫酸盐、氯盐的固废作为灭火剂的材料,能有效的将废弃资源进行循环利用。废旧锂电池正极材料合成过程中产生的废水量大,盐含量较高,分离、蒸发得到含硫酸盐、氯盐的固废较多,因此可作为大量制备灭火剂的主材料。
本发明公开了一种从废旧锂离子电池中直接回收、生产电积钴的方法。其主要特点是先将废旧锂离子电池拆解、分选后得到正极片;接着采用有机溶剂N-甲基甲酰胺(NMP)浸泡,分离集流体铝箔与正极材料;随后用盐酸和双氧水体系浸出含钴酸锂的正极材料,过滤分离不溶物;最后将滤液电积后得到电积钴。使用该方法可使废旧锂离子电池中钴的回收率约为97.0%,电积钴的纯度大于99.8%。
本发明公开了一种动力电池的真空裂解方法及裂解设备;该真空裂解方法,包括以下步骤:将废旧动力电池从进料斗进料,再进入辊压机进行辊压处理,得到碎料;将碎料输送到裂解装置先预热,再升温,在惰性气氛或真空下,进行裂解,得到裂解气、固态裂解产物和不可裂解物;将固态裂解产物和不可裂解物输送到热解装置,在有氧氛围下进行热解,得到热解气和不可热解物。本发明将电池裂解与热解相结合,充分利用二者的优势并克服其劣势,避免传统热解工艺产生二噁英的危害,裂解后进行热解,通过有氧热解使裂解后产出的焦油、焦炭进行彻底分解,避免传统单一裂解工艺副产物对后续工艺的增加酸碱耗量、增加固废渣量、增加废水处理难度等问题。
本发明公开了一种废旧电池中锂的回收方法,是以废旧电池湿法处理过程产生的含锂萃余液为原料,以酮类化合物、磷酸三丁酯与磺化煤油溶液为萃取有机相,含锂萃余液原料调节pH后经多级逆流萃取,含锂萃余液中的锂进入有机相,负载锂的有机相经多级逆流反萃,得到高纯度和高浓度的含锂反萃液,该溶液可用于后续制备多种高纯锂盐。本发明技术能使含锂萃余液中85%以上的锂得以直接回收制备高纯锂盐,具有显著的回收价值。
本发明公开了一种含镁废液的处理方法,包括如下步骤:S1:将沉镁剂和含镁废水混合,固液分离,收集固相渣;所述混合的温度为95~100℃;所述含镁废水中含有Mg2+和SO42‑;S2:将步骤S1所得固相渣进行打浆、一次碳化,对碳化产物进行固液分离,收集液相组分;S3:将步骤S2所得液相组分进行热解,并对热解产物进行固液分离,收集固相产物;S4:将步骤S3所得固相产物进行二次碳化,收集碳化产物的液相组分,制得碳酸氢镁精制液;所述沉镁剂包括氧化钙和氢氧化钙中的至少一种;所述一次碳化和二次碳化均为反应物和二氧化碳接触。本发明的一种含镁废水的处理方法能有效回收及生产高纯镁盐。
本发明公开了一种从红土镍矿浸出液中分离镍铁并制备磷酸铁的方法和应用,该方法是将红土镍矿浸出液的pH调至0.5~1.5,滴加复合硫化物沉淀剂进行反应,并加入凝聚剂,过滤,得到硫化镍沉淀和滤液,再向所述滤液中加入氧化剂和磷酸溶液,调节pH后反应,再加热浓缩结晶,得到磷酸铁。本发明通过将反应过程控制在高酸度条件下,巧妙控制反应动力学过程,从而实现一步高效低成本分离镍铁,分离效果好,磷酸铁的杂质含量低。
本发明公开了一种从退役电池中选择性提锂的方法及其应用,该方法基于二价锰离子和锂离子之间的离子交换作用,将正极材料和二价锰盐以一定比例混合并制备成浆料,通过球磨过程使二价锰盐和正极材料充分混合,有效地破坏了正极材料的晶格结构,以此降低二价锰离子和锂离子交换的活化能,大大降低了后续提锂过程所需的反应能,将球磨后的混料在较低温度下进行焙烧,使得锰盐中的二价锰占据层状结构中的锂位,直接进行锰锂置换,得到单纯的含锂浸出液,本法极大地提高了锂的浸出率和选择性。本发明采用先球磨混料再焙烧的方式,能耗低,安全性高,锂的浸出率和选择性优良,具有极大的应用前景。
本发明属于废旧电池回收技术领域,公开了一种废旧电池安全浸出的方法和应用,该方法包括以下步骤:将废旧锂电池进行放电,焙烧,筛选,得到铜铝箔和电池粉;将电池粉加入水中,再加入浮选剂进行浮选,得到漂浮物料和沉淀物质;将漂浮物料用碱液进行浸出,过滤,得到滤液b和滤渣a;将滤渣a进行洗涤,过滤取滤渣c,加入浸出剂和还原剂进行浸出,得到浸出液。本发明利用焙烧、筛选、浮选等安全、高效、低能耗的物理方法以及稀碱溶解等化学方法相结合,能从源头上除掉废弃锂电池中的铝。
本发明公开了一种用红土镍矿沉镍钴废液渣除红土镍矿浸出液中铁的方法。步骤为:(1)将红土镍矿一段沉镍钴后液与碱溶液混合反应得到红土镍矿废液渣;(2)将红土镍矿废液渣经过曝气搅拌并加热制成红土镍矿废液渣浆;(3)将红土镍矿废液渣浆与红土镍矿浸出液混合均匀,加入碱溶液反应,固液分离,得到红土镍矿除铁后液和铁渣。该方法可以显著提高一段沉镍钴后液有价金属的回收率,将废液渣作为氧化剂并回收利用,废液渣作为氧化剂代替氯酸钠等其他氧化剂,减少了强氧化剂对设备的腐蚀,减少了红土镍矿浸出液杂质的引入,废液渣作为碱调节红土镍矿浸出液pH,减少生产成本,提高经济效益。
本发明针对现有技术中废旧手机线路板中金属回收存在的问题,提供一种废旧手机线路板中金属的湿法无害化提取工艺,将废旧手机电路板拆解为IC芯片和贴片元器件以及光板,并研发了低毒环保的浸出药剂,采用分步法定向选择性浸出锡、铜银、金钯,然后分别进行还原提取,金、银、钯回收率达到95%以上,而对于光板上的金镀层,选用合适的剥金剂进行剥离,本发明各个工艺单元不产生氮氧化物、二氧化硫等国家严格进行总量控制的污染物,从源头上减少了环境污染。
本发明公开了一种湿法稀土冶炼高氨氮废水资源化利用的监控系统,包括以下模块:废水流量控制模块,用于控制废水的进入流量;蒸氨塔控制模块,用于监控蒸氨塔的液位、温度和压力;排放控制模块,通过设于蒸氨塔底和综合处理池的氨氮检测单元测量废水中的氨氮浓度,控制提升泵排放废水;冷源循环模块,实时监控冷却器废水温度和冷却器液位,并控制冷却器两个出口的排放量;计算机工作站,分别与上述模块连接,获取并显示工艺数据和工艺信息;当所述工艺数据和所述工艺信息在设定时间内无法获取或超出阈值时,生成报警信息。采用本发明,能加强对废水排放和冷源循环的控制,实现对整个回收工艺实行监控。
本发明公开了一种红土镍矿高压酸浸方法。步骤为:洗矿选矿后的红土镍矿矿浆经浓密后,通过高压泵将浓密矿浆泵入管道化预热器中,在管道化预热器中矿浆与来自闪蒸器中的闪蒸二次蒸汽进行间接换热,末级管道化预热器采用生蒸汽、熔盐或导热油加热。预热后矿浆进入卧式高压反应釜中,在反应釜中加入浓硫酸进行高压浸出,最后浸出矿浆通过闪蒸器降温降压,得酸浸后的红土镍矿矿浆,送入下一工序处理。该方法特别适用于褐铁矿型和过渡型红土镍矿生产氢氧化镍产品。采用本发明提供的方法可显著降低项目投资,提高装置运转率,降低维护费用,节约能耗,从而提高项目盈利能力和生存能力。
本发明公开了一种从镍铁合金中分离提取镍和铁的方法,包括将镍铁合金用硫酸溶液浸出,将浸出液进行蒸发浓缩,得到浓缩后液,将浓缩后液进行冷却结晶,固液分离得到粗制硫酸亚铁晶体和第一溶液,向第一溶液中加入氧化剂和磷源,并加碱调节pH,加热反应,反应结束后继续调节浆料pH,然后固液分离得到硫酸镍溶液和磷酸铁。本发明的浸出液经蒸发浓缩、冷却结晶后,能分离出大部分的铁,得到硫酸亚铁晶体和高Ni/Fe比的溶液,加入磷源加热反应得到磷酸铁,此过程中实现了镍铁的高效分离,同时得到纯度高且可以应用到下游工序的硫酸镍溶液和硫酸亚铁晶体,镍和铁的回收率均在99.0%以上。
本发明公开了一种钴酸锂正极材料及其再生修复方法、用途,其中,一种钴酸锂正极材料的再生修复方包括以下步骤:A、将废弃锂电池进行拆解,获得正极片;B、在真空环境下对正极片进行煅烧,在煅烧过程中抽出真空环境内产生的废气并用碱液进行吸收;C、将煅烧后的正极片进行粉碎和三级筛分,获得300目以上的第三物料;D、在第三物料中添加锂源进行混合,获得混合料;E、将混合料进行二次煅烧,获得钴酸锂正极材料。本技术方案提出的一种钴酸锂正极材料及其再生修复方法、用途,能有效降低钴酸锂正极材料再生修复过程中废水和废气的排放,解决现有废弃锂电池正极材料的回收过程中造成的成本过高的技术问题。
本发明公开了一种利用红土镍矿生产电池级硫酸镍盐的方法,包括以下步骤:将红土镍矿分选,得到块矿和泥沙矿;将块矿破碎,再进行堆浸处理,得到粗硫酸镍溶液A;将泥沙矿分离,得到高铬矿、低铁高镁矿、高铁低镁矿,将低铁高镁矿干燥、焙烧、还原、硫化,得到低冰镍;将低冰镍进行吹炼,水萃,再进行氧压浸出,得到粗硫酸镍溶液B;将高铁低镁矿进行压力浸出,得到粗硫酸镍溶液C;将上述粗硫酸镍溶液A、B、C进行萃取,再蒸发结晶即得电池级硫酸镍盐。本发明充分利用RKEF工艺、压力浸出工艺、堆浸工艺三种技术的优势,融合到一起,取长补短,利用不同矿石自身的特点,用合适的工艺处理,生产成本低,镍钴综合回收率达到90%以上。
本发明公开了一种再生钴酸锂及其活化方法、用途,一种再生钴酸锂的活化方法包括以下步骤:a.将废旧锂电池进行拆解,获得正极片;b.在真空环境下对正极片进行一次煅烧;c.将煅烧后的正极片进行粉碎后,通过气流浮选分离出失效钴酸锂;d.将失效钴酸锂和锂盐溶液充分混合后进行水热合成,获得水热产物;e.将水热产物进行过滤和干燥获得滤饼,将滤饼进行破碎获得破碎料;f.将破碎料进行二次煅烧,获得再生钴酸锂。本技术方案提出的一种再生钴酸锂的活化方法,能有效降低再生钴酸锂修复过程中废水和废气的排放,解决现有废旧锂电池正极材料的回收过程中造成的成本过高的技术问题,有利于简化再生钴酸锂的修复过程和提升再生钴酸锂的纯度。
本发明提供了一种金属再成型流水线,其特征在于,包括若干个互相连通的熔炼炉及铸造腔室和用于引流金属熔液至铸造腔室内的引流槽;熔炼炉内设有冶炼腔室;引流槽的一端部与每个冶炼腔室连通,另一端与铸造腔室连通;沿金属熔液的流动方向,铸造腔室位于熔炼炉的下游;铸造腔室内设有工作台;工作台上设有输送组件和若干组工站模块;工站模块包括成像工站块、除毛刺工站块和图像处理组件;成像工作块包括成像仪,成像仪的镜头朝向输送组件,成像仪与图像处理组件通信连接;除毛刺工站块包括除毛刺枪和驱动除毛刺枪相对输送组件移动的驱动装置,驱动装置与图像处理组件通信连接。本发明提高生产效率,减少劳动力和自动化智能化程度高的优点。
中冶有色为您提供最新的广东佛山有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!