本发明公开了一种废旧锂离子电池正极材料高效回收与再生的方法,包括以下步骤:对回收的废旧锂离子电池完全放电、拆解、剥离、煅烧和研磨获得LiNi0.6Co0.2Mn0.2O2活性材料;将该活性材料用浸出剂浸出,得到富含锂的浸出液和含有镍钴锰的沉淀;将所得沉淀分散于水中,加入碱液,调节pH值得到氢氧化镍钴锰沉淀;将氢氧化镍钴锰沉淀过滤得到三元前驱体,按三元前驱体物质的量计与过量锂源配比锂化,经研末混合、煅烧,得到正极活性材料;将过滤后所得滤液加入无机酸,生成新的有机酸,实现有机酸的循环使用;使用本发明的方法,可实现三元正极材料循环利用,而且工艺简单,能有效降低加工成本,并且可实现有机酸的循环使用。
一种回收废旧钴酸锂电池有价金属的浸出体系和浸出方法。本发明浸出体系是包括氨、亚硫酸钠和氯化铵的混合水溶液。本发明浸出方法包括以下步骤:(1)将废旧钴酸锂电池通过放电、破碎、分离后,得到正极粉末;(2)将所述浸出体系进行加热,然后向其中加入正极粉末,搅拌条件下,进行浸出反应,反应完成后,得到含Li+、Co(NH3)n2+的浸出液。本发明浸出体系无需使用酸液,无有害气体产生,常压一步浸出,绿色环保无二次污染;本发明浸出方法安全可控,成本低,具有工业应用前景。
本发明涉及电池材料回收技术领域,具体涉及一种退役NCM正极料再生NCMA正极材料的方法。所述方法包括以下步骤:将退役三元锂离子电池放电、拆解获得正极极片,并采用气流粉碎法处理所述正极极片,获得回收粗粉料;将所述回收粗粉粒进行研磨后获得回收细粉料,并进行第一次焙烧,获得第一混合材料;将所述第一混合材料经三次筛除铝颗粒、研磨、补锂和焙烧获得NCMA正极材料。本发明回收环节不引入溶剂,不产生化学废液,使整个回收环节简捷,环保,对企业也更加经济、高效。
本发明属于锂离子电池回收技术领域,具体涉及一种构筑原电池效应的还原碱浸回收工艺。一种构筑原电池效应的还原碱浸回收工艺,是在给定碱性环境下引入还原性的金属粉末作为原电池负极,而待还原的废旧正极材料构成原电池正极,实现氧化还原反应。本发明利用原电池效应提供的还原效果,替代常见的火法预处理过程,有效地简化了碱性浸出体系,实现全湿法工艺过程回收废旧锂离子电池正极材料。
本发明公开了一种废旧磷酸铁锂电池正负极活性物质耦合再生修复的方法,该方法是将废旧磷酸铁锂电池的正极片和负极片进行热解后,通过磁选或浮选分离回收磷酸铁锂活性物质;将磷酸铁锂活性物质与锂源、三价铁化合物及有机碳源混合球磨,得到混合料,所述混合料在保护气氛下进行焙烧处理,即得再生修复磷酸铁锂。该方法在废旧磷酸铁锂电池正极材料再生修复过程中将负极与正极活性物质进行耦合再生修复,获得电化学性能好的磷酸铁锂正极材料,且相对现有的再生修复,该方法省去了复杂除杂过程,成本较低,为大规模工业化再生修复废旧磷酸铁锂活性物质提供了可能。
本发明提供了一种低能耗高效回收锂电池正极材料的方法。先从废旧锂电池中分离出正极活性材料,然后以次磷酸钠、甲酸铵、鞣酸作为还原剂,以腐殖酸‑丙烯酸接枝共聚物作为分散剂,对活性材料进行酸浸,得到含有回收金属离子的浸出液。该方法可在常温下还原浸出锂电池正极材料中的金属,浸出率较高,并且分散稳定性高,使还原和浸出过程可在低速搅拌下进行,从而实现低能耗高效回收锂电池正极材料中的金属。
本发明属于废旧电池回收技术领域,具体涉及废旧正极材料和槟榔渣联合处理方法,将槟榔渣在过热蒸汽气氛中进行预处理,随后再和废旧正极材料混合造球得球团,将球团进行焙烧处理得焙烧料,将焙烧料进行水浸处理,得到提锂液和水提渣。本发明能够实现锂的优先选择性提取,此外,还能够有效实现其他元素的高选择性回收,不仅如此,还能够联产高性能的槟榔基碳材料。
本发明公开了一种高砷金矿焙砂冷态配入铅冶炼系统侧吹还原炉的方法,先将含金焙砂干燥至水分含量低于5%,在富氧侧吹还原炉放渣完成后将预处理后含金焙砂加入炉内,加入时段为富氧侧吹还原炉放渣完成后至熔融高铅渣进料完成前10‑15min,配入铁矿石、石灰石和还原剂,含金焙砂加入后,按还原剂:高铅渣和含金焙砂混合物料质量比为5‑10:100配入还原剂,还原熔炼完成后放出含金粗铅和还原渣。本发明可提高含金焙砂在铅冶炼系统中的搭配处理量8倍以上,贵金属回收率达到99%以上,过程高效清洁,大大缩短了含金焙砂中贵金属的提取时间。
液相法回收废旧锂电池正极材料中的锂和过渡元素的方法,包括如下步骤:(1)将废旧锂电池进行放电处理,拆解后置于负压环境中进行干燥,获得除去电解液的干燥正极片;(2)将干燥正极片置于低共熔溶剂中,高温环境下对正极片中的活性物质进行溶解,得到反应液;(3)将步骤(2)所得反应液进行过滤,洗涤,所得滤饼烘干,得到集流体、粘结剂和导电剂;在所得滤液中加入还原剂后调节所得滤液为碱性,将滤液中的金属离子进行还原和沉淀;(4)将步骤(3)中经过还原反应后的含沉淀的滤液进行过滤,所得滤饼烘干,得到过渡元素,所得滤液通过萃取,沉淀和离子交换等方式,得到锂元素。本发明选择性高,浸出率高,操作简单,成本低,能耗低,安全环保。
本发明提供了一种废电脑CPU的分离回收方法,首先从废旧电脑主板上拆除废旧CPU,将针脚和CPU基座分离;将针脚与钢球、介质油混合,加入立式搅拌球磨机中,球磨将针脚表层的金镀层和少量的铜从铜质针脚上剥离,筛分得到脱除金镀层的铜质针脚、钢球和混入金粉、铜粉的介质油;抽滤清洗得到金粉和铜粉混合物;将金粉和铜粉加入稀硝酸中使铜溶解,过滤得到硝酸铜液体可进一步结晶制取硝酸铜晶体,滤渣为固体粉末,将固体粉末放入坩埚中,采用氧‑丁烷焰喷灯将坩埚中的固体粉末喷射火焰,进行高温熔炼,冷却,得到金颗粒。本发明采用的方法和装置简单、回收效率高。
本发明公开了一种稳定化处理砷碱渣制备臭葱石的固砷方法,包括以下步骤:1)将砷碱渣进行氧化浸出,过滤得到含碳酸钠和砷酸钠的浸出液及锑酸钠沉淀;浸出液浓缩后通入CO2脱碱,过滤得到脱碱浸出液及碳酸氢钠晶体;2)向步骤1)所得的脱碱浸出液中加入酸控制其pH为1.0~2.5得到富砷溶液;3)按铁砷摩尔比1.0~3.0向步骤2)所得的含砷溶液加入亚铁盐和H2O2的混合溶液,控制其pH为1.2~2.0,75~95℃反应即得到臭葱石晶体。本发明处理砷碱渣得到了具有双锥八面体形貌、颗粒均匀的臭葱石晶体,砷浸出浓度低于GB5085.3‑2007《危险废物鉴别标准‑浸出毒性鉴别》规定,可长期安全储存。
本发明提供了一种从磷酸铁锂废旧电池中回收得到高纯磷酸铁的方法,该方法通过对退役磷酸铁锂电池进行拆解清洗、氧化处理、高温煅烧,对磷酸铁锂正极PVDF进行去除,得到高纯磷酸铁。本发明具有成本低廉、过程简单的优点,通过对PVDF的处理消除了其对回收得到的磷酸铁纯度的影响,并且避免了其对环境的污染,达到了绿色环保的要求,适用于工业化大批量生产,具有良好的应用前景和经济价值。
本发明公开了一种原位观察连铸保护渣相变过程热流密度的的装置及方法,包括:样品室,用于盛放样品;加载系统,用于从顶部对样品施加载荷;加热系统,对样品室内的样品进行加热;测温记录组件,包括从上到下间隔布置在样品室底壁内的至少三根热电偶,以及与热电偶连接的温度数据采集系统;红外测温仪,用于对样品室内的样品进行实时温度测量;所述样品室的底部设有冷却回路,所述冷却回路内通有冷却介质,计算机通过红外测温仪和温度数据采集系统采集的数据计算获得测试样品总热阻Rtot、加载系统‑样品界面热阻Rp‑s、样品‑样品室内底面界面热阻Rs‑w、测试样品不同时刻各个位置上的辐射传热热流密度qr和传导传热热流密度qc。
本发明公开了一种微波热解废计算机电路板回收有价金属的方法,包括微波热解废计算机电路板和酸浸回收有价金属处理两个过程。首先对普通废弃计算机电路板进行预处理,将废电路板上的电子元件进行拆除、破碎、手选、破碎、制样、混匀获得废电路板细粉,将废电路板细粉放入微波反应器中进行热解,热解气氛为N2,获得富含有价金属单质的热解渣,所得热解渣置于行星球磨机磨细后放入硫酸‑三氯化铁溶液浸出体系中浸出,获得含铜、锡、铅、锌的浸出液和浸出渣。本发明具有有价金属回收率高、生产成本低、环境友好、工艺简单等诸多优点,为废电路板的资源化利用提供了新方向。
本发明公开了一种一步炼铜工艺及装置,该装置包括具有封闭炉腔的炉体,封闭炉腔自底部由下至上依次设有精炼区、吹炼区和熔炼区,精炼区四周的炉壁上设有多个第一喷枪,吹炼区四周的炉壁上设有多个第二喷枪,熔炼区四周的炉壁上设有多个第三喷枪,精炼区四周的炉壁和/或底部还设有多个位于第一喷枪下方的第四喷枪,熔炼区上方的炉壁上设有排渣口,封闭炉腔的顶部设有加料口和烟道口,封闭炉腔的底部设有排铜口,具有结构更简单、耐用、效率高、投资少、运行成本低等优点;该工艺包括配料和下料,分别进行熔炼、吹炼和精炼,阳极铜电解、炉渣处理和冶炼烟气处理等步骤,具有流程短、适应性强、能耗低、环境友好等优点。
一种电解用新型不溶阳极,为五元铅基合金(Ag-Sn-As-Sb-Pb),主要用于电积铜粉和电积镍粉的生产,在高电流密度条件下,电流密度在(1200~1400A/m2)范围之间进行,更可用于其它电解行业及低电流密度条件(300~1000A/m2)的生产,例锰冶金与锌冶金。其化学成分为:Ag?815~980g、Sn?3.15~3.50%、As?0.65~0.85%、Sb?1.10~1.30%,余量为铅。耐腐蚀性能好,可用于硫酸浓度为180g/L,电流密度为1200~1400A/m2条件下电解。所析出的铜粉,经过滤、洗涤、烘干后,检测铜粉中铅含量均低于国家标准(GB5246-85)0.05%。
本发明公开了一种高砷金矿焙砂冷态配入铅冶炼系统底吹还原炉的方法,先将含金焙砂干燥至水分含量低于5%,在富氧底吹还原炉放渣完成后将预处理后的含金焙砂加入炉内,加入时段为富氧底吹还原炉放渣完成后至下一次放渣前30‑50min,配入铁矿石、石灰石和还原剂,含金焙砂加入后,按还原剂:高铅渣和含金焙砂混合物料质量比为1‑2.5:100配入还原剂,还原熔炼完成后放出含金粗铅和还原渣。本发明可提高含金焙砂在铅冶炼系统中的搭配处理量6倍以上,贵金属回收率达到99%以上,过程高效清洁,大大缩短了含金焙砂中贵金属的提取时间。
本发明提供了一种铜镍钴冶炼渣与石膏渣协同处置回收有价金属的方法。先将固态或液态铜镍钴冶炼渣加入贫化电炉内,通电升温并恒定在一定温度范围内,以氮气为载体向贫化电炉内喷吹还原剂、石膏渣和熔剂,通过还原硫化反应产出金属锍相和贫化炉渣;保温、静置后,金属锍相由虹吸口放出送火法吹炼系统以进一步回收有价金属,贫化炉渣则由放渣口放出后直接水淬,水淬渣可作为生产水泥原料。本发明通过铜镍钴冶炼渣与工业副产石膏渣的协同处置,实现了冶炼渣中铜、镍、钴、金、银等有价金属高效富集回收,也为石膏渣提供了有效的综合利用途径,避免了其对环境的污染。
本发明公开了一种分离和回收废弃锂电池中金属的方法,该方法是将废弃锂电池回收混合极粉进行浮选分离I,得到含碳正极极粉和负极极粉;将含碳正极极粉与硫源混合进行硫化焙烧,得到硫化焙烧产物;将硫化焙烧产物经过水浸,得到锂盐溶液和过渡金属硫化物富集渣;将金属硫化物富集渣进行磨矿和浮选分离II,得到过渡金属硫化物精矿,该方法不但能够高效回收废旧锂电池中锂与铁、钴、镍、锰等有价金属,且工艺简单,成本低,不易造成环境污染,有利于大规模生产。
一种高砷金矿焙砂热态配入铅冶炼系统侧吹还原炉的方法,将含金焙砂在1100‑1350℃熔融,并配入铁矿石;富氧侧吹还原炉熔融高铅渣进料开始后5min至熔融高铅渣进料完成前5‑10min内将熔融含金焙砂通过溜槽与熔融高铅渣合并加入炉内,含金焙砂加料速度为0.1‑6吨/平方米富氧侧吹还原炉风口区截面积·小时,加入石灰石和还原剂,鼓入富氧空气,炉内熔体温度维持1050‑1200℃;高铅渣进料完成后,加入还原剂,炉内熔体温度保持1200‑1300℃,还原熔炼30‑60min。本发明可提高含金焙砂在铅冶炼系统中的搭配处理量12倍以上;贵金属回收率达到99%以上,适合大规模处理多种含贵金属难处理物料。
本发明公开了一种红土镍矿还原焙烧过程中添加添加剂的方法,将红土镍 矿破磨到-200~-100目占其质量的70~90%,在红土镍矿中添加氯化物作 离析剂、钠化合物作促进剂、还原铁粉作成核剂和钙类化合物作固硫剂,按红 土镍矿的质量计,氯化物的添加用量为0~10%,钠化合物的添加用量为1~ 10%,还原铁粉的添加用量为0~3%,钙类化合物的添加用量为1~10%。本 发明适合于添加到硅酸镍所占比例高的红土镍矿的还原焙烧过程,能较大幅度 的降低氯化钙等的用量,减轻氯对设备的腐蚀和环境污染,显著提高红土镍矿 还原焙烧过程中的金属化率和离析效果,从而达到了提高镍回收率或品位的目 的。
一种在低温熔盐中淀粉还原氧化铅的方法,氧化铅与淀粉混合制粒并烘干后在低温熔盐中还原熔炼产出金属铅,本发明的实质是在低温熔盐中用淀粉还原氧化铅,大幅度降低了还原熔炼的能耗,还原熔炼温度降低至600~750℃;同时将氧化铅与淀粉混合制粒并烘干后加入低温熔盐,有效防止了淀粉的燃烧损失,大幅度提高了淀粉的利用效率。
本发明提供了一种镀银铜线的回收方法,首先将镀银铜线切断成条状物料,将条状物料与钢球、介质油混合球磨处理,筛分得到脱除银镀层的铜线、钢球和混入银粉、铜粉的介质油;将混入银粉、铜粉的介质油进行抽滤得到银粉和铜粉的混合物;将混合物加入稀硝酸静置5‑7天,向烧杯中加入氯化钠溶液,将银离子转化为氯化银沉淀;过滤得到氯化银粉末和硝酸铜溶液;将得到的氯化银粉末加入盛有盐酸的烧杯中,加入足量的锌片,加热搅拌,过滤得到灰黑色粉末;将固体粉末放入坩埚中,采用氧‑丁烷焰喷灯将坩埚中的固体粉末喷射火焰,进行高温熔炼,冷却,得到银块。本发明二次污染程度低,回收率高,容易实现产业化回收。
本发明提供一种综合回收利用废旧印刷电路板的方法,包括以下步骤:1)将安装有电子元件的废旧印刷电路板置于一转筒中,浸于液体加热介质中使废旧印刷电路板上的焊锡熔化,使得转筒转动,在转筒旋转的离心作用下熔融的焊锡透过转筒壁上的滤孔滤出;2)将脱落的电子元件进行分类分拣再进一步处理;3)采用剪切式破碎机对脱除焊锡及电子元件后的废旧印刷电路板进行粗碎;再采用细碎机进一步细碎,使金属与非金属相互解离;解离后的混合物料再通过气力分选机或静电分选机进行分选,分别得到铜粉及非金属粉末。本发明以低成本、高效率实现废旧印刷电路板的规模化处理,可使其中的非金属、焊锡、铜及其它金属等有价物资得到综合回收。
一种红土镍矿沉淀除铁和镍钴富集的方法,其特征在于:将红土镍矿球磨并过50目筛,取-50目矿样用盐酸浸出,使得浸出液中FE的浓度为0.01-6MOL/L,向溶液中加入氧化剂和沉淀剂,其中氧化剂和沉淀剂的浓度为0.01-9MOL/L,用0.01-6MOL/L的碱水溶液控制体系的PH=0.1-6.0,在20-90℃的搅拌反应器中反应1MIN-24H,经固液分离后得到沉淀,并在沉淀除铁的过程中使盐酸得以再生,再生的盐酸则返回浸出工序,循环利用;通过对滤液添加硫化剂进行硫化沉淀,并最终实现镍钴的有效富集。本发明摒弃了传统工艺中热水解或高温焙烧的方法,降低除铁和盐酸再生的能耗,具有工艺流程简单、镍钴回收率高、副产品质量好且稳定、成本低等优点。
一种难处理金矿熔融萃取富集提金的方法,将难处理金矿、锑烟灰和熔剂混合后通入富氧空气氧化熔炼,使金高温熔炼萃取进入富金铁锍,待熔炼渣和富金铁锍澄清分离后,向高温富金铁锍熔体中加入特性金属,在特性金属熔化沉降过程实现富金铁锍中金的熔融反萃,使富金铁锍中的金转移到富金合金中,富金合金在高温真空条件使特性金属挥发除去,最终使金深度富集在底合金中,底合金通过湿法分离提纯金。本发明不仅避免了传统吹炼方法的金分散损失,而且工艺流程短,金回收率高达99.0%以上,操作简单,生产成本低。
一种富金铁锍熔融反萃富集金的方法,富金铁锍首先在高温下熔化,然后向其中加入特性金属,在特性金属熔化沉降过程实现富金铁锍中金的熔融反萃,最终使富金铁锍中的金转移到富金合金中,富金合金用于提取金,贫金铁锍返回利用。本发明的实质是利用特性金属对金捕集能力强的特点,在高温下熔融反萃使富金铁锍中的金富集于富金合金中。本发明具有工艺流程短、金回收率高、操作简单和生产成本低的优点。
本发明公开了一种分离砷碱渣中砷与碱的电化学方法,该方法是将砷碱渣进行氧化水浸,得到含碳酸钠和砷酸钠的砷碱渣浸出液;以碳酸钠溶液为电解液、铁电极为阳极和碳电极为阴极,进行电解,在电解液中生成活性氢氧化亚铁;将砷碱渣浸出液加入至含活性氢氧化亚铁的电解液中,进行电解,生成砷酸铁晶体沉淀。该方法通过氧化水浸,实现砷碱渣锑的分离,再电化学方法将浸出液中砷转化成结晶性好的砷酸铁颗粒,实现砷与碱的高效分离,该方法能快速、高效、低成本地从强碱性溶液中去除砷,减少了除砷过程中氧化剂的使用,该方法过程简单、操作方便,满足工业化生产。
一种高砷金矿含金焙砂热态配入铅冶炼系统底吹还原炉的方法,将含金焙砂在1000‑1350℃熔融,按含金焙砂中Fe/SiO2质量比为1.0‑1.2配入铁矿石;含金焙砂加入时段为富氧底吹还原炉放渣完成后至下一次放渣前30‑50min,配入石灰石和还原剂,鼓入工业氧气和天然气,含金焙砂加入后,按还原剂:高铅渣和含金焙砂混合物料质量比为1‑2.5:100配入还原剂进行还原熔炼,还原熔炼完成后放出含金粗铅和还原渣。本发明利用了富氧底吹还原炉的富余容积和处理能力,不影响铅冶炼体系稳定运行,可提高含金焙砂在铅冶炼系统中的搭配处理量10倍以上;贵金属回收率达到99%以上,过程高效清洁,缩短了含金焙砂中贵金属的提取时间。
中冶有色为您提供最新的湖南长沙有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!