本发明公开了一种从废旧锂电池正极料物理分离钴酸锂的清洁生产方法,包括以下步骤:1)首先将废弃锂电池正极料进行一级破碎,破碎的粒度控制在16mm以下;2)再将上步得到的物料进行二级破碎,破碎的粒度控制在4mm以下;3)将上步得到的物料筛分;4)将筛余物粉碎,并进行筛分。采用本方法分离并回收废弃锂电池正极料中的钴酸锂与铝片,整个工艺过程为物理性分离,对环境不产生污染。分离过程不需添加化工辅料,生产成本低,同时钴和锂都获得再收。
本发明属于重金属固废处理领域,公开了一种水热与氧化协同提取电镀污泥中铬的方法。将原始电镀污泥或经过预处理的电镀污泥与碱液置于水热釜内混合搅拌;将得到的混合体系密封,通入一定压力的氧气或空气,或者加入氧化剂,保持搅拌保温进行水热反应,所得反应体系静置冷却后抽滤,滤液为高浓度铬液,固体经洗涤后为无毒矿物。本发明在保证铬具有高浸出率的基础上,可以将温度降至300℃以下,既降低了能耗,也延长了设备的使用寿命。且不需要投入石灰、白云石等填料,有利于废物的减量化。
本发明提供了常温嗜酸浸矿菌及高砷高品位原生硫化铜矿生物搅拌浸出方法。常温嗜酸浸矿菌为氧化亚铁硫杆菌DBS02(Thiobacillus?ferrooxidans?strain?DBS02),保藏于中国典型培养物保藏中心,保藏号为CCTCC?No.M2010323。所述方法是:将矿石碎磨至80目,加入含有嗜酸浸矿菌的生物搅拌浸出系统内进行生物搅拌浸出,矿浆浓度为15~25%(g/ml),外加4~10g/l亚铁离子,稀硫酸调节pH值稳定于1.8~2.4,通过8~10天的浸出,矿石中铜的浸出率达到84%以上。本发明能有效浸出高砷高品位原生硫化铜矿的铜,无需超细研磨,具有高效节能、环保的优点。
本发明公开了一种锂离子电池废料的钴金属回收方法及其设备;回收方法包括以下:步骤一、固体废料与碱金属溶液混合,充分反应,螯合形成钴‑有机物中间体;步骤二,对含有钴‑有机物中间体的溶液与固体的混合物进行固液分离;步骤三,对含有钴‑有机物中间体的溶液进行水热反应,结晶出氢氧化钴粉末;其中,步骤一中所述的固体废料为锂离电池中含有钴元素的废料,在与碱金属溶液混合时,进行粉碎和干燥的预处理;在步骤二的固液分离时,对固体物表面进行水洗和/或醇洗。本发明在密闭系统中,利用碱金属溶液与固体混合物反应,将钴元素提取出来,反应条件温和且不向外界环境排放废弃,其中的溶剂还可回收再利用,反应快,成本低,是有效回收锂电池中钴元素的简便节能的方法。
本发明公开了一种从废旧线路板选择性回收锡或铅的方法,包括如下步骤:S1.将去除电子元件的废弃线路板破碎;S2.将破碎后的废弃线路板置于电解槽体中,当选择性回收锡时,加入盐酸溶液;将惰性电极分别置于电解槽的的阳极室和阴极室中;设置电压为6~8V,进行电化学反应浸出,收集反应液和析出物,反应液用硝酸稀释保存,析出物用硝酸溶解保存;当选择性回收铅时,将盐酸溶液替换为等体积的体积比3:1的盐酸和过氧化氢混合溶液。本发明根据不同辅助液下铅、锡阴阳极反应液表征结果和铅、锡在电极阴极处的析出含量情况,找出了有效分离废弃线路板中金属铅或锡的方法,具有较大的应用前景。
本发明公开了一种从废蚀刻液中回收99.98%的铜粉,并对这些铜粉进一步加工制备来获取99.999%的阴极铜的方法。该方法首先将废蚀刻液在装有硫酸铜溶液中的电渗析槽中进行渗析,蚀刻液中的铜离子进入硫酸铜溶液,从而获取高浓度的硫酸铜溶液,接着将这部分高浓度硫酸铜溶液导入电解槽进行电解,获取高纯度的铜粉。然后将这些高纯度铜粉压块,铜砖块盛放在钛材料的导电框中作为阳极,阴极采用纯钛板,在电解槽中精炼,由此可在电解槽的阴极上获取到纯度为99.999%的阴极铜。该方法属于老化蚀刻液提取铜并再生回用的领域,对比传统的工艺,产品附加值高,铜粉和阴极铜都可作为产品,并且有流程短、设备少和能耗低的特点,且整个过程中不引入别的试剂,也不会有中间产物具有污染性,能达到环保的要求。
本发明涉及一种基于废旧磷酸铁锂正极转化的沸石分子筛及其制备方法和用途,所述沸石分子筛以铝和磷为无机骨架,其晶体结构中,铝氧四面体和磷氧四面体共氧连接形成四元环,所述四元环两两共氧连接,构筑成内部呈现十二元环孔道结构。所述方法采用以废旧的磷酸铁锂正极为原料,通过碱浸和酸浸处理,将铝、磷等元素溶解在液相,再结合磷源和模板剂进行水热反应,合成微孔磷酸盐沸石分子筛。所述方法总体工艺流程简单,耗能低,整个转化过程体现了绿色化学思想,得到的沸石分子筛可对自然界污水中常见的重金属离子进行吸附,达到“以废治废”的目的。
本发明公开一种节能型熔炼装置,包括反射炉、缓冲器和换热器,反射炉包括钢罩、耐火层和隔热墙,耐火层包括谓反射炉体,隔热墙设于谓反射炉体底面的中部且与谓反射炉体顶面之间形成空挡,隔热墙将谓反射炉体分隔成上换热区、第一下熔炼区和第二下熔炼区,钢罩左右侧板的中心分别水平对应于隔热墙的两侧板开设有贯穿耐火层的第一进火口和第二进火口,上换热区的顶壁开设有与第一下熔炼区和第二下熔炼区对应的第一投料口和第二投料口,第一下熔炼区和第二下熔炼区分别开设有第一排料口和第二排料口,上换热区开设有排气口,该节能型熔炼装置可有效提高热能的直接利用率。
本发明涉及一种从废弃电子元器件中回收金和铜的工艺方法,包括以下步骤:物理预处理,将电子元器件破碎后筛分,得到金属富集物和非金属富集物,并将金属富集物进一步粉碎;化学预处理,将上述金属富集物投入硫酸和双氧水组成的混合溶液中,经处理后经过滤得到含铜溶液和去铜废渣;对经过化学预处理后过滤得到的去铜废渣进行金的回收;将化学预处理得到的含铜溶液采用萃取-电积工艺回收铜。本发明具有以下有益效果:溶铜效率提高,且保证了金的高回收率和高纯度;铜的回收采用萃取-电积工艺,能得到高纯度的电积铜;易于实现规模化处理,且不会产生二次污染。
本发明涉及固废处理及利用技术领域,具体公开了一种废弃电路板冶炼烟灰的全资源化回收方法。本发明方法先通过两段式浸出对废弃电路板冶炼烟灰进行处理,在低试剂加入量的条件下实现各金属及溴氯的有效分离;一次浸出液与二次浸出液合并,加入Na2S得到铜精矿,之后在弱碱性条件下形成锌精矿;向二次净化液中通入氯气,然后再用CCl4萃取得到溴的四氯化碳溶液,萃余液通过蒸发结晶获得NaCl结晶盐。二次浸出渣中加入还原剂和助剂,通过还原熔炼可得到金属锭。本发明实现了废弃电路板冶炼烟灰的全资源化及高值化利用,具有显著的环境效益和经济效益,应用前景广阔。
本发明涉及一种从废石油催化剂中回收钒和钼方法,属于石油化工技术领域;方法过程包括催化剂焙烧、催化剂载体的溶解和铂的置换沉淀;废催化剂经过焙烧,除去其中含碳和硫的油,将马弗炉预热到预定的温度,加入100g催化剂,催化剂研磨后,于600℃下焙烧30min;溶解试验在2000ml的三颈玻璃容器中进行,该容器放在恒温浴中,温度变化控制在±5℃,在预热到一定温度的硫酸溶液中溶解焙烧后的催化剂;用置换沉淀法,铝粉作还原剂,回收硫酸溶液中的铂,置换沉淀在恒温浴中的500ml三颈玻璃容器中进行,放人250ml在催化剂基体溶解时获得的溶液,加热到一定的温度,在溶液中加入铝粉,置换沉淀反应结束后,倒出溶液、过滤、收集铂颗粒,并分析滤液中铂的含量。
本发明公开了一种回收废旧三元锂离子电池中有价金属的方法。所述方法,包括以下步骤:混合过氧酸与正极废料,经浸出反应,得到浸出液;回收浸出液中的有价金属;所述过氧酸为含有过氧基(‑O‑O)和羧基(‑COOH)的过氧酸。所述方法仅利用过氧酸一种试剂即可实现正极废料中多种有价金属的同时回收,并且提取效率高,浸出时间短。
本发明公开了一种机械物理法处理废线路板制备铜合金粉末的工艺,其工艺步骤包括:废旧线路板破碎预处理、气流分选、磁选除铁、机械粉碎、筛分、摇床分选、球磨除杂、球磨细化、粉末纯化处理等流程,最后获得铜合金粉末。该工艺具有以下优点:获得的铜合金粉末主要含Cu、Sn、Pb、Fe,其成分及含量在铜基摩擦材料要求的范围内,可直接应用于制备铜基摩擦材料,整个工艺产生的少量尾矿易于处理,可实现金属的全回收;与其他可实现废线路板中有价金属循环再生的方法相比,本工艺采用机械物理法不经过冶金工艺,可实现废金属铜的直接材料化,工艺简单,生产成本小,能耗低,污染小。
本发明提供了一种对废旧磷酸铁锂电池进行回收利用的方法,包括:(1)从废旧磷酸铁锂电池分离出正极混合料;(2)用硫酸充分溶解正极混合料,过滤得到第一滤液,向滤液中边加氨水变搅拌至体系pH为1.0‑1.9,继续搅拌,经过滤得到第二滤液和磷酸铁沉淀;(3)向第二滤液中加入氢氧化钡或硝酸钡,经过滤得到第三滤液;(4)按待制备产物磷酸锰铁锂LiFe1‑xMnxPO4中各元素摩尔比加入第三滤液和磷酸铁沉淀、锰源、磷源及碳源,得到混合溶液;(5)将混合溶液球磨、干燥、粉碎后,在惰性气氛中于第一温度下预烧,再于第二温度下烧结,得到碳包覆的磷酸锰铁锂正极材料。该方法可将废旧磷酸铁锂电池中所有元素全部回收再利用。
本申请公开了一种回收废旧三元镍钴锰锂离子电池正极材料的方法,包括:将氯化胆碱与氢键供体混合制成低共熔溶剂;将三元镍钴锰锂离子电池的正极材料加入低共熔溶剂中反应,反应结束后过滤得到反应滤液;向反应滤液加入碱溶液以回收镍钴锰三元前驱体。本实施例回收镍钴锰三元前驱体后,反应滤液中的低共熔溶剂能够循环利用,能够降低废旧电池的回收成本,具有绿色环保的优点;且取代了传统的火法和湿法回收废旧锂电池,能够降低能耗,避免使用无机强酸带来的危险。
本发明提出将废旧铅膏回收制成超细铅粉的方法及该超细铅粉的应用,所述超细铅粉的制备方法先用机械拆解或破碎分选的方法将放电至0V的电池的铅膏分离出来,铅膏被粉碎成易于发生鳌合反应的铅盐,将所述铅盐在有机盐和有机酸的混合溶液中充分反应制成前驱物,将经过离心过滤、干燥和淋洗的前驱物后低温焙烧,制备得超细的以PbO及Pb为主要成分的铅粉。本发明所涉及的回收方法使用的化学物质成本低廉,且反应完全、铅回收率高、能耗低,易于产业化实现,在铅回收过程中对环境造成污染较小;所述超细铅粉可以直接作生产蓄电池的铅粉技术附加值高,应用于电池极板生产中可得到电化学容量高和长充放电使用寿命的电池极板。
本发明提出将废旧铅酸蓄电池负极铅膏回收的方法及回收物的应用,所述超细铅粉的制备方法先将废旧电池充满电,然后将负极铅膏从电池中分离出,经过高温高湿固化使得负极铅膏的主要物质转变为主要由氧化铅PbO和铅Pb构成的铅原料,在氧气条件下进行干法研磨或粉碎,或者用有机盐和有机酸溶液进行湿法处理,得到超细铅粉。本发明所涉及的回收方法成本低、工艺简便、铅回收率高、能耗低,易于产业化实现,在铅回收过程中对环境造成污染较小;本发明直接制备超细PbO粉体,可以直接作生产蓄电池的铅粉,本发明制备出的超细铅粉性能好,技术附加值高,应用于电池极板生产中可得到电化学容量高和长充放电使用寿命的电池极板。
本发明涉及一种微波等离子体辅助的多晶硅提纯方法,将硅料放置于真空中频感应炉的石墨坩埚后,将炉体抽真空至压力≤1Pa;开启中频电源,以10~100℃/min的速率升温至1500~1650℃,加热直至硅料完全熔化;开启微波源,通入反应气体,进行反应熔炼;熔炼结束后,进行浇铸,得到纯度>99.999%的高纯多晶硅。本发明结合了真空中频精炼和微波等离子体反应加热进行除杂,反应条件温和,提纯效果明显,降低了能耗,有利于工业化生产。
本发明公开了一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,包括以下步骤:(1)预处理;(2)配置脱稀贵/惰性金属溶液:在无机酸水溶液中添加络合剂和氧化剂,配置成脱稀贵/惰性金属溶液,并将脱稀贵/惰性金属溶液加热至50~70℃;(3)氧化络合铜/镍镀层:把烘干后的电镀材料浸泡在脱稀贵/惰性金属溶液中,静置浸泡,使稀贵/惰性金属箔彻底地从电镀材料基体表面脱除;(4)过滤、干燥滤渣:取出脱稀贵/惰性金属后的电镀材料,将飘有稀贵/惰性金属箔的含铜/镍溶液过滤,得到含稀贵/惰性金属箔的滤渣和含铜和/或镍离子的滤液,滤渣经洗涤、干燥后得到稀贵/惰性金属箔。该方法的金的回收率可高达98%以上。
本发明公开了一种机械物理法处理废线路板制备纯铜粉末的工艺,步骤包括:废旧线路板破碎预处理、气流分选、磁选除铁、机械粉碎、筛分、摇床分选、球磨除杂、酸浸除杂、球磨细化、铜粉纯化处理等流程,最后获得纯铜粉末。该工艺具有以下优点:获得的铜粉末可直接应用于粉末冶金,整个工艺产生的少量废液、尾矿易于处理实现金属的全回收;与其他可实现废线路板中有价金属循环再生的方法相比,本工艺不需经过冶金过程,就可实现铜的直接材料化,工艺简单,生产投入小,能耗低,污染小。
本发明涉及一种废弃电路板回收铜合金循环再造粉末冶金制品的方法和装置系统,该方法将电子设备上废弃的电路板进行破碎、磁性分选、粉碎、机械力分选和静电分离,将废弃的电路板分离成为铜合金粉末和塑玻粉末,而所述方法还包括如下步骤:X1)将所得的铜合金粉末进一步纯化、细化,制得更纯、更细的极细铜合金粉末;X2)将极细铜合金粉末填充进入制品模具中进行模压;X3)将模压好的压坯进行分段烧结,制得粉末冶金的成品。本发明的方法和装置系统既能够对废弃电路板进行前期的处理,分离得到铜合金粉末,又能对分离得到的铜合金粉末进行后续有效处理,制得可以进入市场销售的产品,而且处理过程环保、经济、高效。
本发明提供了一种废弃镉镍电池资源化回收利用的方法:将废旧镉镍电池材料、HCl溶液和化合物混合,得到的金属离子混合液调节pH至4~7,过滤,得到预处理液,化合物为酒石酸和/或酒石酸钠;将预处理液调节pH至8~11,过滤,得到氢氧化镉和滤液;将滤液调节pH至5~7,再和硝酸钙混合,反应,得到硝酸镍溶液和酒石酸钙;将硝酸镍溶液调节pH至7~12,得到氢氧化镍。该方法采用的回收设备简单,操作简便,利用不同pH值分离回收镍镉,方法简单,且回收率和纯度均较高;采用常规试剂,酒石酸或酒石酸钠可循环使用,成本低廉;没有采用硫化物等有毒试剂,不会产生二次污染;采用酒石酸或酒石酸钠,增加金属的溶出速度和溶出率。
本发明公开了一种镍镉废电池正负极混合材料的浸出方法,先将镍镉废电池破碎并磁选过筛,然后在溶解釜中配制浸出液,浸出液的溶质含有硫酸与氧化剂,溶剂是水,按照浸出液体积:过筛物质质量=1~6L∶1kg的比例关系向浸出液中投入过筛物质,搅拌并浸出。镍、镉和钴的浸出率均达到99.5%以上,本工艺回收路径短,设备投资小,经济效益高,污染程度较低。
本发明公开了一种从废旧锂离子电池电极材料浸出液中回收有价金属的方法,包括:将浸出液与磷酸盐混合,采用沉淀法或还原法将浸出液中的铜回收,得到铜渣和除铜溶液,调节除铜溶液pH,以使磷酸盐沉淀铁和铝,过滤沉淀物得到镍钴锰锂溶液,然后将镍钴锰锂溶液进行萃取分离,过滤沉淀物得到纯净的镍钴锰锂溶液,采用酸性含磷萃取剂将镍钴锰锂溶液进行萃取分离为锰镍钴硫酸溶液和锂溶液,或锰硫酸溶液、镍钴硫酸溶液和锂溶液;最后沉淀锂。本发明采用一种从废旧锂离子电池电极材料中回收有价金属,降低了回收成本,提高了镍钴收率,而且可根据需要得到多种产品。
本发明公开了一种控制破碎分离低值物质与贵物质的方法及装置,该方法,其包括以下步骤:a)将废旧线路板投入控制破碎机进行破碎;废旧线路板破碎后的粒径控制在2-5cm;b)破碎后的物料输送入磁选机,将磁性物质分离出来;c)去除了磁性物质的物料,送入振动筛进行振动;d)振动后的物料,送入涡流分选机进行分选,分选出铜和铝。使用时,带元器件的废旧线路板可以不经过拆解,直接通过控制破碎机,将破碎后的废旧线路板粒径控制在2-5cm,显现出较好的筛分作用和粒度控制,产品粒度均匀。生产中破碎机显示了良好的粒度控制功能,通过对破碎料径的控制,更好的进行分离。
本申请属于固体废弃物回收技术领域,尤其涉及一种从废旧锂电池正极中分离提取有价金属的方法。其中,通过将废旧锂电池正极活性材料与碳还原剂混合后进行第一高温煅烧,发生了还原反应,使正极活性材料中锂离子溢出并与体系中二氧化碳反应,得到碳酸锂,从而可以使有价金属锂以盐的形式溶解在水浸液中,之后将水浸渣与氯化剂混合后进行第二高温煅烧,发生了氯化反应,得到了氯化锰,从而可以使有价金属锰以盐的形式溶解在水浸液中,全过程锂与锰的回收率分别为86%和95%。解决了现有技术中回收废旧锂电池中有价金属存在回收效率低、时间成本高、容易造成环境污染、适应性差以及成本高等技术问题。
本发明公开了一种废旧电池前处理的方法。该方法包括以下步骤:配制放电粉料,将石墨和活性炭配制成石墨活性炭混合物,配制氯化钠溶液,将氯化钠溶液与石墨活性炭混合物混合搅拌成湿润松散的粉料即为放电粉料;将放电粉料和待处理的废旧电池按一层放电粉体一层待处理的废旧电池平铺堆叠并机械压实在放电装置内进行放电反应及活性炭的再生;以及将放电完毕后的废旧电池与放电粉体一同破碎,混合放置实现活性炭对废旧电池的电解液充分吸附,然后进行筛分,回收得到的放电粉体重复利用。本发明的废旧电池前处理的方法简化了生产设备,形成一套绿色循环体系,适合大规模的使用。
本发明提供了一种废旧镉镍电池中镉镍的回收方法,包括:将废旧镉镍电池材料浸渍在HCl溶液中,得到的金属离子混合液调节pH值至4~7,过滤,得到预处理液;将预处理液和柠檬酸混合,反应,得到反应液,调节pH值至8~11,过滤,得到氢氧化镉和滤液;将滤液和硝酸钙混合,调节pH值至9~12,反应,得到沉淀物;将沉淀物和HCl溶液反应,过滤,得到的滤液调节pH值至7~12,得到氢氧化镍。该回收方法采用的回收设备简单,操作简便,利用不同pH值分离回收镍镉,方法简单,且回收率和纯度均较高。该回收方法所用材料均为常规试剂,成本低廉;回收过程中没有硫化物等有毒试剂,不会产生二次污染。
本发明公开了一种电池粉浸出渣回收制取活性负极材料的方法,包括将电池粉浸出渣用第一有机溶剂浸泡除去有机杂质,固液分离得到处理渣,处理渣在隔绝氧气条件下经高温处理后,用三价铁盐与酸的混合溶液浸泡,再进行碱洗,洗涤完成后与一氧化碳进行羰基化反应,用第二有机溶剂纯化,固液分离得到石墨粉,将石墨粉进行预锂化后,制得活性负极材料。本发明将破碎后的电池粉浸出产生的浸出渣进行一系列的除杂、活化,最终制得活性负极材料,避免了资源浪费、单独收集负极集流体拆解效率低的问题。
本发明提供了一种稳定固化废弃物中镍和镉的方法,所述方法将氧化镉、氧化镍和赤铁矿粉碎,混合分散均匀、干燥,得到混合物后,将混合物成型后在700‑950℃烧结;冷却。本发明利用赤铁矿稳定固化镍和镉,将镍和镉掺入赤铁矿烧结,通过铁氧体尖晶石固溶体的形成可以显著降低镍和镉浸出率,从而有效稳定废旧镍镉电池污泥中的有害镍和镉;本发明工艺简单,只需要使用广泛易得,低成本的赤铁矿作为主要原料,通过简单的烧结方法,即可有效地将镍和镉纳入镍‑镉铁氧体尖晶石固溶体中,显著降低将金属镍和镉释放到环境中的危险,在稳定固化过程中不会产生二次废渣、废水,环保且更加安全有效。
中冶有色为您提供最新的广东有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!