本发明公开了一种从湿法炼锌浸出液中除铁的方法及其应用,方法包括:将湿法炼锌浸出液缓慢加入到含碱和氧化剂的混合溶液中,加热搅拌反应,得到含锌上清液和磁铁矿沉淀,固液分离即可。本发明通过将湿法炼锌浸出液缓慢加入到含碱和氧化剂的混合溶液中,在高温下搅拌反应,使湿法炼锌浸出液中所含的亚铁离子或铁离子通过反应生成磁铁矿,相比将湿法炼锌浸出液快速加入到含碱和氧化剂的混合溶液中,缓慢滴加的方式获得的磁铁矿的含铁率高、渣量小、锌铁分离率高且磁分离性能强;本发明无需极端的高温高压环境,无需调控氧化速率,工艺简单,操作条件易于控制,具有一定优势,实际应用前景好。
本发明提供了一种利用嗜酸微生物硫氧化促进赤泥中有价金属浸出的方法,将赤泥加入水中置于磁场中搅拌,清除粘附于赤泥表面的可溶强碱性盐和混杂的含铁磁性物质;经固液分离后干燥;嗜酸微生物在基础(0K)培养基中驯化处理后接种在含硫源的生物反应器中,待细菌生长至一定浓度,以适当质量比分步加入干燥后的赤泥,并在后期适当曝气。生物硫氧化产生的硫酸能有效促进碱性赤泥中有价金属的浸出,反应过程适当曝气可显著提高硫的生物氧化及赤泥中有价金属的浸出率。浸出完成后通过固液分离即可获得有价金属富集溶液。本发明为工业固废赤泥的高效资源化利用提供了一种新的方法,处理过程设备需求简单,成本低,效率高且无环境负效应。
本发明公开了一种炼铜白烟尘与污酸资源化协同处理回收多金属的方法。该方法包括炼铜白烟尘采用污酸浸出和污酸梯级缓释硫化两条路线;即炼铜白烟尘采用污酸浸出,浸出液利用活性硫化砷渣置换沉铜,而活性硫化砷渣由污酸梯级缓释硫化获得,置换沉铜后的富砷溶液通过还原、冷却结晶得到二氧化二砷产品和结晶母液,结晶母液返回制备活性硫化砷渣过程;污酸梯级缓释硫化后液则进行多金属提取和废水净化回用。该方法的两条路线所得产物交互利用形成闭路循环,实现整个系统内废物循环利用,且整个工艺可零排放,且该方法过程简单,成本低,实现了污酸和炼铜白烟灰中有价金属元素和砷的综合资源化回收,利于工业化的应用。
本发明公开了一种从含砷金矿中浸金的方法,包括以下步骤:将含砷金矿磨细后添加到培养基中,加入焦磷酸亚铁和驯化的氧化亚铁硫杆菌,调节溶液pH至1.7~1.9进行生物氧化;待生物氧化完成后,进行固液分离得氧化渣和滤液,将氧化渣进行后续浸金处理。本发明通过在培养基中加入焦磷酸亚铁,焦磷酸根可与生物氧化过程产生的Fe(Ⅲ)配位,不但可显著提升溶液中Fe(Ⅲ)的含量,提高体系的氧化电位,而且从根本上减少了生物氧化过程中黄钾铁矾的生成,有效缩短了生物氧化的周期,既减少了后续浸金过程中硫脲的消耗,也保证了硫脲的浸金动力学,焦磷酸根与Fe(Ⅲ)的配合物还可作为后续硫脲浸金的氧化剂,大大降低了成本。
一种选择性分离钴镍铜铁合金中有价金属的方法,包括如下步骤:将钴镍铜铁合金在1300℃~1600℃下熔融,通过高压雾化装置进行雾化制粉,得到钴镍铜铁合金粉;将此合金粉加入到硫酸体系中,通入氧化性气体或者氧化剂,调节气体流量或氧化剂用量进行控电位选择性浸出,得到Cu渣和Co、Ni、Fe混合浸出液;Cu渣进一步强化氧化浸出、净化提纯得到Cu的化学品;Co、Ni、Fe混合浸出液加入到特殊设计的锈蚀浸出槽中,进行锈蚀分离,得到铁锈渣和硫酸镍钴混合液。该制备方法新颖,流程短,工艺过程无污染,可用于大洋锰结核的提取和锂电新能源材料循环利用,具有良好的工业化前景。
本发明涉及一种硫磷混酸加压分解高锡钨矿的方法,其改进之处在于,在用磷酸和硫酸的混合酸从高锡黑钨矿或高锡黑白钨的混合矿中提取钨的过程中,对反应体系进行加压处理,使其温度为110~250℃。提取钨之后的分解渣可以直接或经选矿工序得到锡精矿。本发明通过加压,在提取钨的过程中不需要额外地添加含钙的化合物对黑钨矿进行转化,即可直接提取黑钨矿或黑白钨的混合矿中的钨,同时获得锡精矿,简化了生产工序,降低了生产成本。
本发明属于微生物培养装置领域,具体是涉及到一种微生物连续培养装置。包括培养罐和设置在培养罐内的曝气管,还包括环绕在曝气管外围并对培养罐内的培养液加热的加热管。所述曝气管还固定有沿曝气管轴向分布的多个挡板,挡板的形状为圆环形,中心向下凹陷,所述挡板靠近曝气管的位置设置有漏孔。所述加热管呈螺旋环绕在曝气管外围,螺旋的直径大于挡板的直径。本发明构造简单、操作方便、制造成本低廉,可在连续培养浸矿微生物的同时大量减少加热管、培养罐上附着沉积铁钒,从而达到长时间连续获得微生物的目标,并且大大延长加热装置的使用寿命。
一种酸性烟气洗涤废水处理方法,该方法包括以下步骤:1)固液分离:将酸性烟气洗涤废水过滤,得到悬浮物沉淀和废水溶液;2)氧化:将废水溶液通入氧化装置,使废水溶液中的有机物发生氧化降解反应,除去废水中的有机物;3)弱碱絮凝:在氧化降解后的废水溶液中加入混合碱,将废水的pH调节至弱碱性,金属离子形成沉淀;过滤,得到含金属离子沉淀物的滤渣和滤液;4)氨脱除:将滤液转入管式混合器,加入碱液,将管式混合器中滤液的pH调节至强碱性;将强碱性滤液导入膜吸收系统中,进行氨脱除。本发明的方法及其用途,该方法清洁处理、多污染物控制、处理成本低、处理效率高的优势。
本发明公开了一种从石煤中提取钒的方法,其特征在于,将包含磷酸根络合剂、氧化剂、酸、石煤的混合液进行氧化‑络合浸出;随后经固液分离,得到含钒浸出液和浸出渣;混合液中磷元素的浓度大于或等于1mol/L。浸出液中的钒以阴离子形式被溶剂萃取或离子交换分离富集后得到碱性富钒液。向富钒液中加酸调pH后加入可溶性钙盐,磷与钙发生反应生成沉淀,从而实现磷和钒的分离及磷的循环利用。除磷之后的溶液通过铵盐沉钒并煅烧得到高品质五氧化二钒产品。本发明不需要焙烧过程,无烟气污染;在浸出温度低于200℃的条件下就能获得超过94.5%的钒浸出率。
一种铜电解液吸附脱杂净化方法,其特征是以锑或/和铋的氧化物及其水合物为吸附剂,选择性的从铜电解液中或从铜电解液电积生产阴极铜之后的溶液中或从铜电解液蒸发浓缩结晶硫酸铜后得到的结晶母液中吸附杂质As、Sb、Bi,通过负载吸附剂的解吸,及解析后液的再生,不仅可实现吸附剂及解析液的循环使用,而且能够将被吸附的杂质As、Sb、Bi资源化利用。本发明具有工艺简单,操作简便,生产成本低,净化效果好等优点,且对主工艺无副作用,可以完全取代传统的电积脱铜脱杂的铜电解液净化工艺,彻底消除铜电解液净化过程黑铜泥和黑铜板的产生,避免AsH3等有害物质的排放,减少污染,保护环境。
本发明公开了一种废旧锂电池正极活性材料的高效浸出工艺。其主要特点是先将废旧 锂离子电池拆分得到的正极活性材料用硫酸/双氧水混合溶液多段逆流浸出,剩余残渣用盐 酸浸出。本发明先采用硫酸和双氧水体系对正极活性材料浸出,盐酸对滤渣进行浸出,最 大程度减少了单独使用盐酸浸出时产生大量的Cl2而导致的工作环境恶劣且环境污染大,同 时也最大限度的提高了正极活性材料的浸出率。使用该方法可使废旧锂离子电池活性材料 的浸出率达到99%。
本发明公开了一种从废旧锂离子电池及废旧极片中回收锂的方法,包括如下步骤:(1)将废旧锂离子电池或废旧极片用破碎机破碎,再置于高温炉中经热处理去除粘结剂得到粉料;(2)用氢氧化钠溶液溶解去除粉料中的铝,过滤得低铝滤泥;(3)用酸和还原剂将低铝滤泥浸出,得到浸出液;(4)用化学法除去浸出液中的铁、铜、铝等杂质;(5)用氟盐沉淀浸出液中的锂,得氟化锂粗产品;(6)将氟化锂粗产品洗涤,过滤,干燥得氟化锂产品;(7)将氟化锂粗产品洗涤后的滤液返回步骤(3)处理。利用本发明方法所得氟化锂产品纯度达98.0%以上,锂一次回收率为75~92%,且本发明方法过程简单,成本低,易于工业化生产,具有较高的经济效益。?
本发明公开了一种从镍溶液中深度除铜的试剂硫代碳酸镍的合成方法其实质在于以可溶性硫化物,CS2以及硫磺(S)为原料先合成硫代碳酸盐溶液,再继续与含镍溶液反应合成硫代碳酸镍。本发明合成的硫代碳酸镍能高效的从镍电解阳极液中除铜,使除铜后液中铜浓度低于3mg/L,除铜渣中铜镍比高于15∶1。
本发明提供了一种以冷风曝气工艺生产超细APT的方法,具体操作为:1,将浓度为170~190g/L的高纯钨酸铵溶液泵送至结晶釜;2,给结晶釜内鼓入压缩气体进行曝气预处理,当WO3浓度达到280~300g/L时,关闭压缩空气;3,启动冷风机组,温度设为5~10℃,将冷风均匀鼓入溶液中进行曝气,启动搅拌装置,转速控制在50~60r/min,当WO3浓度达到40~50g/L时,停止曝气;4,曝气后的料液泵入板框压滤机中进行压滤、洗涤、吹干,滤液进行回收处理,最后静态烘干得到超细APT。
本发明公开了一种母液循环的盐酸分解白钨矿的方法,该方法包括如下步骤:预处理:将粒度不大于150微米的白钨矿与盐酸溶液混合,在常温下搅拌,得到的预处理精矿,其中含WO3≥60%、P≤0.03%;并收集预处理酸母液;预处理母液的转化与净化:将得到的预处理酸母液,用CaCO3或CaO或Ca(OH)2将其中和,过滤,然后提取溶液中的钨或钼,并转化与净化预处理酸母液;酸分解:将得到的预处理精矿与盐酸溶液混合,过滤后得固体钨酸滤饼和酸分解母液;酸分解母液的转化与净化:将得到的酸分解母液用中性萃取剂在酸性条件下萃取钨和钼,并转化与净化酸分解母液。本发明方法能处理不同品位的白钨矿,对原料的适应性强,还能将废酸母液重新返回利用,解决了废酸母液处理的难题。
本发明涉及一种从硫化锌精矿浸出渣回收硫磺的方法,包括下述步骤:采用逆流微泡浮选柱将搅拌均匀的矿浆进行浮选,浮选柱喷枪供气压力为0.4~0.5Mpa,气泡表观粒径为20~50μm,气体表观流速为0.42~1.66cm/s。该方法缩短简化了工艺流程,无需精扫选,矿浆量容易平衡,操作简单;硫磺选别指标高且稳定,容易获得较高品位硫磺,满足脱水以及熔融段对高品位的要求,减少下段工艺负荷;能较好地实现锌精矿加压浸出过程中硫磺资源综合回收利用。
本发明公开了一种镍钼矿氧化酸浸出镍和钼的方法,该方法是将由镍钼矿粉和软锰矿粉组成的混合物料与酸溶液混合后,加入到高压反应釜内;再向高压反应釜内添加可溶性硫酸盐,进行高温高压反应浸出后,固液分离,得到含镍和钼的酸浸出液;该方法实现了镍和钼的同时高效浸出,且工艺流程短,生产成本低;另外避免了采用传统的焙烧工艺,无有害烟气污染,环境友好,满足工业生产要求。
本发明涉及一种铜冶炼渣回收铜的方法,包括下述的步骤:第一步,铜冶炼熔渣改性:向熔融状态的铜冶炼渣中按照熔渣质量比添加3‑5%的复合添加剂,超声波作用使其充分混匀和熔化;所述复合添加剂由按质量百分比计的下述组分组成:黄铁矿40‑50%,黄铜矿 5‑10%,焦粉 40‑50%,和腐殖酸钠 5‑15%,合计100%;第二步,熔渣缓冷:将经上述改性的熔渣在离心力和磁场作用下缓慢冷却;第三步,浮选:将缓冷后的改性渣破碎、磨矿,然后进行浮选处理,得到浮选铜精矿和尾渣。本发明通过对铜冶炼熔渣的矿相重构,实现铜、铁的综合回收,通过实验证实,本发明浮选得到含铜量大于20%的铜精矿,铜回收率71‑80%。
本发明钒矿提钒冶炼中控制杂质硅被浸出的方法属冶金技术领域,涉及钒矿提钒冶炼方法。即是在硅质钒矿浸出前,加入大于5mol/L的浓酸(硫酸等),在常温下熟化后,再进行浸出的工艺方法。在浓酸熟化后的浸出中,钒矿中的硅形成非溶解性的SiO2固体,滞留在矿渣中而不溶解在浸出液里与钒一起浸出。本发明的特点在于在不影响钒的浸出率和增加化工原材料消耗的情况下,有效控制杂质硅的浸出,简化了钒矿提取冶炼中后续部分硅的净化工艺、降低生产成本,使提取冶炼工艺流程畅通可靠。本发明硅的浸出量可减少95%以上。适用于石煤矿、煤矸石、钒土矿(含钒粘土矿)、钒钛磁铁矿等含SiO2≥2%硅质钒矿或焙烧矿和冶炼过程的含SiO2≥2%硅质含钒渣的提钒冶炼工艺。
一种含钒石煤加浓硫酸及添加剂堆浸提钒的方法,具体步骤为:将石煤矿石粉碎;按照重量份的比例配比,将配比好的石煤矿粉、浓硫酸、添加剂水溶液通过机械搅拌至混合均匀,直至有小球团产生,并堆成锥形,反应2-5天;在常温常压下,将堆浸反应完全的石煤矿粉送至搅拌浸出反应釜,按照固液重量比为1:0.8-1.2的比例加水进行机械搅拌浸出,加入还原剂硫代硫酸钠还原,加入碳酸钙调节PH值,经过带式过滤机或板框压滤机进行固液分离,得到蓝色含钒母液;所得母液再经溶剂萃取或离子交换、沉钒、干燥煅烧,即得到五氧化二钒。本发明节省和降低了矿石粉磨成本,减少了粉磨设备和基建安装投入。
一种从磷中矿中回收钨、钼的方法,本发明涉及一种从磷中矿(含P2O5 15%~30%)中回收钨、钼的方法。待处理矿物系一种经过浮选初步、富集、含P2O5量为15%~30%的矿物。其中的磷灰石30%左右,方解石,白云石15%~ 20%以上,伴生有白钨矿及少量钼酸钙矿和辉钼矿。WO3含量12%~25%,Mo2%~6%,Mo/WO3 (质量比)波动在12%~ 40%之间。应用本发明提供的处理方法,可以使50%以上的包括磷灰石在内的易酸溶矿物全部进入溶液,同时使60%以上的钼及少量的钨也进入溶液,留下的白钨精矿中WO3含量50%~70%,Mo/WO3质量比降至5%左右。本法具有工艺简单易行,试剂单一,P-WO3及Mo-WO3分离效果好,P、Mo、W三种有价元素可分别回收利用的优点。
本发明涉及一种从废抛光粉再生的方法,属于稀土二次资源回收领域。本发明首先将废抛光粉烘干细磨后加入配位剂在硫酸溶液中浸出,之后使用氨水调节滤液及草酸溶液pH值,然后将滤液加入草酸溶液中获得稀土草酸盐沉淀,最后焙烧沉淀获得具有八面体形貌的稀土氧化物。本发明将在硫酸中难溶铈镧氧化物通过配位作用加速溶解,实现了稀土元素的高效浸出及高抛光性能产品的可控制备。Ce和La浸出率超过96%,沉淀率超过90%。稀土氧化物产品具有八面体形貌,其纯度高于99%,本发明具有工艺流程短、回收率高,产品抛光性能好的特点,有利于实现废抛光粉的清洁循环利用。
本发明公开了一种利用废旧锂电池与浸出渣再生电极的方法,其特征在于,包括以下步骤:1)将废旧LiNixCoyMnzO2、LiCoO2和LiMn2O4电池放电、拆分、有机溶剂溶解后得废旧正极混合粉末和负极粉末;2)将正极和负极粉末球磨机械混合后碳热还原处理;3)水浸出碳热还原后粉末,分离浸出液与浸出渣,浸出液蒸发浓缩结晶得碳酸锂;4)浸出渣采用还原氨浸出,分离氨浸出液与浸出渣,得到富含高纯度有价金属镍和钴的溶液和氧化锰浸出渣;5)将该浸出渣和步骤2)中再生碳酸锂在马弗炉中烧结制备LiMn2O4正极。本发明基于混合多种废旧锂电池正负极材料,并充分利用回收过程中的废渣再生材料,具有回收流程绿色污染性低,回收废旧电池来源广,再生锰酸锂电化学性能良好的优势。
本发明公开了一种电解锰用复合阳极及其制备方法,将一定比例含量的锡钴母合金加入熔融的铅液中,在熔池内充分反应,底层熔体受重力作用优先流出并将其捕集,剩余熔体注入模具,将浇注得到的板坯经热轧处理得到复合阳极,复合阳极包括质量百分比为10~30%的锡和质量百分比为0.1~5%的钴,余量为铅。本发明提出的制备工艺连续化程度高,成本低,且制备的复合阳极能在低电流密度、长时间服役的条件下少产出,甚至不产出阳极泥,解决阳极泥产出量大,回收处理难的问题,降低锰离子和二氧化硒的消耗,降低电解槽掏槽周期,而且复合阳极与传统阳极相比较,无贵金属银的加入,降低了生产的成本。
本发明涉及一种从含钪角闪石精矿中提取钪的方法,包括以下步骤:将含钪角闪石通过选矿处理,得到钪精矿;将钪精矿进行破碎,并磨制成粉末,得到钪精矿粉末;将钪精矿粉末与浓硫酸混合,得到一次矿浆;将一次矿浆在一定的温度下熟化,得到熟化后的钪精矿;将熟化后的钪精矿与水混合,得到二次矿浆;将二次矿浆在一定温度下搅拌浸出,得到浸出液;将浸出液过滤得到上清液,再从上清液中直接提取钪。本发明在提取钪的过程中不需要额外再对稀土矿物进行焙烧处理,而且在浸出过程中不再需要矿物酸作为浸出剂来提取钪,简化了生产工序,降低了生产成本。该方法清洁、简单、易操作,适于大规模推广应用。
本发明提供了一种利用锂离子电池正极活性废料制备电池级氢氧化锂的方法,包括以下步骤:首先采用氧化酸浸法处理锂离子电池正极活性废料,得到酸性浸出液;然后采用两步萃取的方式以及调节溶液的pH值分离锰、钴与镍,实现有价金属的综合回收,同时深度脱除Fe、Ni、Ca、Mg、Cu、Al等元素的杂质粒子,该过程中有效避免了锂的损失;再采用强酸性阳离子交换树脂对萃余液进行深度除杂处理,得到净化富锂溶液;经双极膜电渗析法处理净化富锂溶液后,得到氢氧化锂溶液和酸性溶液;最后对氢氧化锂溶液进行蒸发浓缩,得到电池级氢氧化锂产品。采用该方法,可获得直接用于三元正极材料制备的电池级氢氧化锂产品,实现锂的增值化处理。
一种铜二次资源熔炼烟灰的处理方法,将铜二次资源熔炼烟灰在低浓度氢氧化钠体系进行加压氧化浸出,使溴进入溶液中,锡则被加压氧化后与铜、锌一起进入氧化浸出渣中,进入溶液中的溴经草酸调节pH后用醋酸铅进行沉淀,溶液返回碱性加压氧化浸出体系;进入氧化浸出渣中的锡、铜、锌用硫酸体系浸出,铜、锌进入溶液后可进行后续分离和提取,锡以二氧化锡富集在渣中回收提取。本发明碱性加压氧化浸出不但能够实现铜二次资源熔炼烟灰中溴的高效浸出,溴的浸出率达到92%以上,而且通过将烟灰中的锡进一步氧化,抑制锡在硫酸体系的溶解,使硫酸浸出过程中锡与铜、锌的分离更容易;用醋酸铅沉溴,能够实现溴的高效脱除,溴的沉淀率达到95%以上。
一种硫酸锌溶液的净化方法,包括如下步骤:采用西恩过滤器在常温下对硫酸锌溶液脱除固体悬浮物;然后,按120%的溶液铜金属重量加入锌粉,在常温下搅拌90分钟除铜并过滤;接着,按120~150%的溶液镉金属重量加入锌粉,在常温下搅拌60分钟除镉并过滤;紧接着,将溶液温度升到82~94℃,按1g/L溶液加入锌粉,同时加入少量的三氧化二锑,搅拌50~70分钟,脱除钴、镍杂质并过滤;最后,再用西恩过滤器对过滤溶液脱除少量固体悬浮物。采用本发明能够直接产出铜渣和海绵镉产品,且溶液不需要再加入锌粉除残镉就可以达到电解新液的质量标准要求,有效降低了锌粉消耗。
本发明公开了一种用于从钨酸盐溶液中分离钼的硫代钼酸盐的制备方法。采用五硫化二磷作为硫化剂,加入到含钼的钨酸盐溶液中后,水解释放出硫离子,进而与钼酸根发生硫化反应生成硫代钼酸根,钨则仍保持为钨酸根离子。该方法所用硫化剂含硫量高、价格低,可显著降低硫代钼酸盐的制备成本。
中冶有色为您提供最新的湖南长沙有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!