本发明属于冶金化工领域,涉及一种从含铁萃取剂中除铁的方法。该方法用用萃取剂萃取铁得到的富铁有机相,经过无机酸反萃后得到的含铁萃取剂,再通过配置反铁剂溶液,按照含铁萃取剂与反铁剂体积比0.1∶1~10∶1进行接触反萃,经错流萃取工序除铁,分相后得空白萃取剂及含铁水相,空白萃取剂经水洗后可返回萃取工序实现萃取剂的循环使用,所得含铁水相,调节其pH为8,加热浓缩后经醇洗可制备补铁药剂。本发明除铁工艺简单,除铁率高,有效解决了萃取剂因铁杂质含量高而出现的萃取剂“中毒”问题,同时降低了成本,回收的铁还可开发新用途,增加产出,具有极大的经济价值。
一种利用二氧化硫还原浸出含钴物料的方法,经过球磨后的物料添加到一个耐酸碱耐温并带有搅拌的反应容器中,调整好容器内物料的液固比(液体/固体的质量百分比),添加浓硫酸,为了加快反应速度,往往通入蒸汽提高物料温度,并且向含钴物料中通入二氧化硫气体,在容器内反应足够时间后,有价金属(钴、铜)和杂质金属转入溶液混合体系中。
本发明提供了一种用氧化铋渣制备铋电解液的方法,其特征是:磨细的氧化铋渣在氟硅酸体系浸出后过滤,浸出渣返回银转炉吹炼过程,首先向浸出液中加入铅粉以置换溶液中的铜,除铜后液加入硫酸回收铅,硫酸沉铅净化后所得溶液即为合格铋电解液。本发明采用氟硅酸体系浸出,实现铋铅铜和银的分离,不仅贵金属积压少,而且金属浸出率高。
本发明公开了一种离子型稀土矿的稀土原地浸出及富集工艺,包括:步骤一:向矿体内部注入浸矿剂和收缩剂,原地原位浸矿使“离子相”及部分“其它相态”稀土浸出,得母液;步骤二:向中、高浓度母液中通入除杂剂I进行除杂,经沉淀剂沉淀,再经清水洗涤、过滤、灼烧得固态稀土产品;除杂剂I为碳酸氢钠溶液和碳酸钠溶液的混合液,沉淀剂为碳酸氢钠溶液;和向低浓度母液中通入除杂剂II中和去除铝杂质,将除铝后母液通入离子交换柱进行稀土离子的吸附富集,再用酸进行解吸,得液态稀土产品;除杂剂II为石灰乳。本发明使用自主研发的全新药剂配合整套创新工艺技术,实现了离子型稀土提取工艺重大变革、技术经济指标全面优化、生态环境友好的目的。
本发明涉及一种直接回收废酸的草酸盐沉淀方法和设备。其特点是先在沉淀蒸馏锅内进行可溶性金属盐的草酸沉淀反应,接着把锅内废酸蒸馏后回收;再向锅内加水把草酸盐搅拌成料浆出料并过滤、洗涤、干燥,得到草酸盐产品。不仅可以大大减少废酸的蒸发量以及现有沉淀工艺过程中所造成的能量损失和物质损失,而且还可以大大节省草酸的用量。另外本发明所采用的设备具有使用寿命长、维修费用低、节能等优点,使本发明具有流程简短、化工原料消耗量少、高效、节能、环保、运行费用低的特点,不仅解决了草酸盐沉淀工艺的废酸回收和环境污染问题,还能够实现较好的经济效益。
本发明公布了一种利用硫化铜渣回收制备三元前驱体材料的方法,通过将硫化铜渣经过酸化、氧化浸出、置换沉铜、除铁、除钙镁、萃取钴镍锰、沉淀镍钴锰、煅烧制得三元前驱体材料;通过本发明的方法,解决了现有技术中浸出设备的要求高,处理流程长,产品附加值低,能耗大,容易产生废气污染环境等缺陷。本发明的方法具有工艺简单,成本低,绿色环保,可实现有价金属的综合回收,且镍钴锰总回收率高达97%。
一种铜电解液除锑脱杂方法, 涉用一种酸性电解 液净化除锑的方法。其特征是在电解液中加入H2O2, 以HI作催化剂, 将Sb3+氧化, 形成锑酸盐沉淀, 经陈化处理, 将形成的沉淀物过滤除去。本发明的方法与已有技术相比, 对电解过程不产生副作用, 工艺简单, 操作方便, 效果好, 成本低, 在有效地除去锑的同时, 还可除去Bi、As等杂质。适用于各种酸性电解液的除锑过程, 有广泛的推广价值。
利用各种含镍原料生产电解镍的方法,以各种镍冶炼和镍再生资源回收过程获得的含镍物料为原料,采用硫酸盐体系电解质溶液,以不溶阳极隔膜电解的方法生产纯金属镍;在电解过程中采用直接中和法或溶剂萃取法调节阳极电解液的酸度,补充镍离子,降低酸浓度,使之转变成为合格的阴极电解液,返回电解过程,实现整个电解过程中镍离子和酸度的平衡;电解质体系采用镍的硫酸盐溶液,将硫酸镍、硫酸钠、硼酸配成阴极电解液,阴极电解液的主要成分包括:硼酸1~25G/L、硫酸钠70~150G/L、硫酸镍50~120G/L,加入硫酸调节PH值至2.0~5.5左右;采用直接中和法或溶剂萃取法调节阳极电解液的酸度。
一种用大孔弱碱性树脂从废液中回收钨的方法,取离子交换法制取APT的过程中含微量钨的碱性废液,用工业盐酸调至pH≤6,使废液中的WO2-离子缩合成各种同多酸根离子或杂多酸根离子。然后把调好酸度的含钨废液,用离子交换法回收其中的钨。本发明的优点是:使APT生产厂排出的大量交换余液中的钨全部得到回收;并可使交换过程均能采用饱和吸附,提高了产量和质量,降低了解吸剂——氯化铵的耗量;解决了钨的流失和对水资源的污染。
本发明涉及锂电池回收的技术领域,提供了一种废弃锂电池正极材料的回收方法。所述回收方法的过程包括S1)放电、破碎、筛分,S2)分离活性材料,S3)球磨还原,S4)酸浸回收。所述球磨还原是以水合肼、乙二胺四亚甲基膦酸、没食子酸甲酯加入去离子水中配制还原液,然后活性材料与还原液在球磨机中进行加热球磨,从而将活性材料中的高价态金属还原。所述酸浸回收是将球磨后的物料进行过滤,以去离子水洗涤滤渣,再浸入盐酸溶液中进行浸出。采用本发明的回收方法,可提高金属的浸出率,尤其是高价态金属的浸出率提高幅度较大,并且球磨还原和浸出的效率高,耗时短。
本发明提供了一种无污染的控电位氧化溶解银的方法,利用过氧化氢的氧化性,在硝酸溶液中控制电位加入双氧水氧化溶解含银物料,溶解完成后煮沸溶液,冷却、过滤后得到硝酸银溶液。该方法溶解过程无氮氧化物溢出,实现溶解过程简单可控。
本发明是一种含有高价值元素铁基废料自然氧化除铁铝的方法。特点是将铁基废料粉碎后与水及少量酸混合,使铁基废料在空气中处于潮湿的电解质氛围,从而发生一系列复杂的氧化反应和电化学反应,使单质铁或亚铁及单质铝转化成+3价氧化物或氢氧化物;再将被空气氧化的物料经过酸溶、除杂、过滤等工序即可得到除去了铁铝的含有高价值元素的溶液,对其进行进一步提纯分离得到高价值元素的相应产品。本发明具有流程短、设备简单、节约能源、化工原料用量少、高价值元素溶出率高、反应条件温和并对环境友好等优点。
本发明涉及一种稀土冶炼用混合装置,尤其涉及一种稀土冶炼用溶液混合装置。本发明要解决的技术问题是提供一种能够省时省力、能够提高混合效率、能够提高混合效果的稀土冶炼用溶液混合装置。为了解决上述技术问题,本发明提供了这样一种稀土冶炼用溶液混合装置,包括有底板、支板、混合箱等;底板顶部的左右两侧均竖直设有支板,两个支板的顶部之间设有混合箱,混合箱的顶部为敞口式设置,混合箱的底部中间连接有出液管,出液管上设有阀门,混合箱右侧的底板顶部通过螺栓连接有7形板。本发明通过驱动装置能够驱动混合装置对混合箱内的溶液进行混合,从而达到了能够省时省力、能够提高混合效率、能够提高混合效果的效果。
本发明公开了一种碱性含锑溶液深度脱除铜、铅的方法,包括以下步骤:1)将复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应;2)反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液。本发明采用CaSiO3·MgSiO3复合物,在一定的工艺条件下能够很好地去除溶液中的铜、铅元素,且添加CO2通入工艺作为优选工艺,后续CO2气体去除复合物中脱出的Mg2+、Ca2+,不会引入新的杂质元素,最终获得的锑纯度高。
本申请公开了一种卧式湿法冶炼旋转反应釜,包括基座,所述基座上固定连接有支撑杆,所述支撑杆上转动设置有承载组件,所述承载组件上转动连接有反应釜,所述承载组件上设置有转动驱动组件,所述转动驱动组件和所述反应釜传动连接。本方案,撑开板设置在立板之间,在安装台转动的过程中,带动撑开板向下倾斜,从而将两个立板撑开,使两个立板向外弯曲,立板的上侧相互远离,从而可供安装台的无阻碍的通过限位板,到达限位板的下侧,然后撑开板进入到缺口中,从而使两个立板回归的原位,这时,限位板可对安装台起到限位作用,在反应釜工作过程中,减少安装台的晃动。
本发明公开了一种废旧钴酸锂正极材料和含钨固废联合处理的方法。所述方法包括以下步骤:将废旧钴酸锂正极材料、含钨固废分散于酸液中,浸出反应后进行固液分离,得到固体渣和酸浸液体,所述固体渣包括氧化钨。本发明的方法能够实现在水介质下金属分离过程中将钨和/或碳化钨直接氧化转型生成氧化钨,无需再经过高温炉焙烧处理,极大地降低了能耗和生产成本。本发明的方法实现了含钨固废中钨的高效氧化,废旧钴酸锂正极材料中钴、锂高效浸出。
本申请涉及一种铜湿法冶炼用耐腐蚀加热装置,属于铜湿法冶炼技术领域,包括加热装置本体,所述加热装置本体包括加热机构、安装机构和套设在加热机构上的陶瓷防护管,所述安装机构包括安装盘和环形架,所述环形架外壁设置上凸块,所述凸块与环形架为浇筑一体化成型结构,所述安装盘的外壁上焊接有安装架,该铜湿法冶炼用耐腐蚀加热装置,在电热管的外侧套设有陶瓷防护管,可对电热管进行防腐蚀保护,并且通过安装结构将电热管设置在冶炼设备的顶部,配合升降结构下移,进行使用,对比于传统的的将电热管嵌设在冶炼设备内壁上进行使用,一方面方便检修,其次电热管位于冶炼设备内,加热更均匀。
本发明属于有色金属冶金技术领域,尤其涉及一种深度浸出复杂含锑物料中锑元素的方法,该方法通过在复杂含锑物料预处理过程中加入某种复合试剂,能够显著提高复杂含锑物料后续浸锑过程中锑的浸出率,利于锑元素的有效富集和资源的高效利用。本方法操作简单、成本低,在对复杂含锑物料的处理过程中效果明显。处理后锑预处理后渣用于常规浸锑过程,锑的收率可稳定大于80%,处理过程更为经济高效。
本发明公开了一种钕铁硼废料功能修复的方法,包括以下步骤:以除杂后的钕铁硼废料为原料,经退磁,除氧化皮和镀层,一次脱氧熔炼,配料,二次熔炼步骤得到用于生产钕铁硼稀土永磁材料的SC片。本发明的优点在于:可充分利用现有钕铁硼生产企业的主要工艺,最大程度地利用钕铁硼废料的现有成分,使其性能得以修复。通过修复的产品与新制备的钕铁硼产品的性能没有显著的差异,可以直接被应用于各种仪器设备中。
本发明提供一种利用亚铁盐沉淀法从钨酸盐溶液中深度除铬和钒的方法,包括以下步骤:S1,对含有Cr和V的粗钨酸盐溶液进行加热,并利用酸或碱将钨酸盐溶液的pH调节至8~11;S2,将可溶性亚铁盐加入步骤S1得到的钨酸盐溶液中并搅拌,保温一段时间,得到固液混合物;S3,对步骤S2中得到的固液混合物进行过滤,将滤渣分离,得到纯度高的钨酸盐溶液,本发明提出一种利用亚铁盐沉淀法从钨酸盐溶液中同时除铬、钒的新方法,该方法工艺简单、操作简便、投入成本低、除铬率和除钒率高、钨的损失率低于2%,并且不引入有害元素,对环境无污染。
本发明公开了一种使用氯化钙制备硫酸钙的方法,包括以下步骤:1)取氯化钙溶液,将浓硫酸加入到所述氯化钙溶液中进行结晶反应,反应温度为20~80℃,所述浓硫酸在搅拌的条件下连续加入,并且在1~4h内添加完成;2)结晶反应结束后陈化一段时间,然后过滤得到再生的盐酸及石膏。本发明采用上述结构的一种使用氯化钙制备硫酸钙的方法,可连续结晶生成硫酸钙晶须的同时,产生的盐酸也可以进行工业化重复利用。
本发明提供一种利用黑钨精矿从粗钨酸盐溶液中除铬、钒的方法,包括以下步骤:S1,将黑钨精矿加入含有Cr和V的粗钨酸盐溶液中,并添加氢氧化钠调节溶液碱度,搅拌后得到混合料浆;S2,将步骤S1得到的混合料浆在80~300℃温度下反应一段时间,待反应完全后得到固液混合物;S3,在步骤S2中得到的固液混合物中加入酸溶液调节pH至8~11,搅拌并保温一段时间后得到渣液混合物,将滤渣分离,得到最后的溶液。本发明基于黑钨精矿碱分解过程中生成的Fe(OH)2和Mn(OH)2能够除去Cr、V的技术特点,该方法工艺简单、成本低廉、除铬率和除钒率高、钨的损失率低于2%、对环境无污染,具有很强的实用性和经济价值。
本发明属于有色金属冶金技术领域,尤其涉及一种含铜废镁砖的处理方法。本方法具体包括以下步骤:步骤(1)以铜冶炼过程中产生的废酸液浸出废镁砖,然后过滤分离浸出液和浸出渣;步骤(2)含铜浸出液中加入沉淀剂或还原剂,将铜以难溶化合物或单质的形式沉淀,过滤收集沉铜渣;步骤(3)将浸出渣和沉铜渣清洗、烘干返铜冶炼系统处理,回收Cu、Au、Ag等有价金属;步骤(4)将沉铜后液作为原料,制备硫酸镁或者含镁石膏渣,回收利用沉铜后液中的镁。本发明以废治废,具有工艺简单、生产成本低,设备投资少、清洁环保等优点,易于实现工业化生产。
本发明提供一种分银渣中铅的提取方法,涉及有色金属冶金技术领域。该方法主要包含以下步骤:分银渣加入废碱液加压浸出铅;含铅浸出液加入硫化剂沉淀制备硫化铅,沉铅后液进行碱液再生;再生碱液作为浸出母液返步骤1循环使用。本发明具有以废治废、铅回收率高、成本低、投资少、易于实现工业化生产的特点。
本发明公开了一种高温含硒烟气处理装置及方法。高温含硒烟气通过引风机吸送至干式收尘器,经初步除尘后,送急冷塔将温度降低,使烟气中的硒和SO3溶解于循环液中,冷却后的烟气经湍冲塔进一步洗涤除尘和回收硒后,由脱硫喷淋塔除去其中的SO2,再通过湿式电收尘器净化达标后排空;循环液由压滤机等固液分离设备处理后,清液输送至硒回收工艺回收硒,滤饼返回冶金炉。本发明中的工艺通过干式收尘可有效防止设备和管道堵塞,改善车间生产环境,可充分回收烟气中的硒和其它有价元素,避免有价元素的流失和环境污染。
本发明提供了一种高盐废水的零排放处理方法,包括废水预处理;冷凝结晶处理,三效蒸发处理工序,制备出符合国家标准的碱,本发明将高盐废水通过蒸发进行水、盐分离,水可达到企业回用和排放要求;盐用于生产碳酸氢钠使其资源化再生利用,可促进我国冶金企业朝着节能、环保的方向健康发展,也可用于相关行业高盐废水的治理。
本实用新型涉及一种软硬联合钢衬胶防腐型搅拌桶。在桶体上部设有对称的进料法兰和出料法兰,下部设有放空法兰,桶体内壁上设有对称分布的扰流板,在桶体内面黏贴上一层硬氯化丁基橡胶,再在硬氯化丁基橡胶上黏贴一层软氯化丁基橡胶,平整无缝隙后进行硫化处理。本实用新型从根本上解决硬质衬里的动态性能差常因容器的热胀冷缩或者容器受到碰撞变形时,易发生衬里裂缝、破碎和掉落造成腐蚀损坏的问题,特别适用于湿法冶炼行业的电解浸出,冶金行业的酸洗线、酸再生、中和站和脱脂线的使用,结构合理,使用寿命长。
本发明一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法,属于湿法金属冶金技术领域。本发明采用酸性萃取剂或酸性萃取剂与中性磷萃取剂的混合物为萃取剂,将萃取剂皂化后萃取分离含锂溶液中的锂元素,得到含锂元素的溶液。本发明一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法,取得了不使用氯化铁作协萃剂,适用性广,萃取剂易取得,投资少,成本低,使用方便、安全、可靠,便于工业化生产,以及可以从碳酸锂等生产废水中回收锂元素,也可以用于从高镁锂比卤水等高杂质、复杂原料中提取锂元素。特别适用于从我国卤水中提取锂元素,有利于改善我国锂资源品位低、分离难度大、污染重、成本高的现状。
本发明一种锂元素的萃取方法,属于湿法金属冶金技术领域。本发明将含锂溶液与萃取溶剂混合得到负载有机相,再将负载有机相与反萃剂混合,获得萃取溶剂和锂元素溶液;所述含锂溶液包括助萃剂,助萃剂优选钙、镁、钴、镍、锰、亚铁、铜、锶、铝、稀土元素的氯化物中至少一种。取得了协萃剂氯化铁无损失,反萃液中铁等氯化铁引入的杂质少。并且避免了因补充氯化铁而带入其它新的杂质,有利于提高锂产品品质,适用性广,投资少,成本低,使用方便、安全、可靠,便于工业化生产,适宜从碳酸锂等生产废水中回收锂元素,也可以从高镁锂比卤水等高杂质、复杂原料中提取锂元素。有利于改善我国锂资源品位低、分离难度大、污染重、成本高的现状。
本发明属于湿法微生物冶金技术领域,涉及一种高效池式微生物浸铀方法,适用于碳酸钙含量小于2%的硬岩型铀矿的酸法冶铀工程。高效池式微生物浸铀方法采用池式浸铀方式并将酸化、植菌和浸铀3个工序阶段合并同时进行的措施,达到在防止硫酸钙和三价铁沉淀的前提下进行了强化浸铀,明显提高了浸出液铀含量和铀的浸出率,并将浸铀周期缩短到1个半月以内。
中冶有色为您提供最新的江西有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!