本发明公开了加工技术领域内的一种加工真空玻璃的装置及其加工方法,包括横向支撑座一、并排且间隔设置的两个横向支撑座二,在长度方向上,两个横向支撑座二之间设置有工作台,工作台设置在横向支撑座一的下方,横向支撑座一可沿着两个横向支撑座二移动,横向支撑座一上固定设有固定座,固定座上设置有可上下移动的上下移动机构,上下移动机构的底部设置有用来摆放金属丝的支撑柱摆放机构;本发明简化真空玻璃的加工方法,提高生产效率。
本发明涉及一种中空平板全陶瓷过滤膜元件。依据本发明制备出的过滤膜元件通过添加纳米银使得本发明具有消毒杀菌的作用,从而使得本发明的过滤效果更高;本发明通过在真空炼泥机中进行炼泥,能够排除重力对材料的影响而使材料充分混合均匀,以此有利于使得泥料各处材料均匀,使得制成的平板陶瓷膜支撑体质量高,通过使用氧化铝作为主要原料烧结制备平板陶瓷膜支撑体,能够增加陶瓷膜支撑体性能稳定性,并能够在质量轻的前提下保证支撑体具有足够的强度。
在废旧磁钢中添加金属粉制备含铈稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,同时从预处理磁体材料中提取样品,并对样品中的稀土组分进行检测记录;再将获得的预处理磁体材料与已配制好的铁粉投入普通电解炉中进行熔炼使其形成熔融的合金液,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加金属粉,以提高稀土永磁材料的抗弯强度、硬度及抗冲击韧性;铈的加入有利于降低合金液熔点,获得细晶粒磁体,从而提高磁体的矫顽力。
一种提高高温钛合金基复合材料硬度的热处理方法,其特征是:以90wt.%耐高温Ti750合金(Ti‑6.01Al‑2.55Sn‑6.24Zr‑1.23Nb‑1.84Mo‑0.19Si)+10wt.%纯Ti为基体,添加SiCp为原位反应提供C源及Si源,通过高温粉末冶金原位反应形成TiC,Ti5Si3增强相;其中基体粉末:90wt.%,SiCp:10wt.%。依次包括:1耐高温Ti合金制粉;2机械湿磨混粉;3烘干;4干磨混粉,过筛;5冷压成型;6真空无压烧结;7热处理。本发明的钛基复合材料的最高显微硬度为1062.08 HV,较烧结态(743.47HV)提高了约42.9%,硬度显著提升。
在废旧磁钢中添加液相钬制备稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加液相钬得混合粉,最后通过静压、烧结、退火制备出所需的稀土永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加液相钬,有利于促使钕铁硼磁体及最大磁能积提高而稀土总量消耗降低,有效降低原料成本。
在废旧磁钢中添加液相钇制备稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加液相钇得混合粉,最后通过静压、烧结、退火制备出所需的稀土永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加液相钇,有利于提高合金锭的实际矫顽力,同时减少钕、镨用量。
本发明涉及一种基于高氮无镍不锈钢用于粉末注射成形的制备方法,其包括以下步骤:S1、粉末制备:选用高纯度合金进行冶炼,气雾化制粉,水粉分离,得到粉末的主要元素为:Mn:8‑10wt%、Nb:1~2wt%;Ta:0.5~1wt%、C:0.5~1wt%、Cr:16‑18wt%、Mo:2‑3wt%、余量为Fe;粉末的激光粒度需达到D90:16‑20微米,粉末氧含量≤0.2wt%,硅含量≤0.3wt%,粉末振实密度≥4.8g/cm3;S2、生坯制备;S3、通过以下烧结工艺获得烧结件。本发明可大幅度降低烧结件中的孔隙率和含锰夹杂物,从而获得低夹杂、高致密性的烧结件;并且烧结件在后期抛光过程中能够大大减少砂眼、橘皮等缺陷。
本发明公开了一种白光LED/LD用高热稳定性荧光陶瓷及其制备方法,该荧光陶瓷化学式为:(GdzCexY1‑x‑z)3(ScyAl1‑y)2Al3O12,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Sc3+掺杂八面体Al3+位的摩尔百分数,z为Gd3+掺杂Y3+位的摩尔百分数,0<x≤0.02,0.6≤y≤0.8,y:z=10:1,采用固相反应法烧结制得。本发明的透明荧光陶瓷材料具有发射光谱主峰520~540nm之间,半高宽在80~90nm之间。在高功率蓝光LED(350~500mA)或蓝光LD(4W~10W)激发下,实现暖白光到淡绿光发射,色温2800~6500K,在150℃下发光强度衰减5%~10%,所制备陶瓷的工艺简单,易于工业化生产。
在磁钢废料中添加锆制备纳米复合永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加锆得混合粉,最后通过静压、烧结、退火制备出所需的纳米复合永磁材料,有效解决各组分的熔点不同等因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收时间,且减少提取工艺步骤;并在稀土氢碎磁粉中添加锆,有利于改变纳米复合永磁材料晶粒微结构和磁性能,促进晶粒细化;且利用沉淀分离法获得的纳米复合永磁材料磁性能高、稀土含量低。
本发明公开了一种岛状磁晶结构的软磁高熵合金材料,为核壳结构,以具有软磁性能的微纳米高熵合金为核,水热法制备的非磁性金属氧化物包覆于微纳米高熵合金磁晶表面层为壳,在放电等离子烧结致密化后,核壳结构的高熵合金磁晶形成岛状磁晶结构软磁材料。本发明所获得的软磁性材料纳米磁晶之间产生磁耦合效应,有利于改善高熵合金的磁饱和强度及矫顽力。
本发明属于水泥厂窑炉组装配件应用技术领域,具体公开了纳米碳化硅复合陶瓷内筒,包括挂条板,及通过第一螺栓安装在挂条板一端侧壁的连接板,及通过第二螺栓、保护套安装在挂条板另一端侧壁的挂条座定位板,及设置在挂条座定位板一端的挂条座,其中,连接板、挂条座定位板设置在挂条板的同侧,且挂条座定位板的一端内设置有与第二螺栓相配合使用的若干个挂条座定位孔。本发明的有益效果在于:其设计结构合理,且能快速的安装在水泥窑预热器的内部上,安装定位固定牢靠、拆卸维护便捷,同时整体结构采用纳米碳化硅复合陶瓷制得,其具有较强的的耐高温、耐磨、耐腐蚀、使用寿命长等特性,降低维护、检修次数,提高水泥的生产效率。
本发明公开了一种氧化铝‑碳化硅高温陶瓷材料的制备方法,包括:(1)向铝盐溶液中加入六次甲基四胺,搅拌,得到氢氧化铝溶胶,其中,所述铝盐与所述六次甲基四胺的物质的量之比为1:1~5;(2)向上述氢氧化铝溶胶中加入碳化硅纳米颗粒,超声分散20~40min,于40~60℃水浴条件加热30~60min,得到氢氧化铝‑碳化硅凝胶;(3)将上述氢氧化铝‑碳化硅凝胶置于60~80℃烘箱中烘干,于1500~1800℃温度下煅烧1~2h,得到氧化铝‑碳化硅高温陶瓷材料。本发明制得的氧化铝‑碳化硅高温陶瓷材料的抗弯强度和断裂韧性高。
在磁钢废料中添加液相纳米铽制备稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加液相纳米铽得混合粉,最后通过静压、烧结、退火制备出所需的稀土永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加液相纳米铽,可提高稀土永磁材料作为制备荧光原料的激活性能,在激发状态下荧光材料均匀发出绿色光。
本发明公开了一种白光LED照明用的复相透明陶瓷及其制备方法,其由第一相Ce, Re : YAG晶相和第二相Y2O3晶相组成,所述第一相Ce, Re : YAG晶相的体积控制在总体积的60%‑99.99%之间,所述第二相Y2O3晶相的体积控制在总体积的0.01%‑40%之间。本发明采用蓝光LED激发该复相透明陶瓷荧光体,使其产生的黄光、红光以及透过的蓝光可混合形成高品质白光。
本发明公开了一种互不相溶的Cu‑Mo合金的制备方法及Cu‑Mo合金,对Cu‑Mo合金基体材料进行强流脉冲电子束辐照处理,在Cu‑Mo合金基体材料表层诱发生成分布有纳米钼颗粒的合金层,能够提高Cu‑Mo合金的耐磨性,以满足其在作为电触头材料等应用场景下的性能要求。
本发明属于永磁材料技术领域,具体公开了一种高矫顽力钕铈铁硼烧结磁体的制备方法,本方法通过使用稀土配合物有机溶剂在混料时候对磁粉进行表面润湿包覆,有效控制富Ce磁粉的氧化;同时磁粉表面的稀土配合物在高温烧结过程分解,C和H元素变成气体逸出,残留在合金粉末颗粒表面的重稀土元素Pr/Nd/Tb/Dy/Ho等充当扩散源,向晶粒表面扩散,实现主相晶粒表面的磁硬化,提高局域磁晶各向异性场,提高钕铈铁硼磁体矫顽力。本方法制备的钕铈铁硼烧结磁体矫顽力较高,对传统烧结磁体制备工艺进行改进,工艺过程简单、成本低、适合规模化生产。
本发明公开一种ITO镀膜靶材的制备方法,涉及镀膜技术领域,包括铟锡氧化物制备、混合氧化物配方、添加粘合剂和烧结等工艺步骤。本发明,工艺设计科学、合理,靶材靶材密度合适,均匀性好,制备方便,生产效率高,节约成本,作用安全、可靠,用于镜片镀膜,不开裂,性能稳定,附着性好,形成的镀膜具有很好的均匀性、导电性和透明性,可以有效切断对人体有害的电子辐射、紫外线及蓝光,确保产品质量。
本发明公开了一种钛氧化物基陶瓷电极,所述陶瓷电极由马格涅列相钛氧化物(TinO2n-1,4≤n≤10)、或其与元素掺杂项组成,以及制备改陶瓷电极的制备方法,本发明方法制备的陶瓷电极具有耐腐蚀性强、耐磨性好、电导率高、成本低、对人体无毒无害等特点。
本发明涉及一种用于烧结钕铁硼产品的表面渗镝、铽工艺及搅拌装置,本申请的表面渗镝、铽工艺包括酸洗至少一个烧结钕铁硼产品;热水清洗及烘干至少一个烧结钕铁硼产品;配制镝、铽的氧化物或氟化物浆料;以及喷涂镝、铽的氧化物或氟化物浆料于每一个烧结钕铁硼产品,以于每一个烧结钕铁硼产品的表面形成镝、铽的氧化物或氟化物涂层;其中喷涂镝、铽的氧化物或氟化物浆料于每一个烧结钕铁硼产品是通过搅拌装置翻转每一个烧结钕铁硼产品,镝、铽的氧化物或氟化物浆料均匀喷涂于每一个烧结钕铁硼产品的表面。本申请的表面渗镝、铽工艺提升小规格的烧结钕铁硼产品表面渗镝、铽的良率及生产效率。
本发明涉及一种具有磨粒自锐功能的聚晶立方氮化硼PCBN砂轮工作层制作方法,属于超硬磨料工具制作领域。方法包括将Cu-Sn-Ti合金粉,聚晶立方氮化硼磨粒,TiC颗粒融合、制作毛坯、高温烧结。聚晶立方氮化硼PCBN磨粒是由CBN微晶颗粒和AlN粘结剂在高温高压下烧结而成。一旦CBN微晶颗粒被磨钝之后,CBN微晶5与AlN粘结剂4的结合界面会随着磨削力与磨削温度的升高而变弱,使得磨钝的CBN微晶颗粒脱落,新的CBN微晶颗粒迅速出露而参与到磨削过程。聚晶立方氮化硼PCBN磨粒的这种微破碎特性使得超硬磨料砂轮可始终保持高锋利度状态,不会产生磨削力和磨削温度急剧升高的现象。
本发明公开了一种旋转泡沫3D电极电化学反应器及废水氧化反应装置,涉及电极材料技术领域。旋转泡沫3D电极电化学反应器包括壳体和3D电极,3D电极为可旋转电极,其包括阳极模块和阴极模块;阳极模块包括旋转轴和位于旋转轴上的若干块阳极板,每块阳极板由采用半导体陶瓷材料的基底和电镀在所述基底上的β‑PbO2镀层组成,阴极模块包括阴极板及位于阴极板上的支撑部,阴极板设置有若干块,每块阴极板设置在两块阳极板之间的间隙中,组合在一起的阳极模块和阴极模块的整体形状为一筒体。本发明反应器具有有机物降解能耗低、水处理成本低、孔隙丰富不易堵塞、设备压降低的优势,可实现电化学高级氧化在废水处理行业的工程化应用。
本发明公开了一种基于能量传递的低阈值黄光固体激光器,包括泵浦源、聚焦耦合系统、谐振腔;谐振腔包括在谐振腔体中相对布置的输入镜、输出镜、以及设置在输入镜和输出镜之间的激光增益介质,激光增益介质为Ce,Dy:LuGdAG透明陶瓷,其化学式为(Gd1‑x‑y‑zLuxDyyCez)3Al5O12,其中0.30≤x≤0.5,0.03≤y≤0.3,0.005≤z≤0.02,Ce,Dy:LuGdAG透明陶瓷采用共沉淀法制备得到。本发明采用Ce,Dy:LuGdAG透明陶瓷作为激光增益介质,通过Ce3+共掺杂,Dy3+可以将吸收的波长的光子能量传递给Ce3+,从而增加了Ce3+的5d‑4f跃迁,Gd3+的掺杂改善了离子间的能级损耗,此外,Gd3+作为半径大的离子掺入使得多离子掺入的晶格更加稳定,最终实现高效黄光激光输出。
本发明公开了一种高精度深孔阀芯的生产工艺,包括以下步骤:步骤一:粗车和预处理;步骤二:枪钻;步骤三:精车加工;步骤四:铣加工;步骤五:感应高频热处理;步骤六:铰孔;步骤七:渗硫;步骤八:终磨。本发明的阀芯工件,通过高频感应热处理,加热的深度达到3mm以上,具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小的优点,同时结合预处理,以及渗硫操作,制备出的阀芯,具有很好的耐磨性、耐压性。
本发明涉及一种低压超大电流整流管制造方法,属于半导体器件制造技术领域,本发明通过采用NN+外延片作为加工材料进行P型扩散,由于NN+外延片作为加工材料形成PN结平缓,高阻层可精确控制,体电阻小,压降低,承受浪涌冲击电流大,从而提高解决薄片加工易碎片的难题,提高产品的等级合格率,同时还可提高产品的可靠性;基区设计时将相关数据填入对应的公式,使所取得的耐压与压降找到最佳平衡点,将此过程编成程序通过电脑可以迅速找到最佳点,提高了单位面积电流密度,本发明可使18000A/200~400V的整流管峰值通态压降在12000A条件下可小于1.08V,反向阻断电压在200~400V,本发明电流密度更大、电流容量更强、可靠性更高,性能优越、使用成本更低,填补国际空白。
本发明公开一种紫外光选区照射固化金属的3D成型方法,包括:将金属粉末与光敏树脂混合,均匀地涂抹在成型基底上并刮平上表面,用紫外光以一定的截面形状照射,凝固后在其基础上均匀涂抹第二层,再进行紫外光照射,以此反复直至零件毛坯成型。将零件毛坯取出,去除并回收多余浆料后进行热处理,去除内部树脂并烧结得到最终成品零件。该方法由面到体,能快速地实现一定形状的金属零件的直接成型,成型过程稳定、设备要求低,且成本低廉、工作环境要求低。
在磁钢废料中添加液相纳米钆制备稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,并对获得的预处理磁体材料直接进行氢碎制粉,得稀土氢碎磁粉;而后对稀土氢碎磁粉进行取样分析,再根据需要在稀土氢碎磁粉中添加液相纳米钆得混合粉,最后通过静压、烧结、退火制备出所需的稀土永磁材料,有效解决了各组分的熔点不同和人为操作因素而导致熔炼后得的合金锭产生偏析问题,进行预分类不仅节省回收废旧磁钢的时间,且减少提取稀土元素的工艺步骤;并在预处理磁体材料中添加液相纳米钆,有利于提高合金锭的热稳定性,保持永磁材料的磁性能不变,抗外磁场干扰能力强。
本发明涉及一种材料的表面加工技术,尤其涉及一种互不固溶Cu-C过饱和固溶体的制备方法。该复合材料基体通过粉末冶金法制的,然后利用强流脉冲电子束对材料表层进行辐照处理,制备具有铜-碳过饱和固溶体的复合材料。扫描电子显微镜和透射电子显微镜观察显示:HCPEB辐照技术诱发各种晶体缺陷和超细晶结构为Cu、C原子之间扩散提供通道,X射线分析能谱显示(111)Cu峰向低角区偏移,C的衍射峰下降,可知成功地使部分C原子固溶到Cu晶格中,经计算固溶度最高达2.24%。
本发明涉及永磁体技术领域,具体公开了一种高矫顽力钕铁硼稀土永磁磁体及制备方法,包括以下质量分数的原料组成:稀土元素A33wt%~35wt%,铜1wt%~2wt%,钴0.5wt%~1.5wt%,钙0.3wt%~0.5wt%,硼2wt%~3wt%,铝1wt%~3wt%,铁55wt%~62.2wt%。通过添加铜、钴、钙来提高磁体的矫顽力,可以减少对稀土元素Dy的使用,降低了生产成本,在市场上的竞争力更大,同时也可以减少对稀土元素的损耗,达到保护环境的目的。
本申请公开一种应用于LCD投影仪中LED聚光镜制备方法,首先偏微分方程法求解自由曲面透镜,得到模具;其次利用凝胶注模的方法制备自由曲面状荧光陶瓷;最后不仅利用自由曲面半球形减少光的反射损耗,提高LED的出光效率,并且利用其聚光性能将光线汇聚成矩形光斑,提高利用率,确保制备出的荧光陶瓷可以使光线汇聚成矩形光斑,适合在LCD投影仪中使用,通过使用荧光陶瓷来解决传统荧光转换器中荧光粉与封装材料折射率不匹配的问题,制备半球状的荧光陶瓷有效解决因陶瓷与空气折射率不同而导致的反射问题。
在磁钢废料中添加纳米金属粉制备含钬稀土永磁材料的方法,将收集的废旧磁钢按照同批次同型号所含稀土元素相同的废旧磁钢归为一类的分类标准进行预分类,得预处理磁体材料,再将获得的预处理磁体材料与已配制好的纳米金属粉投入普通电解炉中进行熔炼使其形成熔融的合金液,而后将熔融的合金液浇铸并冷却为合金锭,再对合金锭进行氢碎、气流磨破碎成细粉末,细粉末经静压、烧结、两段热处理后得含钬稀土永磁材料坯体,最后根据实际需求进行机械加工切割并精磨,即得含钬稀土永磁材料;纳米金属粉的添加有效增强了含钬稀土永磁材料的荧光寿命,且使永磁材料具有较高的激活剂临界浓度;而预分类可节省回收废旧磁钢的时间,且减少提取工艺步骤。
中冶有色为您提供最新的江苏有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!