本发明的一种自动取样、制样的光谱检测装置,包括蠕动泵a、多路选择流通模块a、定量模块、截止阀a、制样容器、截止阀b、检测容器、光谱检测模块、截止阀c、双路选择流通模块b、蠕动泵b、双路选择流通模块c以及多路选择流通模块b。采用本申请的光谱检测装置,减少了人力成本,提高了检测效率和检测结果的稳定性。
本发明公开了一种从含钪钛酸浸液中回收钪和钛的方法,该方法是先用碱将含钪钛酸浸液的pH升高,利用钛离子水解pH较低的特性,在较低pH值条件下即可将钪和钛共沉淀入渣与母液分离。所得钪钛共沉淀物结构不稳定,在热酸条件下即可溶解,而高温会促进钛离子水解转化成较为稳定的偏钛酸沉淀,得到富钪溶液和高钛渣。该方法充分利用钛在不同温度下水解特性差异,先在低温下使钛以水合二氧化钛胶状沉淀的形式与钪一起沉淀析出,再通过热酸浸出使沉淀渣溶解,而钛在高温条件下会以稳定的偏钛酸形式沉淀与富钪液分离,从而实现钪和钛的高效分离。
本发明公开了一种含锡电子废弃物一步法制备纳米硫化亚锡的方法,该方法是将含锡电子废弃物与由硫化钙和二氧化硅组成的添加剂混匀造块后,置于还原性气氛下在750~900℃进行还原焙烧,焙烧挥发物进入弱还原性气氛中在450~700℃进行还原焙烧,得到纳米硫化亚锡粉体。该方法以含锡电子废弃物为原料高效回收锡并制备出高纯度纳米硫化亚锡粉体材料,不但实现了废物利用,经济附加值高,且该方法操作简单、生产成本低、环境友好,满足工业化生产要求。
本发明公开了一种用于浸矿微生物放大培养的搅拌反应槽,包括顶部开口且中空的内筒、保温装置、气体分散器和挡板,所述的保温装置设置于内筒外,所述的气体分散器为通气管,通气管的一端连接到外部气源,另一端由内筒的顶部开口伸入并延伸至内筒底部,所述的挡板设置于内筒的内侧壁上。本发明的技术效果在于,搅拌槽自带的保温装置能最大程度的实现均匀传热。搅拌槽内部的挡板能消除漩涡,将液体的旋转运动改为垂直旋转运动,增加了轴向和径向速度分量,使搅拌器排出流具有更宽的流动半径,实现良好的混合和浸出效果。搅拌槽内气体分散器位于搅拌槽底部,能充分地补充氧气和二氧化碳。
本发明公开了一种从含钨物料苏打浸出液中离心萃取制取钨酸铵溶液的方法,该方法以甲基三烷基铵的碳酸盐为萃取剂直接从含钨物料苏打浸出液中萃取钨,杂质磷、砷、硅等留在萃余液中而与钨分离,负钨有机相经洗涤剂洗涤后用碳酸氢铵和碳酸铵的混合溶液反萃取获得纯度较高的钨酸铵溶液,反萃取后的有机相采用含有氢氧化钠的溶液再生,再生后的有机相返回萃取,萃取、反萃取操作均在离心萃取器中进行。本发明在实现钨酸钠溶液向钨酸铵溶液转型的同时除去了磷、砷、硅等杂质,萃余液可返回浸出使用。本发明萃取和反萃取过程相分离快,工艺流程短,化学试剂消耗小,废水排放量小,易于工业化实现。
本发明公开了一种用于酸性溶液中镍选择性萃取的协同萃取剂及方法,协同萃取剂由磷酸酯(盐)与吡啶羧酸酯组成,利用含协同萃取剂的有机相从酸性溶液中选择性萃取镍,能够实现镍离子与锰离子、镁离子、钙离子等杂质离子的有效分离,负载有机相采用无机酸进行反萃取获得高纯度的含镍溶液。该方法对镍回收率高,镍与杂质分离效果好,流程短,易于实现工业化。
本发明公开一种矿浆萃取钽铌时消除有机相夹带黑渣的方法,该方法包括:步骤一,向分解液中加入钽渣矿,在60‑90℃加热搅拌至少3小时,得到矿浆;步骤二,将所述矿浆的温度降至10‑60℃,加入聚丙烯酰胺溶液,充分搅拌;步骤三,向步骤二得到的矿浆中加入萃取剂,进行萃取。本发明提出的方法通过聚丙烯酰胺溶液的吸附作用,避免了黑渣进入有机相,同时又不影响矿浆萃取过程,大大减少了萃取剂的损耗,避免了钽铌的流失,提高了钽铌的产率,经济效益好。
本发明公开了一种铜镍渣的分步浓差浸出方法,该方法是将铜镍渣研磨成矿粉后,加入到浓无机酸溶液中浸出一段时间后,加入水将浸出浆料稀释到一定程度,进一步浸出一段时间后,固液分离,分别处理回收浸出液和浸出渣中的有价金属;该方法能将铜镍渣中的铁高效酸浸出,且能有效固液分离,实现高效回收铜镍渣中的有价资源。
本发明公开了一种红土镍矿还原焙烧过程中添加添加剂的方法,将红土镍 矿破磨到-200~-100目占其质量的70~90%,在红土镍矿中添加氯化物作 离析剂、钠化合物作促进剂、还原铁粉作成核剂和钙类化合物作固硫剂,按红 土镍矿的质量计,氯化物的添加用量为0~10%,钠化合物的添加用量为1~ 10%,还原铁粉的添加用量为0~3%,钙类化合物的添加用量为1~10%。本 发明适合于添加到硅酸镍所占比例高的红土镍矿的还原焙烧过程,能较大幅度 的降低氯化钙等的用量,减轻氯对设备的腐蚀和环境污染,显著提高红土镍矿 还原焙烧过程中的金属化率和离析效果,从而达到了提高镍回收率或品位的目 的。
本发明公开一种从废旧锂电池磁选分离正负极粉的方法。采用剪切破碎机,在氮气气氛下一次性破碎带电状态废旧锂电池,破碎物料为30~40mm大片状;电解液高温分解产生的二氧化碳气体,破碎物料中的石墨,隔膜和正负极中的粘接剂分解产生的碳,共同作为碳还原剂,与废旧锂电池正极材料产生碳还原反应,赋予正极材料磁性。采用强磁分离系统将磁性正极材料和非磁性物料分离,再分别通过水动力分选机进行分离,最终得到正极粉、负极粉、铝箔和铜箔。正极粉、负极粉及金属回收率都在98%以上,品位高;回收过程同时回收金属铝和铜,回收利用产值提高25%;本发明能处理三元锂电池和磷酸铁锂锂电池,适应大规模工业化生产,具备极高的经济效益。
一种富集提纯黄金的方法,本发明将黄金首饰用合金废料与阴极铜在高温下熔融后泼珠,使黄金充分分散于铜合金中,然后在硫酸体系中加入双氧水氧化溶解该合金珠,使铜、镍、锌和银等溶解进入溶液,而金和其他杂质金属进入硫酸浸出渣;硫酸浸出渣在氢氧化钾体系浸出,使锑以焦锑酸钾形式溶解进入溶液,使铅转化为氢氧化铅后与金进入碱性浸出渣;碱性浸出渣在硝酸体系中加入双氧水氧化浸出,使铅与残余的铜和银一起溶解进入溶液,最终得到高品质金粉。本发明采用合金碎化和深度除杂相结合的方法实现黄金首饰用合金废料中金的提纯,采用阴极铜作为合金碎化的载体,杂质的脱除率均大于99.99%,金粉中金的含量达到99.99%以上;金的回收率大于99.99%。
本发明涉及一种用于含磁性杂质的氧化铜矿浮选工艺的捕收剂,所述捕收剂为组合捕收剂,该组合捕收剂按重量份,由96~576份的戊黄药和64~384份的4-二苯胺磺酸钠组成。所述用于含磁性杂质的氧化铜矿浮选工艺的捕收剂捕收能力强,铜矿物回收率高。
一种锑烟灰加压还原制备三氧化二砷的方法,锑烟灰在高温水溶液中加入还原剂加压还原浸出,使各种砷氧化物以亚砷酸形式溶解进入溶液,浸出液通入硫化氢净化脱除杂质金属,净化后液采用喷雾热分解方式制备出三氧化二砷产品,冷却水返回加压还原浸出过程。本发明的实质是首先采用加压还原浸出方式实现了锑烟灰中砷的有效溶解,然后再采用喷雾热分解方式回收了溶液中的三氧化二砷,共同作用实现了从锑烟灰中有效脱除和回收砷的目的。砷的浸出率可以达到90.0%以上,三氧化二砷的纯度达到99.0%以上,具有砷脱除率高、环境污染小和产品纯度高的优点。
本发明公开了一种废弃线路板有价金属综合回收的方法,该方法是通过机械处理将废弃线路板粉碎成颗粒,并通过物理分选将金属与非金属物料分开,金属物料进行氧压碱浸选择性回收锡、铝,再采用酸性氧化浸出铜,而铅和贵金属则富集在渣中,待火法回收;该方法实现了废弃线路板有价金属的综合回收,金属分离彻底,清洁、高效、无污染,使电子废弃物资源化得到经济效益与环境效益共赢,值得推广。
本发明公开了一种α-羟酮类化合物的制备方法。具体步骤如下:1)在惰性有机溶剂中加入金属钠,加热至97-140℃,金属钠熔融,搅拌使金属钠变化为细小颗粒;2)维持温度,搅拌下滴加惰性有机溶剂和烷基脂肪酸酯组成的混合物;3)滴加完毕后保温反应,将反应后混合物冷至室温滴加酸进行转型,静置分层,油相经洗涤,干燥、减压蒸馏即可。本发明的优点是不需单独制备钠砂,反应的时间更短,产物得率高,整个工艺简单,安全、可靠,生产效率高,产品质量稳定;最重要的是不用快速搅拌骤冷,单独制备钠砂,解决了大规模工业化生产的难题。
一种硫酸亚铁溶液中深度净化除钛的方法,本发明包括先进行溶解,将生产钛白粉的副产物硫酸亚铁溶解在去离子水中,静置后抽出上清液待用,溶解渣压滤后废弃;然后进行还原,在25~35℃时向上清液中加入1~2%的还原铁粉,溶液变为蓝色即为终点,最后进行中和,向还原后的硫酸亚铁溶液中加入氧化亚铁粉末调节溶液的PH=1~5,搅拌30~90MIN后溶液变为亮绿色即为终点,过滤得到纯净的硫酸亚铁溶液。本发明钛的脱除率高,铁的损失小,工艺过程稳定;不引入其它金属杂质,得到纯净的硫酸亚铁溶液;可以通过溶液还原前后的颜色判断反应终点,过程控制简单;操作温度低、处理时间短、综合成本低。
本发明涉及一种从含铜溶液中无损分离铜的方法及其应用,分离铜的方法是先对含铜溶液(尤其是印刷线路板行业的蚀刻液和废蚀刻液)中的铜浓度进行调节,使其满足后续电解过程的铜浓度要求;然后对这种经过了铜浓度调节的溶液采用电解方法从中无损分离铜;这种从含铜溶液中无损分离铜的方法可应用于:使待处理含铜溶液在工业生产中实现再生和循环使用,或用于其它废水处理的领域。
本发明提供了一种微波辅助强化浸金的方法,包括以下步骤:(1)将难处理金矿用破碎机破碎至小块颗粒,小块颗粒经卧式砂磨机研磨成粒度均匀的矿粉;(2)将矿粉、氯盐、酸溶液混合得矿浆,向矿浆中通入二氧化氯气体,同时开启冷凝、搅拌和微波反应器,进行浸金反应;(3)浸出完成后固液分离,获得浸金液和浸金渣,浸金液通过控电位还原,制得粗金粉。本发明的方法采用微波辅助、二氧化氯和双氧水协同氧化的酸性氯盐体系强化浸出难处理金矿,提供了一种工艺流程短,与环境友好,浸金效率高、浸出时间短的高效浸出方法。
本发明公开了一种熔体萃取分离回收废旧钴基高温合金中镍钴的方法,包括下述的步骤:S1.以熔融的Zn‑M合金为萃取介质,以废旧钴基高温合金为待萃取物,进行萃取处理,得到共熔体与合金残渣,在所述Zn‑M合金中Zn为主体金属,M为Pb、Bi或Sn中的一种或多种;S2.将S1得到的共熔体进行真空蒸馏,得到金属镍钴粉以及冷凝的萃取介质。本发明提出了一种清洁高效的分离回收废旧钴基高温合金中金属镍钴的方法。本方法工艺流程短,设备简单,镍钴回收率高,成本低,萃取介质可以循环利用,过程清洁环保。
本发明公开了一种废旧磷酸铁锂电池回收碳的综合处理方法,利用了回收碳中的石墨成分层间距较大、缺陷增多和具有杂质Fe2O3、CuO、Al2O3的特点,在不需额外加入插层试剂条件下制备了石墨层间化合物,再通过低温煅烧将石墨剥离为石墨烯纳米片。本发明可实现废旧磷酸铁锂电池回收碳中石墨材料的高附加值回收,同时还可将其中的金属杂质以氯化物形式回收,具有较强的应用前景和可行性。此外该技术可实现盐酸、蒸气热量的循环利用,具有低能耗、低成本、绿色环保等优点。
一种铜基固废协同熔炼富集提取贵金属的方法,首先将焦锑酸钠和淀粉混合制粒后再与铜基固废混合,控制混合物料中锑、铜和硫的含量在要求范围;其次在高温下通入富氧空气氧化熔炼,焦锑酸钠中的Sb(Ⅴ)被淀粉还原为金属并与铜基固废中的贵金属作用后富集于铜锍中;最后向高温铜锍中加入焦锑酸钠粒料,焦锑酸钠被还原为金属锑后再与铜锍中的贵金属形成富金合金,富金合金沉降于贫金铜锍底层,富金合金用于提取贵金属,贫金铜锍进一步提取铜。本发明的核心首先是焦锑酸钠高温挥发性小和易被淀粉还原的性质,实现贵金属的分步富集;本发明具有原料适应性强、贵金属回收率高和工艺流程简单的优点。
本发明涉及一种从铜阳极泥中浸出金银钯的方法。该方法包括氧化焙烧-硫酸浸出、无氧化剂的氯盐浸出、甲酸还原-硫代硫酸盐浸出这三个阶段。经细磨的铜阳极泥进行低温氧化焙烧可使铜的硫化物和硒等被氧化,焙砂经硫酸浸出处理可有效浸出铜和硒。硫酸浸出渣经氯盐浸出处理可有效浸出银和铅,同时钯被部分溶出。氯盐浸出渣经甲酸还原,再经硫代硫酸盐浸出处理可有效浸出金和残留的钯。该方法可高效浸出金、银、钯、铜、硒、铅等多种有价金属,对环境危害少且对设备防腐要求低。
本发明公开了一种催化氧化浸出-控制电位还原提取镍钼矿冶炼烟尘中硒的方法,包括以下步骤:将经过预处理后的镍钼矿冶炼烟尘加入酸性浸出体系中,采用FeCl3作为催化剂,以过氧化氢、氧气、富氧空气、氯气或氯酸钾等作为氧化剂,通过催化氧化浸出镍钼矿冶炼烟尘中的硒,使其中的硒元素进入浸出液中;然后在酸性条件下,将浸出液作为控制电位还原的反应液,采用草酸、甲酸、乙酸、甲醛或联胺等作为还原剂,进行控制电位下的还原反应,使浸出液中的硒与其它离子高度分离,得到高纯度硒粉。本发明的方法具有流程短、操作简单、能耗低、金属的回收率高、生产成本低、清洁节能、环境友好等优点。
本发明属于有色金属提取技术领域,本发明公开了一种萃取有机相及其在高酸体系萃取‑反萃富集锌的应用,通过特定结构的磷酸酯萃取剂,结合稀释剂和改质剂得到萃取有机相;再将该萃取有机相利用萃取‑反萃技术在高酸体系中富集锌。本发明提供的萃取有机相和萃取方法在高酸体系下无需萃取剂皂化萃取预处理,具有萃取效率高的优点。而且本发明提供的萃取有机相易于反萃再生,萃取‑反萃全过程无废水产生,实现清洁生产,具有较高的经济效益。
一种银阳极泥控电位制备四九金的方法,银阳极泥在硝酸溶液中浸出,硝酸浸出渣再用浓硫酸浸煮后得到粗金粉,粗金粉在盐酸溶液中加入双氧水控电位氯化分金,料浆经过冷却后固液分离,分金液加入氢氧化钠和亚硫酸钠控电位还原得到还原金粉,还原金粉经过浓硫酸精炼后得到四九金粉。本发明的实质是采用控电位方式实现了银阳极泥制备四九金过程的可调可控,制备了纯度为99.99%的金粉,金的直收率达到99.9%以上,具有金直收率高、工艺流程稳定和产品纯度高的优点,克服了传统王水溶解方法存在的环境污染问题。
一种锰冶金浸出渣无害化处理及综合利用的方法,其包括以下步骤:(1)对锰渣进行洗涤:在浸出渣中加入相当于锰渣重30%-200%的水,进行逆流洗涤;(2)将步骤(1)所得逆流洗涤过的锰渣分级,磁选回收未反应锰矿;(3)将步骤(1)所得洗渣水澄清后放入预热器预热,温度升高至60℃~90℃,再放入蒸发器内蒸发浓缩至硫酸锰浓度达到10wt%~50wt%后,返回制液车间利用。采用本发明处理电解锰浸出渣,设备投资少,生产成本低,且可对水溶的硫酸锰、硫酸铵以及不可水溶的碳酸锰、二氧化锰进行全面回收,既可对锰渣进行无害化处理,减少环境污染,又可全面回收利用有经济价值的资源。
本发明属于锂离子电池材料回收技术领域,公开了一种磷酸铁锂废料中锂的回收方法及其应用,该方法包括以下步骤:(1)将磷酸铁锂废料加水制浆,磷酸铁锂浆料;(2)在磷酸铁锂浆料中加入可溶性铁盐,反应,过滤,得到含Li+、Fe2+的滤液和磷酸铁渣;(3)在滤液中加入氧化剂,过滤,得到含Li+、Fe3+的滤液和氢氧化铁;(4)将滤液与磷酸铁锂电池粉进行多级逆流循环浸出,得到锂溶液。本发明采用可溶性铁盐,可溶性的铁盐属于强酸弱碱盐,可加快磷酸铁锂转化,再结合氧化剂氧化,一次转化磷酸铁渣直回收率在98.5%左右,锂直收率在98.5%左右。
本发明提供一种综合回收利用废旧印刷电路板的方法,包括以下步骤:1)将安装有电子元件的废旧印刷电路板置于一转筒中,浸于液体加热介质中使废旧印刷电路板上的焊锡熔化,使得转筒转动,在转筒旋转的离心作用下熔融的焊锡透过转筒壁上的滤孔滤出;2)将脱落的电子元件进行分类分拣再进一步处理;3)采用剪切式破碎机对脱除焊锡及电子元件后的废旧印刷电路板进行粗碎;再采用细碎机进一步细碎,使金属与非金属相互解离;解离后的混合物料再通过气力分选机或静电分选机进行分选,分别得到铜粉及非金属粉末。本发明以低成本、高效率实现废旧印刷电路板的规模化处理,可使其中的非金属、焊锡、铜及其它金属等有价物资得到综合回收。
一种红土镍矿沉淀除铁和镍钴富集的方法,其特征在于:将红土镍矿球磨并过50目筛,取-50目矿样用盐酸浸出,使得浸出液中FE的浓度为0.01-6MOL/L,向溶液中加入氧化剂和沉淀剂,其中氧化剂和沉淀剂的浓度为0.01-9MOL/L,用0.01-6MOL/L的碱水溶液控制体系的PH=0.1-6.0,在20-90℃的搅拌反应器中反应1MIN-24H,经固液分离后得到沉淀,并在沉淀除铁的过程中使盐酸得以再生,再生的盐酸则返回浸出工序,循环利用;通过对滤液添加硫化剂进行硫化沉淀,并最终实现镍钴的有效富集。本发明摒弃了传统工艺中热水解或高温焙烧的方法,降低除铁和盐酸再生的能耗,具有工艺流程简单、镍钴回收率高、副产品质量好且稳定、成本低等优点。
本发明公开了一种协同氧化浸出碲渣中碲的方法,包括以下步骤:(1)在硫酸溶液中加入氯化钠,加热至60~90℃并保温,然后通入臭氧并加入碲渣,搅拌;(2)在保持搅拌的条件下,向步骤(1)后的溶液中通入双氧水,协同臭氧氧化浸出,反应2~8h后固液分离,得到浸出渣和含碲浸出液。本发明利用在O3/H2O2体系下,产生氧化能力极强的羟基自由基,利用羟基自由基的强氧化性,打开碲化铅及铋酸铜的稳定结构,使碲、铋、铜暴露,以及碲和铋的亲氯特性,使碲渣中碲、铋、铜的浸出效果好,碲浸出率达99%,铋浸出率达96%,铜浸出率达99%,实现复杂碲渣中碲的高效、直接浸出,有利于碲、铋、铜和锑的分步回收。
中冶有色为您提供最新的湖南长沙有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!