本发明制备的高矫顽力和高耐蚀性烧结钕铁硼永磁材料及制备方法,属于磁性材料技术领域。将平均粒径50-90纳米的M(这里的M代表?Mg、Al、Cu及其混合粉)粉末进行表面改性;再加入2-4微米钕铁硼粉末中混合均匀,加入量为?0.1-2.0wt%?;在?2.5T的磁场中取向并压制成型,再经20-40MPa冷静压后,置入真空烧结炉内;然后升温,在200-300℃,800-900℃分别停留1-2小时和2-3小时,在1020-1120℃?烧结2-6小时,最后进行二级热处理,一级热处理温度900-950℃,时间2-3.5小时;二级热处理温度480-630℃,时间1-3小时,获得烧结钕铁硼永磁材料。本发明纳米粉及其混合粉的加入,使得烧结钕铁硼基永磁材料的矫顽力和耐蚀性得到了提高。
本发明公开了一种钕铁硼稀土永磁体的预烧结方法和设备,所述的真空预烧结是在连续真空预烧结设备中进行,烧结料架依次进入连续真空预烧结设备的准备室、脱脂室、第一脱气室、第二脱气室、第三脱气室、第一预烧结室、第二预烧结室和冷却室进行预热脱脂、加热脱氢脱气、预烧结和冷却,冷却采用氩气,冷却后烧结料架从连续真空预烧结炉取出再将料盒装到时效料架上,时效料架吊着送入连续真空烧结时效炉进行烧结、高温时效、预冷却、低温时效和快速气冷。
发明公开了热蒸发硅法生成碳化硅涂层的方法。?本发明在聚丙肺腈碳纤维表面合成SiC涂层。将硅粉或硅块碎片放入石墨坩锅底部,碳纤维横置于坩锅顶部,为了尽可能增加碳纤维与硅蒸汽的接触并固定碳纤维,倒置同样大小的坩锅于搁置了碳纤维的坩锅上,硅碎片和碳纤维之间始终保持距离。把这个装置放入高温真空烧结炉中,机械泵预抽真空1~5Pa,然后充入氩气保护气,再次用机械泵及扩散泵抽至10-4~10-2Pa,然后再次充入氩气保护气,关闭氩气源。然后升温到硅的熔点之上,保温1~9小时,关掉电源,冷却后取出纤维,纤维表面生成了一层碳化硅涂层。本发明具有设备简单、无需氯硅烷或聚碳硅烷先驱气体和氢气等一系列优点。
本发明公开了一种磨料水喷嘴加工工艺,包括以下几个步骤:步骤一,按配比将钴Co,碳C,钨W金属粉末称好并搅拌均匀成为硬质合金粉末;步骤二,在弹性橡胶管内中心轴线处设置硬态弹簧钢丝,并沿着钢丝圆周方向涂覆一层蜡模;步骤三,在弹性橡胶管外壁套置不锈钢套,且不锈钢套径向加工有若干通孔;步骤四,将选好成份的硬质合金粉末装入到弹性橡胶管内,并捣实,捣实后将弹性橡胶管两端通过橡胶塞封堵;步骤五,进行冷等静压成型处理;步骤六,把冷等静压成型后的素坯连同弹簧钢丝从橡胶管中取出,然后对素坯进行低温预烧结,待硬态弹簧钢丝外壁蜡膜熔化后取出弹簧钢丝;步骤七,对磨料水喷嘴进行真空烧结加工。
一种蛋白质发泡制备生物医用可降解多孔锌的方法,按以下步骤进行:(1)将锌粉、蛋白质发泡剂、蔗糖和去离子水混合均匀;(2)球磨混合制成球磨浆料;(3)加热至70~110℃进行发泡,随炉冷却;(4)静置固化或者烘干制成固化预制体;(5)进行真空烧结或覆盖石墨烧结,150±2℃、180±2℃、260±2℃、290±2℃、320±2℃、390±2℃和435±2℃时保温25~35min;200±2℃、230±2℃、360±2℃和435±2℃时保温55~65min;随炉冷却。本发明的方法选择蛋清和胶原蛋白作为发泡剂,对身体无害,发泡效果优良,发泡程度可控;产品孔隙率相对较高;与人体松质骨匹配,能够满足人体植入材料的要求。
一种高纯度、低成本二硅化钼的制备方法,将原料三氧化钼、二氧化硅和高纯石墨粉,加入工业干粉成型剂,在混料器中混料,按照1公斤每份放入油压机压制,获得压制块料;将压制块料用500公斤真空无压烧结炉真空烧结,送电抽真空至3Pa,350℃烧结1小时‑2小时,1620℃保温,炉内真空度为20Pa‑25Pa之间继续升温;1850℃保温10小时‑15小时,降温,温度降低1250℃,真空度抽到3Pa‑4Pa,保温5小时,硅和钼充分化合,停电降温,得到二硅化钼。以氧化钼为原料,原料成本低廉,且整个工艺合理可控,可以制备出单相高纯度二硅化钼,适合工业化生产。
本发明涉及防护和控制材料技术领域,具体涉及一种富集10B的碳化硼中子吸收屏蔽材料的制备方法。本发明是将97~99质量份的富集10B碳化硼粉体与1~3质量份的胶黏剂以去离子水为介质混合形成混合物料烘干,将烘干后物料放入真空烧结炉内进行有压或无压烧结,控制炉内真空度达到5~40Pa,得到密度为1.8~2.48g/cm3的富集10B碳化硼中子吸收屏蔽材料。本发明的碳化硼粉末压制的制品,中子吸收能力大大提高,在反应堆内使用的过程中,不会引入其他杂质,能够保证反应堆的安全运行和使用寿命。
一种多孔Ti-15Mo合金的粉末烧结方法,是按88.55∶15的配比取TiH2和 Mo粉末混匀,再加入0-40%的碳酸氢铵,并放入混料器中混合24-48小时, 再通过模具压成设定形状,然后放入真空烧结炉中,收≤50℃/分钟的速度加热 至780-820℃,保温1-2小时制成坯料,将该坯料加热至1050-1150℃,保 温4-8小时完成烧结,经冷却即得。Ti-15Mo合金孔隙度为7.9-68.5%,平均 孔隙尺寸为12-206μm。本发明工艺简单,节能效果好,造孔质量好,孔隙度 达到7.9-68.5%,平均孔隙尺寸为12-206μm。
一种新型碳化物颗粒增强铁基粉末冶金材料,将石墨粉添加到包含Fe‑40%V、Fe‑60%Mo和Fe‑57%Cr合金的物化铁粉中,以硬脂酸锌作为润滑剂进行球磨混合,然后压制、真空烧结。随着烧结温度的提高,碳化物由块状M6C碳化物向针状M2C碳化物转变;材料的相对密度和硬度先升后降,硬度在1270℃时达到最大,抗弯强度和冲击韧度在1240℃时最高;在晶界上呈半连续网状分布的针状碳化物脆性大,降低了材料的力学性能。高温退火能有效消除晶界上半连续网状分布的针状碳化物,使其分解、球化,从而显著提高材料的性能;其中密度略有提高,硬度、抗弯强度和冲击韧度分别提高了11.8%,20.8%和72.7%。
本发明公开了一种耐磨、耐腐蚀Ti(C,N)金属陶瓷材料,由下述质量百分比的粉末原料组成:TiC 28‑45%;TiN 3‑5%;Ni 35‑50%;Cr 11‑13%;余量为4‑6%的Mo、Ti、Al、Cr3C2、VC混合。其制备方法为将原料粉末按照配比配制成混合粉末,混合粉末在真空振动混料机混料,混料后不需要添加任何成型剂,采取模压成型压制成坯料,坯料经塑封后,进行冷等静压,之后进行真空烧结。本发明金属陶瓷材料,具有耐磨、耐酸蚀、耐汽蚀性好,高强度、高硬度、制造工艺流程简洁,不需要添加成型剂、制造成本低等优点。
一种粉末冶金法制备医用可降解开孔泡沫锌的方法,按以下步骤进行;(1)将锌粉和造孔剂烘干后混合;(2)加入酒精;(3)填充到模具中压制成型;(4)置于烧结炉内,进行真空烧结或覆盖石墨粉烧结,随炉冷却;(5)烧结物料置于水中,使造孔剂溶于水中,剩余物料取出烘干。本发明的方法可以控制孔径的大小和孔隙率;可由烧结温度和时间来控制样品的力学强度和力学性能,所制备的开孔泡沫锌抗压强度高于人体松骨质,而弹性模量与松骨质相匹配,能够满足人体植入材料要求。
一种掺杂稀土铈的铪酸钡陶瓷闪烁体的制备方法,涉及一种陶瓷材料的制备方法,该制备方法包括如下步骤:(1)按Ba1-xHfO3 : Cex称取原料硝酸钡Ba(NO3)2、氯氧化铪HfOCl2和硝酸铈Ce(NO3)3;(2)采用共沉淀法合成粉体;(3)选择滴定方式;(4)控制滴定速度、体系温度及滴定终点的pH值;(5)清洗,抽滤;(6)恒温干燥;(7)研磨过120~200目筛;(8)还原性气氛下煅烧;(9)干压成型;(10)真空烧结。本发明的闪烁体可应用于医学成像及无损检测系统,该方法可实现准确掺杂,工艺简单,成本低,适宜大批量生产。
本发明涉及一种石墨烯纳米片/铝复合材料及其制备方法,制备方法主要步骤如下:(1)将石墨烯纳米片分散到无水乙醇溶液中,制得石墨烯纳米片的无水乙醇分散液;(2)在氩气的保护下通过球磨将球形铝粉转变为片状铝粉;(3)在充有氩气的手套箱中将片状铝粉移入石墨烯纳米片的乙醇分散液,机械搅拌制得石墨烯纳米片/片状铝粉的复合浆料;(4)抽滤、干燥制得石墨烯纳米片/片状铝粉复合粉末;(5)冷压、真空烧结制得石墨烯纳米片/铝复合材料坯料;(6)通过热挤压制得石墨烯纳米片/铝复合材料。该制备工艺具有石墨烯纳米片结构损伤小、分散均匀,石墨烯纳米片‑Al界面结合良好的特点,制备的石墨烯纳米片/铝复合材料强度高、塑性好。
本发明提供一种溅射靶材用硅硼母合金及其制备方法,硅硼母合金为采用高纯硅粉和高纯硼粉为原料,依次经高能球磨、造粒后采用粉末冶金压制成形技术和真空烧结制备的所得产物。本发明制备的硅硼母合金中具有含硼量高、颗粒分布均匀、杂质含量低、粉末活性高、易于掺杂等特点,并且,掺杂该种硅硼母合金制备的多晶硅靶材,较制备的硅靶材具有产品出成率高,电阻率分布均匀等特点。
一种多孔梯度TiNb合金的制备方法包括以下步骤:按一定的质量比称取钛粉和铌粉以及造孔剂氯化钠颗粒,备用。分别按不同的造孔剂含量将金属和造孔剂混合成多个具有不同孔隙度的生坯混合物,而后依次放入模具的多个套筒中,制成坯料。将所压制得坯料浸没在70‑80 OC的纯净水中清洗15‑‑20次,使造孔剂溶解。将坯料放入真空烧结炉中加热至1160‑‑1350OC并保温4‑‑8小时,经冷却得到多孔TiNb合金。本材料具有与人体硬组织匹配的弹性模量,其结构与人体松质骨的微观结构相似,具有仿生材料的特点。可用于人体硬组织如骨骼、牙根等的替换与修复。
本发明公开了一种稀土永磁真空热处理炉以及真空热处理方法。真空热处理炉主要包括炉壳、加热室、风冷换热系统、加热电源、控制系统、真空系统和充放气系统。真空系统中包括真空粉尘收集器,风冷换热系统包含风冷粉尘收集器,真空粉尘收集器和风冷粉尘收集器都采用旋风收集器的结构。加热室设置在炉门和炉体构成的真空容器内,加热室包括前端盖、加热筒体、后端盖和炉床,热处理的工件放置在炉床上;前端盖包含前端金属屏、前端保温体和前端框架,前端盖与炉门相连;加热筒体从内到外包含加热器、筒体金属屏、筒体保温体和筒体框架。该真空热处理炉可用于稀土永磁的真空烧结、真空时效和真空渗金属处理。
一种多孔钛及其制备方法,属于材料技术领域,多孔钛为通孔骨架结构,骨架成分为金属钛,宏孔孔壁上分布着微孔,宏孔孔径范围为200~1000μm,微孔孔径范围为5~55μm,孔隙率35~85%。制备方法为:以钛粉为原料,以镁颗粒、镁粉为造孔剂,以无水乙醇为分散剂和粘结剂,先将镁粉和钛粉混合均匀,然后用无水乙醇将镁颗粒充分润湿并倒入镁粉、钛粉的均匀混合物,再次混合均匀,然后将压制的预制坯用真空蒸馏除去金属镁,再对多孔钛前驱体进行真空烧结。本发明采用的方法在反应过程中不生产氧化物,造孔剂可全部回收;制备的多孔钛结构均匀、孔结构可调、孔隙率高、杂质少、力学性能好。
本发明公开了一种基于晶粒重组的烧结钕铁硼永磁铁及其制造方法,永磁铁具有重稀土RH含量高的主相分布在重稀土RH含量低的主相周围的复合主相,复合主相内部无连续的晶界相;复合主相外围的平均重稀土RH含量高于复合主相心部的重稀土RH含量,复合主相的平均晶粒尺寸6-14μm;重稀土RH包含Dy、Tb、Ho、Gd、Y元素一种以上;制造方法包含熔炼第一合金工序、熔炼第二合金工序、氢破碎工序、合金片混合工序、气流磨制粉工序、磁场成型工序、真空烧结和时效工序;熔炼第一合金工序包含制备含有Pr、Nd元素的第一合金片的过程;熔炼第二合金工序包含制备含有重稀土RH元素的第二合金片的过程。
一种激励元素呈连续梯度分布的氧化钇激光透明陶瓷材料及其制备方法,其基质材料为Y2O3,激励元素RE为Yb、Tm或Nd,其特征在于:激励元素RE在基质材料中的浓度沿基质材料轴向呈连续梯度分布;制备方法为:(1)配制Y(NO3)3溶液、RE(NO3)3溶液和尿素溶液;(2)制备RE:Y2O3球形纳米粉体;(3)制备Y2O3球形纳米粉体;(4)将粒径相同的Y2O3球形纳米粉体和RE:Y2O3球形纳米粉体混合制成混合粉体,球磨分散,再超声分散,获得高悬浮稳定性浆料;(5)离心分离去除液相;干燥后获得梯度坯体;(6)素烧后真空烧结,再退火。本发明采用普通的陶瓷材料制备工艺,工艺简单,成本低廉,适合大规模生产。
一种氮化硅钒合金的冶炼方法,将五氧化二钒、铝粉、工业硅和铁屑进行混料,通过铝热法制取钒硅合金,破碎制粉,使用压球机将物料压制成直径为30mm‑80mm的球料;将压好球的的钒硅合金送入真空烧结炉中,抽真空,升温烧结,达到800‑950℃时通入高纯氮气进行氮化反应,反应完成后,降温,得到氮化硅钒合金。优点是:工艺简单,通过原料铁屑的配入量控制后续氮化处理的氮含量,能够满足不同客户对氮化硅钒合金的需求,不受原料成分的限制,能耗少,产品成分稳定。
本发明提供一种真空式滤油机用冷凝装置,进油管与粗滤器相连通,粗滤器的输出管通过管路Ⅰ进入加热器,加热器的输出管通过管路Ⅱ进入真空分离器与真空分离器的雾化喷淋装置的输入管相连通;真空分离器的上部抽气管与冷凝装置相连通,冷凝装置的冷凝介质进液口和冷凝介质出液口之间通过蛇管连通,蛇管为沿螺旋角度15°‑30°上升的盘管;冷凝装置再与后续处理装置相连;真空分离器的底部输出管通过管路Ⅲ与油泵相连通再进入精滤器中进行进一步过滤后排出精油;经油泵后,一部分油液通过管路Ⅳ与管路Ⅰ相连通重新进入到加热器进行再循环。本发明的结构设计合理,体积小,安全可靠,能有冷凝水汽从而保证过滤效果,获得清洁度较高的油品。
本发明提供一种超精真空式滤油机,其特征在于包括:粗滤器、加热器、真空分离器、冷凝装置、油泵和精滤器;进油管与粗滤器相连通,粗滤器的输出管通过管路Ⅰ进入加热器,加热器的输出管通过管路Ⅱ进入真空分离器与真空分离器的雾化喷淋装置的输入管相连通;真空分离器的上部抽气管与冷凝装置相连通,冷凝装置再与后续处理装置相连;真空分离器的底部输出管通过管路Ⅲ与油泵相连通再进入精滤器中进行进一步过滤后排出精油;经油泵后,一部分油液通过管路Ⅳ与管路Ⅰ相连通重新进入到加热器进行再循环。本发明的结构设计合理,体积小,安全可靠,能有效保证过滤效果,获得清洁度较高的油品。
一种直接热还原连续制备金属铕的方法,属于有色金属冶金技术领域。本发明的制备方法具体包括:将Eu2O3、还原剂、CaO或MgO作为原料,其中还原剂为Al可以用Ca或Si质量含量75%的Si-Fe合金代替,经过配料造球,然后将球团在流动的惰性气体或氮气气氛中进行高温还原反应,最后将由高温还原炉中流动的惰性载气或氮气携带出来的高温铕蒸汽冷凝,得到金属铕。本发明方法采用了“相对真空”手段,取消了真空系统以及真空还原罐,实现了金属铕的连续生产,缩短了还原周期,提高了生产效率,金属铕的回收率可达97%以上;能耗显著降低,是一种低成本制备金属铕的节能型绿色新工艺;且操作简单,设备更简单要求低,降低了设备投资及操作成本。
一种直接热还原连续制备金属镱的方法,属于有色金属冶金技术领域。本发明的制备方法具体包括:将Yb2O3、Al、CaO或MgO作为原料,其中还原剂为Al可以用Ca或Si质量含量75%的Si-Fe合金代替,经过配料造球,然后将球团在流动的惰性气氛中或氮气进行高温还原反应,最后将由高温还原炉中流动的惰性载气或氮气携带出来的的高温镱蒸汽冷凝,得到金属镱。本发明方法采用了“相对真空”手段,取消了真空系统以及真空还原罐,实现了金属镱的连续生产,缩短了还原周期,提高了生产效率,金属镱的回收率可达97%以上;能耗显著降低,是一种低成本制备金属镱的节能型绿色新工艺;且操作简单,设备更简单要求低,降低了设备投资及操作成本。
一种多级深度还原制备高熔点金属粉的方法,属于制粉技术领域。该方法包括:将烘干后的高熔点金属氧化物粉和镁粉混合,进行自蔓延反应,高熔点金属Me,具体为W、Mo、Ta、Nb、V、Zr、Hf或Re中的一种或几种;将中间产物置于密闭反应釜中,以盐酸为浸出液进行浸出,得到低价高熔点金属的低价氧化物MexO前驱体;与钙粉混合均匀,压制,置于真空还原炉中,加热升温至700~1200℃,深度还原1~6h,以盐酸为浸出液对深度还原产物进行浸出,经处理,得到高熔点金属粉。该方法原料成本低,操作简单,对工艺条件和仪器设备要求低,为工业化生产奠定了基础,高熔点金属粉具有纯度高,粒度分布可控,粉末活性高等优点。
一种多级深度还原制备还原钛粉的方法,属于制粉技术领域。该方法包括:将烘干后的二氧化钛粉与镁粉混合均匀,加入自蔓延反应炉中,引发自蔓延反应,将得到低价钛氧化物TixO弥散在MgO基体中的中间产物,以盐酸为浸出液对中间产物进行浸出,过滤、洗涤、真空干燥,得到低价钛氧化物TixO前驱体,与钙粉混合均匀,压制,置于真空还原炉中,进行二次深度还原,以盐酸为浸出液对深度还原产物进行浸出,得到还原钛粉。本方法原料成本低,操作简单,对工艺条件和仪器设备要求低,为工业化生产奠定了基础,所得的还原钛粉具有纯度高,粒度微细,粒度分布可控,粉末活性高等优点。
一种以硼镁石为原料真空热还原法制取金属镁及富硼料的方法,属于真空金属热还原炼镁技术领域,该方法包括以下步骤:(1)配料;(2)磨料;(3)煅烧;(4)将煅烧后的团块粉碎至粒径小于0.2mm,然后与粒径小于0.2mm的铝粉均匀混合,压制成团块;(5)真空还原;(6)渣料浸出;(7)过滤分离;(8)烘干;(9)种分或碳分,将过滤后的含有少量Na2CO3和NaOH的NaAl(OH)4溶液进入种分或碳分容器中,使NaAl(OH)4分解为氢氧化铝(Al(OH)3)。本发明提供的一种利用硼镁石提取金属镁并获得低镁富硼料的方法,可以使硼镁石矿得到综合利用。
本发明属于冶金技术领域,涉及一种以硅铝合金为还原剂制取金属镁的方法,本方法以白云石和菱镁矿为原料,用硅铝合金作还原剂,在高温和真空条件下,还原煅烧白云石,生成金属镁,其工艺流程为:原料→煅烧白云石和苛性菱镁矿→配料→制团→磨粉→真空还原→金属镁、铸造、镁锭,其中配料为:煅烧白云石(24%Mg),苛性菱镁矿(50%Mg)和硅铝合金成分其配为:煅烧白云石∶苛性菱镁矿∶硅铝合金=3.8~4.0∶0.8~1.2∶1~1.4,本发明的优点:产量增加1~1.4倍,能耗降低50%以上,金属镁成本降低20~25%,设备投资降低40~60%,还原罐耗量降低55%,利润增加7倍左右。
一种高压大功率逆变器模块,包括构成逆变器电路的六个内设续流二极管的功率MOS芯片,其特殊之处是:所述的六个功率MOS芯片集成在一个管壳内,所述的管壳长度为26~30mm、宽度为20~26mm,在管壳底座上焊接有金属化陶瓷基板,在金属化陶瓷基板上焊接有钼片及可伐片,所述的功率MOS芯片通过真空烧结焊接在钼片上,各个功率MOS器件之间采用硅铝丝互连。优点是:管壳采用一体化设计,结构紧凑,占用空间小,特别是将功率MOS器件通过真空烧结焊接在钼片上,可实现低的空洞率,降低了芯片到管壳的热阻,提高了可靠性。
中冶有色为您提供最新的辽宁有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!