一种高速钢辊环及其制备方法,属于冶金技术领域。高速钢辊环组分(wt%)为C2.2~3.2%,V4.0~6.0%,Cr4.0~4.8%,Mo5.0~5.5%,Ni0.5~1.5%,W6~10%,Nb1.5~3.5%,Ti1.0~1.5%,Al0.6~1.0%,B0.15~0.2%,Mg0.7~1.2%,Ce0.05~0.15%,Re0.035~0.05%,Ta0.035~0.05%,Na0.05~0.2%,K0.05~0.2%,Si0.3~0.5%,Mn0.3~0.5%,S≤0.035%,P≤0.035%,Fe余量,经过熔炼、铸造、退火等,制备出有强度、硬性、耐磨性和耐冲击性的高速钢辊环。
本实用新型公开了一种复合管,主要解决了现有技术管道性能欠佳、耐腐蚀差、机械强度低等问题。该复合管包括位于外层的玻璃钢层和位于内层的不锈钢-碳钢层,玻璃钢层与不锈钢-碳钢层厚度比为1:0.3~0.8;不锈钢-碳钢层包括由内至外的三层结构:不锈钢层、不锈钢—碳钢混合层和碳钢层,或者,不锈钢-碳钢层包括由外至内的三层结构:不锈钢层、不锈钢—碳钢混合层和碳钢层;不锈钢—碳钢混合层由不锈钢与碳钢通过冶金熔炼为一体结构,且不锈钢层与不锈钢—碳钢混合层、碳钢层与不锈钢—碳钢混合层均为一体结构。本实用新型结构简单、价格低廉、性能优良,因此,适合推广应用。
本发明涉及冶金熔炼成形技术领域,具体涉及一种高效浇注锭模结构,其包括:模体,所述模体设有第一锭模和第二锭模,所述第一锭模及所述第二锭模分别纵向贯穿所述模体;底板,所述底板设置在所述模体底部,并且所述底板顶部对应各个所述第一锭模与所述第二锭模之间设有连通通道;耐火外层,所述耐火外层设置在所述模体及所述底板外部,并且所述耐火外层设有辅助加热;其浇注工艺为:在辅助加热的配合下,将液态金属采用上注方式对第一锭模浇注,液态金属通过所述底板的连通通道进入各个所述第二锭模,并呈下注方式完成各个所述第二锭模的浇注;本发明通过对锭模的重新定义,实现了真空腔室环境下的浇注及凝固的解决方案。
本发明公开了一种用于含有A型石墨高强度薄壁灰铸铁的制备方法及灰铸铁,属于冶金生产工艺技术领域。针对现有技存在的问题,提供一种生产含有A型石墨的高强度薄壁灰铸铁的制备方法,以及一种采用所述制备方法生产的含A型石墨的高强度薄壁灰铸铁。所述的制备方法通过在铁水熔炼过程中添加石墨化增碳剂来控制碳含量,然后再在出铁和浇注过程中分别通过添加孕育剂在凝固过程中提供非均质结晶核心,减小过冷促进A型石墨的形核和生来获得需要的含有A型石墨的高强度薄壁灰铸铁。所述的高强度薄壁灰铸铁的重量份组分为碳2.9~3.4%,硅1.5~2.3%,锰0.5~1.1%,磷0.005~0.3%,硫0.06~0.15%,铬0.05~0.35%,铜0.05~0.8%,钼0.05~0.35%,钛0.005~0.03%,其余为铁和不可避免的杂质。
本发明涉及钢铁冶金加工领域,公开了一种10CrNi3MoV圆管坯及其制备方法和应用,该方法包括以下步骤:(1)按配方量进行配料,依次进行电弧炉熔炼、钢包炉精炼、真空脱气精炼后,得到电渣自耗电极;(2)将步骤(1)所得电渣自耗电极进行电渣重熔得到钢锭;(3)当所述钢锭的锥度≤1.5%,进行去应力退火得到圆管坯;当所述钢锭的锥度>1.5%,依次进行去应力退火、锻制和退火处理得到圆管坯。本发明方法制备的10CrNi3MoV圆管坯具有高纯净度、良好的韧性、极佳的成型性和耐腐蚀性,可用于制备综合性能优异的高压无缝钢管以及高压无缝钢瓶。
本发明属于有色冶金领域,尤其涉及一种复合还原剂冶炼含钛高炉渣的方法,其包括:利用复合还原剂将含钛高炉渣中的TiO2还原为TiC,其中,复合还原剂包括铁粉、无烟煤、兰炭和萤石,铁粉中铁含量≧95%、无烟煤或兰炭中固定碳含量≧75%,含钛高炉渣中TiO2的含量为15~30%。本发明的方法以含钛高炉渣为原料,铁粉、无烟煤、兰炭、萤石为复合还原剂,通过高温还原反应将含钛高炉渣中的TiO2还原为TiC。采用该方法熔炼还原含钛高炉渣后,熔渣粘度降低使得恶性泡沫渣发生频次减少;还原剂能够快速沉降,使还原反应由下至上开始,提高反应速率降低冶炼周期;TiC晶粒得以长大,为后续低温氯化工艺创造较好的原料条件。
本发明公开了一种高塑性、高强度铸造铍铝合金及其制备方法,其组分及重量百分比为:铍(Be)56~65%,铝(Al)33~42%,镍(Ni)0.7~1.0%,锂(Li)0.3~0.6%,锗(Ge)0.5~1.0%,其余为不可避免的杂质。通过添加非稀土元素的金属以改性合金微观组织,结合高温熔炼、两段式保温、均匀化与热轧工序获得了铍晶粒球形化程度较高并兼具较高强度和塑性的铸造铍铝合金。本发明合金成本相对低、合金组织均匀致密、铸造缺陷少,同时生产工艺流程短、技术难度相对低,合金强度与塑性接近或高于粉末冶金铍铝合金,具有良好的应用价值。
本发明属于粉末冶金技术领域,具体涉及一种球形钛铝基合金粉末的制备方法。针对现有方法制备的球形钛铝基合金粉末球形度低,粒度不均,氧含量高等问题,本发明提供一种球形钛铝基合金粉末的制备方法,先采用真空感应熔炼技术制备出钛铝基合金铸锭,经扒皮处理,减少杂质元素和提高整体成分均匀性,并进行均匀化热处理,获得合金成分均匀的铸锭。然后对铸锭进行氢化处理、破碎,获得吸氢钛铝基合金粉末。本发明制备的球形钛铝基合金粉末,具备成分均匀、粒径细小、流动性好、球化率高、氧含量低,适用于激光束/电子束3D打印、熔覆成形、注射成形和热喷涂等技术领域。
本发明属于粉末冶金和3D打印技术领域,具体涉及3D打印用高熵合金粉末及其制备方法和应用。本发明所要解决的技术问题是提供3D打印用高熵合金粉末及其制备方法和应用。该高熵合金粉末,组分按原子质量百分比计:Cr:0.2‑16.6%,Mn:0.2‑16.6%,Fe:0.2‑16.6%,Co:0.2‑16.6%,Ni:0.2‑16.6%,Mo:0.2‑16.6%,余量为金属基陶瓷相金属元素。制备方法包括真空熔炼、脱氧处理、净化熔体、雾化制粉。该高熵合金粉末能实现高强度、高硬度和高耐磨零件的3D打印。
本发明公开了一种生产方法,尤其是公开了一种用于钛铝合金的生产方法,属于冶金生产工艺技术领域。提供一种能显著提高成品纯度,显著降低生产成本,降低生产能耗的用于钛铝合金的生产方法。所述的生产方法以钛渣作为钛原材料,添加钙热还原剂和过量的金属铝粉,混合后在1450‑1750℃的还原温度条件下还原熔炼制得所述的钛铝合金。
本发明公开了一种高温合金热轧棒材,尤其是公开了一种W‑Mo‑Co强化高温合金热轧棒材及其制备方法,属于冶金生产技术领域。提供一种质量稳定性高,组织均匀性好,棒材高温持久性强并保持高强度的W‑Mo‑Co强化高温合金热轧棒材及其制备方法。所述W‑Mo‑Co强化高温合金热轧棒材包括以下重量份组分,C:0.03%~0.08%;Cr:17.50%~21.00%;W:5.50%~7.50%;Mo:3.00~5.00%;Al:1.80%~2.35%;Ti:1.2%~1.50%;Co:6.00%~9.00%;Mg:0.003%~0.01%;Fe:≤5.00%;余量是Ni及杂质,成品热轧棒材内部组织均匀,晶粒度细于7级,内部无混晶组织。所述制备方法采用真空感应熔炼+保护气氛电渣重熔双联冶炼工艺制取铸锭钢坯,通过对铸锭进行锻造开坯、两火次工艺热轧获得内部组织均匀,晶粒度细于7级,内部无混晶组织的小规格合金棒材。
本发明公开了一种低膨胀高温合金及其制备方法,属于冶金生产工艺制造技术领域。提供一种高温物理性能优良、Cr含量适中的低膨胀高温合金及其制备方法。所述的低膨胀高温合金为包含有下述重量份组分的冶炼均匀化热处理锻件,所述的重量份组分为35~40%的Ni,13~15%的Co,1.5~1.8%的Ti,4.5~5.2%的Nb+Ta,0.2‑0.5%的Cr,0.1~0.3%的Mo,0.2‑0.4%的Si,C:≤0.06%,其余为Fe和不可避免的杂质,所述冶炼均匀化热处理锻件在650℃/510MPa下的持久寿命>100h。所述的制备方法采用纯合金元素Ni、Co、Cr、Mo、Nb、Ti、Si以及C在真空感应炉+真空自耗炉中先后进行的双联工艺熔炼、铸锭、均匀化处理以及热处理几个步骤。
本发明涉及一种大口径钛无缝管的生产方法,属于冶金技术领域。本发明包括步骤:A、真空熔炼得到圆铸锭,外径不小于400mm;B、对圆铸锭外表面进行机加工扒皮;C、电炉加热圆铸锭,加热温度设为相变点以上5℃~50℃;D、穿孔或水压冲孔,得到毛管;E、对毛管内镗外车,得到光洁的内外表面;F、采用电炉或工频感应加热毛管,加热温度设为相变点以下5℃~50℃;G、皮尔格周期轧机热轧;H、定径机定径;I、退火。本发明生产的钛无缝管具有成材率高、工序少、低成本等优点,因此,本发明为大口径钛无缝管的生产提供了一种新的选择,具有广阔的应用前景。
本发明涉及锂铝合金的真空合成方法,属于有色金属冶金和电池领域。本发明要解决的技术问题是提供一种锂铝合金的真空合成方法。本发明锂铝合金的真空合成方法,包括如下步骤:将铝和熔化的金属锂在真空环境下按重量比1:24~999混匀,然后于190~250℃熔炼,冷却,即得锂铝合金。进一步的,本发明还公开了本发明方法制备得到的锂铝合金及其在制备电池负极材料中的用途。本发明锂铝合金的真空合成方法合金化时间大幅下降,明显提高了生产效率;同时,杂质氮含量明显降低,提高了锂铝合金的产品品质,更利于制备高端超薄合金带。
本发明公开了一种1150MPa级高强度易切削不锈钢及其制备方法,属于冶金技术领域。本发明1150MPa级高强度易切削不锈钢,其化学成分按质量百分比为:C0.10‑0.15%、Si0.20‑0.40%、Mn1.0‑1.5%、Ni0.10‑0.15%、Cr12.0‑15.0%、S0.1‑0.5%、Ce0.005‑0.020%、Ti0.001‑0.030%、O0.005‑0.030%、P≤0.01%,其余为Fe及不可避免的杂质。所述1150MPa级高强度易切削不锈钢的制备方法,包括配料、真空炉熔炼、浇注、锻造等步骤。本发明通过合理添加Ce与Ti元素,与合理的锻造工艺相配合,使钢材不仅具有良好的切削性能,同时还具有非常好的力学性能,锻态易切削不锈钢的抗拉强度≥1150MPa,屈服强度≥900MPa,断面收缩率≥25%,断后伸长率≥10%,冲击韧性≥25J,有效解决了现有易切削不锈钢切削性能较差、强度较低的问题。
本发明涉及靶材生产制备领域,具体而言,涉及硫族金属化合物相变材料溅射靶材的生产方法,按配比准备金属化合物的原料;对原料进行真空熔炼处理,得到金属化合物;将金属化合物进行粉末冶金处理,得到干燥的金属化合物粉末;将干燥的金属化合物粉末进行真空热压烧结处理,得到块状的金属化合物相变材料溅射靶材。本发明所述硫族金属化合物相变材料溅射靶材的生产方法,生产一系列金属化合物相变材料。这些材料,能够实现现有的金属化合物相变材料的相变功能之外,且生产金属化合物相变材料的成本降低。而且,制成的各种金属化合物相变材料比传统的GeSbTe金属化合物相变材料熔点低,故其相变的温度点也较低,使得工艺的窗口得到拓宽。
本发明涉及一种低碳低金属含量的电熔氧化铬的制备方法,利用三氧化二铬颗粒和三氧化二铬破碎工序产生的三氧化二铬收尘灰的混合物铺底,利用冶金用焦炭颗粒和高纯石墨条作为起弧材料,通过明弧熔炼制备得到低碳低金属含量的电熔氧化铬产品。本发明制备的电熔氧化铬产品碳和金属铬含量低,具有具有更优秀的抗侵蚀、抗收缩能力。
本发明公开了用于氟化工生产设备的镍基双金属复合材料的制备方法。用于氟化工生产设备的镍基双金属复合材料的制备方法,包括以下步骤:(1)基材、复材选料:根据工况要求,选择基材和复材;(2)熔炼、精炼:将基材和复材通过中频感应炉进行熔化,再经过精炼炉精炼调整成分;(3)离心浇注复合管坯:将精炼后的金属溶液通过离心复合铸钢机进行离心浇注成为复合管坯;(4)外剥加工:对浇注完毕的复合管坯进行内镗外剥加工,去掉有缺陷部分;(5)热挤压、开坯:热挤压加工、开坯,使复合管坯进行一次初变形,并进行热处理;(6)冷轧为成品。本发明方法制备出的材料基层与复层完全为冶金结合,(复合面结合力高)组织致密、强度高。
本发明公开了一种高钙高磷钒渣预处理脱钙脱磷的方法,属于冶金技术领域。本发明为了克服高钙高磷钒渣影响提钒时的产能和成本问题,提供了一种高钙高磷钒渣预处理脱钙脱磷的方法:将高钙高磷钒渣与氯化铵溶液混合浸出,浸出完毕后,固液分离,固体经烘干,得脱钙脱磷钒渣。本发明采用氯化铵溶液浸出预处理高钙高磷钒渣,使高钙高磷钒渣中的不溶性钙氧化物与氯化铵反应形成可溶性氯化钙,同时减少渣中磷含量,得到脱钙少磷钒渣,更有利于后续的焙烧、浸出、沉钒工序的顺利进行。
一种钒钛磁铁精矿的球团生产方法,包括以下步骤:(1)使用高压辊磨机对钒钛磁铁精矿进行辊磨,以得到钒钛磁铁精矿粉;(2)在所述钒钛磁铁精矿粉中添加水和粘结剂并得到混合均匀的物料;(3)使用造球机对所述物料进行造球。使用该方法生产球团矿,能在同时保证生球落下强度、生球抗压强度、生球爆裂温度、干燥球抗压强度、焙烧球抗压强度等冶金性能基本满足生产需要的前提下,提高了钒钛磁铁精矿的成球率,降低了膨润土添加量,提高了入炉铁品位。
本发明属于化工冶金领域,具体涉及一种钛白废酸浸出钛渣制备人造金红石的方法。针对现有硫酸酸浸品位较低的钛铁矿制备人造金红石时,产品Ca、Si等杂质含量高的问题,本发明提供一种钛白废酸浸出钛渣制备人造金红石的方法,包括以下步骤:a、将钛渣置于950~1150℃,空气或者氧气气氛下焙烧1~3小时,得到金红石化的氧化钛渣;b、将氧化钛渣用钛白废酸浸出4~6h后,洗涤干燥,得到人造金红石初品;c、将人造金红石初品用碱浸出1~2h,洗涤干燥,得到人造金红石成品。本发明方法对钛白废酸进行了再利用,节约了成本,保护了环境,制备方法简单,可实现大规模生产;制备得到的人造金红石杂质含量低、品质高,值得推广应用。
本发明公开了一种从铬钒矿/渣中提取钒和铬的方法,属于冶金技术领域。本发明为了解决钒铬共生矿/渣中钒铬难以同时提取与分离问题,提供了一种从铬钒矿/渣中提取钒和铬的方法:将铬钒矿/渣与钠盐、钙盐混合均匀,经氧化煅烧,得熟料;熟料用水进行浸出,分离,得含铬溶液和提铬尾渣;提铬尾渣与水混合,调节料浆pH至2.5~3.5,进行浸出,分离,得含钒溶液和提钒铬尾渣;含铬溶液和含钒溶液在分别进行处理,即可得到重铬酸钠和五氧化二钒。本发明采用钠钙联合焙烧‑水浸提铬‑酸浸提钒工艺,工艺流程短,操作简易,生产效率高,可以高收率得到高纯度铬产品与钒产品。
本发明涉及四氯化钛精制尾渣超声辅助碱浸提钒的方法,属于钒化工冶金技术领域。本发明解决的技术问题是四氯化钛精制尾渣堆放时的环境污染问题和钒流失。本发明的技术方案是提供四氯化钛精制尾渣超声辅助碱浸提钒的方法,步骤包括a.将四氯化钛精制尾渣与碱液混合,在超声的条件下通入氧气进行浸出反应;b.固液分离,得到含钒浸出液和尾渣;c.快速冷却含钒浸出液,得到钒酸钠晶体和结晶后液,然后将得到的结晶后剩余液重新返回至超声辅助碱浸步骤进行循环利用。本发明减少了焙烧过程,降低了能耗,是一种较为清洁的提钒方法,钒的浸出率在85%~98.5%。
本发明涉及高钛护炉球团矿及其制备方法,属于冶金领域。本发明所解决的技术问题是提供了一种二氧化钛含量为15%以上的高钛护炉球团矿及其制备方法。本发明高钛护炉球团矿,其TiO2含量为15~35%,TFe含量为35~50%,其制备方法包括原料配料、造球、焙烧、冷却步骤。本发明高钛护炉球团矿用于高炉炼铁的护炉效果好,能有效提高高炉寿命,具有广阔的应用前景。
本发明涉及制备五氧化二钒的方法,属于湿法冶金领域。本发明解决的技术问题是提供制备五氧化二钒的方法。本发明的方法,将多钒酸铵返溶除氨气后调pH值到10~13之间沉降除杂,用乙醇结晶析出多钒酸钠固体,返溶多钒酸钠固体后沉偏钒酸铵,焙烧得到99.9%纯度五氧化二钒。与现有技术相比,本发明工艺简单,操作方便,对设备要求不高;得到的五氧化二钒纯度高,应用范围广;氨气回收利用,乙醇经过精馏循环利用,物料损耗少,节约了成本;废液归入钒厂沉多钒酸铵工序,实现了废弃物循环利用,减少了污染,促进环保和废弃资源综合利用。
本发明公开了一种钙化提钒尾渣回收钒的方法,属于冶金技术领域。所述方法包括以下步骤:步骤一:对钙化提钒尾渣进行打浆;步骤二:向步骤一制得的浆料中加入氧化钙,调节pH值到10~13,反应5~15min;步骤三:向步骤二的体系中加入硫酸,调节pH值到0.5~2.5,进行二次浸出,反应10~30min后固液分离,得到含钒溶液和低钒含量的二次浸出尾渣。本发明采用钙化焙烧—硫酸浸出工艺所产生的尾渣为原料,利用氧化钙使尾渣中不能被酸溶解的五氧化二钒以及水解沉钒产生的不能溶解于酸的多钒酸盐转化成溶于酸的钒酸钙,之后可以用酸浸出,具有钒回收率高、成本低、操作简单、渣量增加少等特点。
该发明属于粉末冶金领域中一种钨铜复合粉的生产方法。包括采用蓝钨(W20O58)或紫钨(W18O49)和氧化亚铜粉为原料,经机械混合、热处理及还原处理,即得可用于生产细晶粒钨铜复合材料的钨铜复合粉产品。该发明具有相变温度适中,生产率较背景技术均提高一倍以上;此外,至生成复合氧化物工艺阶段,与以WO3+CuO为原料相比可缩短反应时间40%以上,焙烧温度降低近100℃;而与以H2(WO4)+Cu(OH)2为原料的方法相比则不需进行热分解脱水来改变氧化物形态、且无工业废气产生。因而该发明具有流程短,工艺操作简便、可靠,生产效率高,能耗及生产成本相对较低,无废气排出并可进行工业规模化生产等特点。
本发明涉及钒的湿法冶金技术领域,公开了一种钙化提钒工艺石膏渣的回收利用方法。该方法包括:(1)将石膏渣加水打浆,然后加入碳酸铵,搅拌反应后固液分离,得到固相和液相,石膏渣中含有硫酸钙、氢氧化锰和氢氧化镁;(2)用水洗涤固相,洗涤液与液相混合后蒸发结晶,得到(NH4)2SO4固体和冷凝水,(NH4)2SO4固体作为铵盐返回沉钒工序中使用,冷凝水作为固相洗涤水使用;(3)将洗涤后的固相干燥、粉碎,得到含有碳酸钙、碳酸锰、氢氧化镁的混合物,混合物返回钒渣钙化焙烧工序中作为钙盐添加剂使用。该方法可实现石膏渣中钙、锰、镁等元素的有价利用,解决堆存造成的环保压力,同时可实现石膏渣中钒的回收,减少钒损失。
本发明公开了一种制备四氯化钛的方法,所述方法包括:S1:将高钙镁高钛渣原料破碎后加入添加剂a,进行强化焙烧、洗涤,将得到的待处理物料在高压反应釜中加入添加剂b和硝酸进行加压浸出。本发明的方法环保无废水废气废渣排放,工艺流程简单高效、占地少,投资和运营成本低,产品产率高;解决了现有工业高钙镁高钛渣氯化法制四氯化钛技术中工艺流程复杂、操作复杂、产能小、运行成本较高、处理效率低、废熔盐量大易造成环境污染、难以在实际生产中得到推广的问题。本发明适用于冶金和矿物加工领域。
中冶有色为您提供最新的四川有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!