本发明公开了一种可实现零碳排放的还原铁粉清洁生产方法与装置,所述感应竖炉内部开设有石墨炉体加热还原段,且石墨炉体加热还原段上方设置有炉体预热段,所述炉体预热段上方连接有储球料斗,且储球料斗侧面设置有上料机构。该可实现零碳排放的还原铁粉清洁生产方法与装置,采用电气化操控,更易实现全系统的自动化与智能化;中频电热氢冶金竖炉,采用感应电流加热模式,经竖炉中频电源形成交变磁场,在石墨炉衬及与炉料混配的石墨块中产生感应电流,形成电阻热,可对炉内整个反应区料柱及氢气由内到外均匀、快速加热配合感应电流在炉内形成的尖端放电效应,可使反应区内的炉料高效还原,可显著提升本装置的生产作业效率。
本发明公开了一种稀土金属间化合物增强铜基复合材料,包括如下按质量百分比配比的粉末原料:20.95%La、50.55%Fe、28.5%Al,其中La、Fe和Al的摩尔比为1∶6∶7,粉末原料的原料为La片、Fe片和Al片,各组分纯度均高于99.9%;本发明还公布了一种稀土金属间化合物增强铜基复合材料的制备方法,制备方法包括以下步骤:制备稀土金属间化合物粉末;稀土金属间化合物粉末与纯铜粉末的均匀混合;采用热压烧结技术使稀土金属间化合物粉末与铜粉之间发生冶金结合,形成LaFe6Al7/Cu复合材料。本发明制备的铜基复合材料,组织结构致密,气孔较少,稀土金属间化合物分布均匀,与铜基体结合性好,添加的硬质第二相,明显的起到了传递载荷和增强作用,显著的提高了复合材料的强度。
本发明公开了一种陶瓷复合圆锥破碎机衬板,包括轧臼壁、破碎壁和陶瓷块,所述陶瓷块镶铸在所述轧臼壁的内表面和所述破碎壁的外表面,所述陶瓷块靠近破碎腔的表面与所述轧臼壁的内表面及所述破碎壁的外表面处于同一平面,所述陶瓷块与所述轧臼壁及所述破碎壁之间为冶金结合。陶瓷复合圆锥破碎机衬板的制备流程为:制备陶瓷块‑制备砂型‑浇铸‑打箱‑热处理。本发明采用上述陶瓷复合圆锥破碎机衬板制备方法生产的复合衬板具有使用寿命长、硬度高、耐磨性好和抗冲击的优点。
本发明涉及精密铸造技术领域,具体而言,涉及用于型壳对接的对接蜡模、熔模精密铸造方法及其应用。所述用于型壳对接的对接蜡模包括第一蜡模和第二蜡模;所述第一蜡模包括固定连接的环状结构以及使所述环状结构的一端封闭的连接部,所述第一蜡模还包括与所述连接部相连接的呈圆柱状的芯部,所述芯部部分容置在所述环状结构内且与所述环状结构之间形成环形凹槽;所述第二蜡模包括依次固定连接的第一圆台体、第一圆柱体和第二圆柱体;所述第一圆柱体的外径为Rmm,所述环状结构的内径为R‑1mm~Rmm。所述对接蜡模能够将若干个小模组进行连接,安全、可靠,可有效保证铸件冶金质量,同时省掉了糊泥烘烤工序,成本低,且提高了生产效率。
本发明涉及金属加工处理技术领域,一种经济型热作模具钢的制造方法,该制造方法包括以下步骤:步骤一、电弧炉熔炼;步骤二、造渣;步骤三、炉外精炼;步骤四、钢液搅拌;步骤五、连铸;步骤六、回火;步骤七、锻造;步骤八、锻后退火,本制造方法在一定程度上降低对Mo和V等珍贵元素的使用,从而降低了生产的成本,避免了不必要的资源浪费,并且提升横向力学性能,避免模具易开裂的情况,增加了钢种的使用寿命。
本发明涉及锤头制备技术领域,且公开了一种双金属双液复合合金锤头的制备方法,解决了目前市场上的双金属双液复合合金锤头的制作装置在制作合金锤头时,铸造工艺采用1到4个复合锤头铸型小钢水包浇注,效率低、产量低、产品质量不稳定的问题的状况。其如下步骤:步骤一:熔炼;步骤二:锤头铸型;步骤三:一次浇注数量;步骤四:锤头铸型设计;步骤五:锤头铸型组合;步骤六:浇注工艺;步骤七:成品处理;本发明,实现了双金属双液复合合金锤头铸造由一次同时浇注少量1~4个锤头模型变为一次同时浇注5个及以上锤头模型,提高了产量,稳定产品质量,降低了生产成本。
本发明涉及一种生产高铬低磷轧辊用电渣钢的方法,属于冶金行业电冶金技术领域。技术方案是:包含顶底复吹转炉冶炼、LF精炼、RH真空脱气、方坯连铸、双极串联抽锭式电渣重熔工序,生产出成本更低、成材率更高的高铬低磷轧辊用钢。本发明与传统的电炉配合固定式电渣重熔工艺生产轧辊用钢相比,其吨钢生产成本降低约300元/吨,综合成材率提高了10%,成品直径600毫米长度6米的电渣钢锭中铬含量控制在3.00%以上、磷含量在0.012%以下,其他化学元素同样实现了稳定和优化控制,且表面质量和内部组织良好。该方法很好满足了下游用户需求,并实现了较好的经济效益。
本发明公开了一种陶瓷磨块用陶瓷结合剂及其制备方法,属于粉末冶金材料技术领域,以达到陶瓷结合剂对金刚石的保持力好,和碳化硅、棕刚玉、金刚石三者膨胀系数匹配,成品烧结温度低等效果。陶瓷结合剂由下述重量单位的粉末原料配成:SiO220~55,Al2O35~25,ZnO0~5,TiO20~5,ZrO0~7,Na2CO310~20,Li2CO35~15,H3BO38~30。本发明的陶瓷磨块用陶瓷结合剂使陶瓷磨块具有烧结温度低、自锐性好、锋利度好、寿命长、低碳环保等优点。
本发明涉及钢铁冶金技术领域,具体公开一种L80‑1钢级石油套管及其制备方法。所述石油套管化学成分按质量百分比计,包括以下组分:0.23%≤C≤0.31%、0.15%≤Si≤0.35%、1.25%≤Mn≤1.40%、P≤0.020%、S≤0.005%、0.10%≤Cr≤0.30%、Ni≤0.25%、Cu≤0.20%、Mo≤0.10%、0.01%≤Al≤0.04%、N≤0.01%以及余量的Fe和杂质元素,所述套管按照铸坯生产工序、轧管工序、调质热处理工序进行制备,不仅符合Directive 010标准中对L80‑1钢级化学成分的要求,性能检测也符合Directive 010标准。
本发明公开了一种免堆焊离心复合超高耐磨辊压机辊套及其制备方法,所述的辊套包括辊套本体,所述的辊套本体是内层为高韧性层外层为高耐磨层的双层结构,所述的辊套本体的高耐磨层表面上设有铸造成型的花纹。该辊套具有如下特点:在离心力的作用下,辊套致密度高,并充分实现内外层的冶金结合,过渡区平缓;通过对铸后“少氧化”热处理后的组织控制,在确保外层超高耐磨性和芯部高韧性的同时,使外层的抗冲击能力提高;离心铸造出的花纹成分与外层基本成分相同,由于钢水中的重质点在离心力的作用下出现外移偏析,使得花纹的耐磨性略高于外层;在离心力作用下充分的冶金结合,杜绝了裂纹、夹杂、气孔等铸造缺陷的产生。彻底消除了由于焊接微裂纹带来的掉块、剥落等失效形式,可以做到终身免维护;生产周期短,可规模化生产。
本发明涉及冶金技术领域,具体公开一种非调质N80钢级石油套管及其制备方法。所述非调质N80钢级石油套管的成分重量百分比为:C 0.28~0.32%,Si 0.25~0.40%,Mn 1.55~1.70%,P≤0.015%、S≤0.008%,Nb 0.011~0.020%,V 0.05~0.08%,Ti 0.007~0.013%,Al 0.010~0.040%,N 0.013~0.017%,Cr<0.10%,Ni≤0.10%,Cu≤0.10%,As≤0.020%,Sn≤0.020%,Pb≤0.01%,Sb≤0.01%,Bi≤0.01%,且Sn+As+Pb+Sb+Bi≤0.035%,余量为Fe。本发明通过成分调整和工艺优化,满足了N80钢级石油套管的抗拉强度、屈服强度、延伸率、冲击功的设计要求,且性能稳定,与调质工艺相比,达到了同样的质量要求,缩短了生产流程,节约了能源,制造成本低,提高了生产效率。
本发明属于特炭质电极技术领域,公开了一种加入添加剂的特大直径抗氧化炭质电极及其制备方法。其主要技术特征为:将煅后的固体原料电煅煤、石油焦、石墨碎,经振动筛筛分、电子配料系统配料后进入一种双速节能混捏锅同时加入经过处理的添加剂碳酸镁搅拌、干混后,加入煤沥青。由于碳酸镁是单斜结晶无定型粉末固体,无毒无、无气味,性质比较稳定,在炭质电极焙烧过程中易分解成氧化镁和二氧化碳。该抗氧化炭质电极采用碳酸镁作为电极的添加剂,可以改变电极的空气反映残余率,降低空气对电极的渗透率,改善电极的性能,达到降低电极电阻率和消耗、延长电极使用周期寿命、降低埋弧电炉生产成本的目的。
本发明属于等静压石墨制造技术领域,提出了一种超细结构等静压石墨的制备方法,包括以下步骤:将煅后石油焦、煅后沥青焦、预处理后的高温煤沥青磨粉至煅后石油焦、煅后沥青焦焦粉粒度为D50在1~10μm,沥青粉粒度为D50在0.1~2μm,将磨粉后的石油焦、煅后沥青焦与预处理后的高温煤沥青混合在高温下混合,将混合后的物料加入机械融合机中融合、造粒,将复合颗粒装入胶套中,抽真空,密封,等静压成型,压力在80~150MPa,保持30~100min,等静压成型后的坯体浸渍、焙烧、石墨化后续工艺后就制成了等静压石墨。本发明解决了现有技术中等静压石墨制备工序流程长,生产周期长,效率低,能耗高,合格率偏低的技术问题。
本发明公开了一种铬渣资源化清洁利用的方法,该方法采用下述工艺步骤:将铬渣用于炼铁配矿烧结过程,制作成铬渣烧结矿,然后用于高炉炼铁流程,冶炼含铬钒铁水;含铬钒铁水经过提钒转炉吹氧,得到高铬钒渣,再经过亚熔盐法氧化分解,得到钒酸钠、铬酸钠产品。本发明采用生产过程协同资源化利用的方法,通过铬盐行业与钢铁冶金流程的协同联合,利用钢铁冶金流程大规模消纳铬渣,实现了铬元素在钢铁冶金流程的资源化清洁利用,Fe元素全流程收率高于90%,Cr元素全流程收率高于60%。
本发明公开了一种微电解填料及其制备方法,其原料的质量百分含量为:高炉干灰25~35%,转炉细灰20~30%,转炉粗灰10~15%,转炉污泥10~20%,高炉槽上槽下灰8~12%,粘结剂2~4%。本填料用于工业废水处理特别是冶金焦化废水处理时处理效率高,可以降低废水的CODCr和毒性,提高废水可生化性,并且使用过程中填料不易板结钝化,反应后污泥不增加,反应效率高。本填料的原料为冶金废弃粉尘,充分利用了冶金废弃粉尘中铁和碳成分,降低了填料生产成本,实现了资源的回收再利用,减少了对环境的污染。本填料保证微电解系统的持续、稳定,减少了微电解填料更换的工作量,实际操作简单,解决了填料更换困难的问题。
一种超级耐磨复合立磨辊套,包括超耐磨的外层和高韧性的内层的双层结构,外层为冶金铸造的含量大于35%的碳化物质点的超耐磨铸铁,内层为高韧性中碳低合金钢,超耐磨外层与高韧性内层冶金结合在一起,所述耐磨铸铁为具有超常规含量的碳元素和超高含量的多种合金元素的超高耐磨铸铁。本发明在静压力的作用下,将工作层铁水紧紧与加热至930℃的内层包围,在铁水的冲刷下,将带有2mm深尖纹的内层套外表面形成边界熔化,随温度降低外层与内层冶金结合在一起;本发明彻底消除了由于焊接微裂纹带来的掉块、剥落等失效形式,可以做到终身免维护。
本发明提供一种间接加热式还原炼铁的方法和装置,装置包括有气化预热炉,隔焰还原炉、熔炼炉、气体处理装置和排放系统。气化预热炉的内部由烟气通道和预热室构成,预热室由导热壁围成,预热室壁和预热室之间的空间为烟气通道。隔焰还原室中由导热壁分隔为还原室和燃烧室,隔焰还原室壁与导热壁之间的空间为燃烧室。导热壁的材质为碳化硅砖或高铝砖等。气化预热炉之间被还原物料通过物料输送设备输送,加热烟气通过烟气管路输送,煤气通过煤气管路输送。本发明烟气通过气化预热炉和隔焰还原炉的导热壁间接加热被还原物料,还原过程中伴生煤或其他燃料的气化,产生的煤气用于燃烧加热,既提高还原产品的质量,又节省能源。?
福特汽车锻旋轮毂装饰环铝合金铸棒的生产工艺,其组合物及其重量百分比如下:Al95.95~97.30%,Mg0.95~1.05%,Si0.72~0.8%,Cu0.21~0.24%,Fe0.20~0.24%,Cr0.16~0.20%,Mn0.06~0.10%,Zn0~0.05%,T?i0~0.05%;将组合物Al、Mg、Si、Cu、Fe、Cr、Mn、Zn、T?i按重量比置入到熔炼炉内熔炼,将熔液搅拌均匀,除渣后,得到铝合金熔液;将铝合金熔液导入静置炉内,使用氩气、氮气和2号熔剂粉进行精炼;然后将精炼后的铝合金熔液在温度为735℃~745℃的静置炉内静置30min;然后通过热顶式铸造机进行成型铸造,并在铸造机上采用油气混合式润滑石墨环技术,进行油气混合处理,即可铸造成铝合金铸棒;将铝合金铸棒进行切削处理后,进行均匀化处理和冷却处理,即制成福特汽车轮毂专用铝合金铸棒。
锻旋D061轮型汽车轮毂专用铝合金铸棒,其组合物及重量百分比为:Si0.70~0.80%,Fe0.20~0.3%,Cu0.20~0.30%,Mn0.06~0.10%,Mg0.90~1.20%,Cr0.05~0.15%,Zn≤0.05%,Ti≤0.05%,余量为Al;将组合物Si、Fe、Cu、Mn、Cr、Zn、Ti、Al称重后置入熔炼炉内熔化,当温度达到735±5℃时,清除浮渣,按重量比加入Mg,搅拌均匀,除渣后,制成铝合金熔液;将铝合金熔液导入静置炉内,温度达到735±5℃时,加入精炼粉进行除渣精炼;再用氩气和Al-Ti-B杆除气精炼;再将精炼后的铝合金熔液置入温度为730℃~740℃的静置炉内静置30min,通过热顶式铸造机进行铸造成型,将铸成的铝合金铸棒处理后,进行均匀化退火处理和冷却处理,检测合格后,即制成锻旋D061轮型汽车轮毂专用铝合金铸棒。
锻造汽车铝合金轮毂所使用的专用铝合金铸棒生产工艺,其组合物及重量比为:Cu0.20~0.30%,Fe0.20~0.25%,Mg0.90~1.20%,Si0.70~0.80%,Mn0.06~0.10%,Cr0.15~0.22%,Ti0.02%,Zn≤0.05%,Al-Cu中间合金0.50~0.75%,Al-Fe中间合金2.00~2.50%,Al-Si中间合金3.50~4.00%,Al-Mn中间合金0.60~1.00%,Al-Cr中间合金3.00~4.4%,Al-Ti中间合金0.20%,余量为Al;制备方法:将上述组合物按以上重量比置入熔炼炉内,当所有原料熔化后,再加入Mg,搅拌均匀,经除渣后,制成铝合金熔液;将铝合金熔液导入静置炉内,加入2号熔剂粉和Al-Ti-B熔丝原料精炼,除渣处理后,静置30min,通过热顶式铸造机铸造成型,制成铝合金铸棒;将铝合金铸棒经过均匀化退火和冷却程序处理后,即制成锻造汽车铝合金轮毂所使用的专用铝合金铸棒。
盐害地区汽车轮毂专用铝合金生产工艺,其组合物及重量百分比为:Si6.8~7.4%,Mg0.32~0.40%,Ti0.08~0.13%,Fe≤0.13%,Zn≤0.01%,Ca≤0.03%,Cu≤0.01%,Mn≤0.05%,P≤0.01%,Ni≤0.05%,Cr≤0.05%,Sn≤0.01%,Pb≤0.05%,余量为原铝锭;按重量比取组合物Si、Ti、Fe、Zn、Ca、Cu、Mn、P、Ni、Cr、Sn、Pb、原铝锭,放入熔炼炉内熔炼,当温度达到750~820℃时,将熔液搅拌均匀,再按上述重量比加入Mg,搅拌均匀后,除渣,得到铝合金熔液;将铝合金熔液导入静置炉内,使用氩气或氮气将精炼剂喷入铝合金熔液中进行精炼;精炼过程完成后,除渣后将铝合金熔液在静置炉内静置30min;静置后的铝合金熔液通过自动浇铸机进行成型铸造,码垛包装后,即制成盐害地区汽车轮毂专用铝合金。
本发明属于金属抗磨材料及其制备,是粉磨各类物料的球磨机用衬板及其生产方法。该方法适合冲天炉熔炼,采用多元微合金化技术,并靠合理选配我国富有的含Mn、Cn、W等合金元素做炉料,简化铸造成型后的热处理工序,使衬板的金相为马氏体、贝氏体复合组织。用该方法制造的衬板具有耐磨性、冲击韧性较高和使用中无断裂、变形现象发生,寿命较长等显著特点。
本发明涉及一种含鳞片石墨的炭电极的生产工艺,其原材料采用如下粒度的重量百分比成分:0.075~0.15mm煅后石油焦粉23~28%,0.075~0.15mm鳞片石墨粉2~8%,0.5~4mm煅后石油焦18~23%,4~10mm煅后石油焦11~19%,4~10mm电煅无烟煤6~14%,10~16mm煅后石油焦2~10%,粘结剂中温煤沥青16~20%,将以上原料成份进行混捏、成型、焙烧后,再进行机械加工制成,采用本发明工艺生产的炭电极冶炼工业硅,可有效提高工业硅产量,降低电极消耗和电能消耗,降低生产成本。
本发明涉及一种黄磷专用电极的生产工艺,其原材料采用如下粒度的重量百分比成份:0.05~0.075mm煅后石油焦粉25~33%,0.5~4mm石墨碎18~26%,4~10mm石墨碎11~19%,4~10mm电煅无烟煤6~14%,10~16mm电煅无烟煤2~10%,粘结剂中温煤沥青15~21%,将以上原料成份进行混捏、成型、焙烧后,再进行机械加工制成,采用本发明工艺生产的黄磷专用电极冶炼黄磷,可有效提高黄磷产量,降低电极消耗和电能消耗,降低生产成本。
一种高端轿车轮毂专用铝硅镁合金的制备方法,其组合物及其重量百分比为:Si?6.85%~7.15%,Mg?0.275%~0.295%,Ti?0.105%~0.145%,Sr?0.016%~0.029%,剩余为Al。制备方法:先将称重后的Al、Si、Ti置入熔炼炉内预热、熔炼,熔炼时,采用两个熔炼炉,一个保温炉,熔炼炉内的Al、Si、Ti的温度上升至500℃左右,保温炉温度在750~850℃之间;熔炼过程中,进行除渣处理;再将保温炉内的铝合金熔液转入合金炉内,调整铝合金熔液温度至700~730℃之间,然后加入Mg,即制成液体合金;将液体合金温度调整至640~670℃之间;再将浇包和铸模进行烘烤,烘烤温度为700℃左右,烘烤15min左右,然后将Sr加入到浇包内,再通过浇包将液体合金浇注到铸模内,即制成本发明所述的铝硅镁合金。
本发明属于炭电极技术领域,公开了钛渣冶炼专用炭电极及其制备方法。其主要技术特征为:将煅后的固体原料电煅煤、石油焦、石墨碎进行筛分、电子配料系统配料后进入混捏锅搅拌、干混,然后加入煤沥青混捏,再经成型、焙烧和机加工生产出钛渣冶炼专用炭电极成品。本发明提供的钛渣冶炼专用炭电极不存在沥青挥发份、体密高、灰分低、抗氧化性好,用其代替自焙电极,没有焙烧散发的烟气挥发份,节省了自焙电极焙烧过程中的电量消耗,实现了节能环保,且安装简便,不会由于操作不慎造成电极软断、硬断事故的发生,大大提高了安全性。
本发明属于炭电极技术领域,公开了铁合金冶炼专用炭电极及其制备方法。其主要技术特征为:将煅后的固体原料电煅煤、石油焦、石墨碎、炭黑二次料进行筛分、电子配料系统配料后进入混捏锅搅拌、干混,然后加入煤沥青混捏,再经成型、焙烧和机加工生产出铁合金冶炼专用炭电极成品。本发明提供的铁合金冶炼专用炭电极不存在沥青挥发份、体密高、灰分低、抗氧化性好,用其代替自焙电极,没有使用过程中焙烧散发的烟气挥发份,节省了自焙电极焙烧过程中的电量消耗,实现了节能环保,且安装简便,不会由于操作不慎造成电极软断、硬断事故的发生,大大提高了安全性。
本发明公开了一种铂金族金属的纳米催化冶炼方法,属于冶金技术领域。铂金族金属的纳米催化冶炼方法,包括以下步骤(1)选矿(2)复选富集原矿精粉(3)加入添加剂(4)冶炼得到金属化合物(5)精炼,粉碎成2毫米以下的颗粒(6)湿法分离提纯得到铂、钯、锇、铱、铑。本发明方法充分利用了贵金属矿中的硫化铁原料,不仅大大简化了火法过程中冶金流程,而且充分富集了矿石的有价金属铜。
本实用新型涉及一种大中型铸造轧辊捣打铸型补热、补缩装置,属于冶金轧辊铸造技术领域。技术方案是:辊身铸型的纵向轴线、上辊颈铸型的纵向轴线和下辊颈铸型的纵向轴线重合,在同一条纵向直线上;所述上辊颈铸型与辊身铸型是分离的,上辊颈铸型为带有下大上小锥度的筒状,外面设有感应加热线圈,为多匝线圈,感应加热线圈带有与上辊颈铸型相同的锥度,上辊颈铸型的下端与上端的直径,与轧辊的上辊颈直径相匹配;所述上辊颈铸型由耐火材料捣打成型。本实用新型采用感应加热补热的方式完成补缩,补缩充分、减少缺陷;铸造时浇入的金属液体数量明显少于背景技术所需要的金属液体数量,降低熔炼费用,显著减少车削加工量和能源消耗。
中冶有色为您提供最新的河北有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!