本发明的目的是为了改善钛合金的硬度、耐磨性,设计了一种TA15粉末冶金钛合金。采用氢化脱氢TA15钛合金粉末为原料,所制得的TA15粉末冶金钛合金,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,制备的最佳工艺参数为:压制压力600MPa、烧结温度1250℃,压坯密度随压制压力增大而增大,烧结密度随烧结温度升高而提高,随成形压力增大而增大。压制压力增大或烧结温度升高能够提高烧结体的抗拉强度和伸长率。成形压力为600MPa和烧结温度为1250℃时能够制备出抗拉强度为1150MPa,最大的伸长率为5%的TA15钛合金,合金的相对密度高达98%。本发明能够为制备高性能的TA15钛合金提供一种新的生产工艺。
为了改善硬质合金的硬度、耐磨性,制备了一种真空钎焊制备的5CrMnMo钢与YG8硬质合金。采用5CrMnMo钢和YG8硬质合金,自制CuMnNi钎料为原料,真空钎焊制备的5CrMnMo钢与YG8硬质合金,添加Ni夹层后,Fe向硬质合金侧的扩散被阻碍。但Co还是部分扩散到钢中。在靠近钢一侧形成Fe‑Co基单相固溶体相,Mn、Ni在硬质合金和钢中都有扩散。所制得的真空钎焊制备的5CrMnMo钢与YG8硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的5CrMnMo钢与YG8硬质合金提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种Fe‑2Cu‑0.5C‑0.11S材料。采用水雾化铁粉为原料,所制得的Fe‑2Cu‑0.5C‑0.11S材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,粉末锻造可以明显提升Fe‑2Cu‑0.5C如.11S材料的密度,平均密度可从6.8/cm3增加至7.7g/cm3,相对密度可提升到99%,最高密度可达8g/cm3,接近全致密。烧结件和锻件在拉伸时均无明显宏观塑性变形,表现出脆性断裂的特性。由于锻件中既存在孔隙又存在内部微裂纹,导致微裂纹既会沿着烧结颈扩展形成韧窝,也会沿着颗粒内部扩展形成解理平面。本发明能够为制备高性能的Fe‑2Cu‑0.5C‑0.11S材料提供一种新的生产工艺。
本发明公开了一种带料罐的真空熔炼速凝设备,真空熔炼速凝设备包含熔炼坩埚、中间包、第一旋转辊、破碎装置、收料罐;所述的熔炼坩埚、中间包、第一旋转辊设置在真空壳体内,在第一旋转辊下方设置有旋转式机械破碎装置,机械破碎装置的下方设置有阀门,阀门的一端与真空壳体相连,另一端与收料罐相连,收料罐上设置有冷却装置,冷却介质为水、冷媒、氩气、氮气中的一种本发明还公开了采用本发明设备生产钕铁硼稀土永磁合金、稀土永磁体的方法。
为了改善WC‑Co硬质合金的硬度、耐磨性,制备了一种WC‑6Co超细硬质合金。采用WC粉末、类球形钴粉为原料,合金中的碳元素含量与烧结炉内烧结气氛中的碳元素含量差距也是一个影响硬质合金性能的重要因素。合金中的碳元素含量与烧结炉内烧结气氛中的碳元素含量需要控制在一个合适的范围内,使得硬质合金内部既能产生适当的液相钴迁移,又使其迁移的活性不会在硬质合金表面产生复钴现象。所制得的WC‑6Co超细硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC‑Co超细硬质合金提供一种新的生产工艺。
本发明公开了一种钕铁硼稀土永磁合金的制造方法,首先将R-Fe-B-M原料在真空条件下加热到500℃以上,之后充入氩气继续加热将R-Fe-B-M原料熔化并精炼成熔融合金,在此过程中加入T2O3氧化物微粉,之后将熔融的合金液通过中间包浇铸到带水冷却的旋转辊上,形成合金片;其中T2O3代表氧化物Dy2O3、Tb2O3、Ho2O3、Y2O3、Al2O3、Ti2O3中的一种以上;所述的T2O3氧化物微粉的加入量:0≤T2O3≤2%。
本发明属于电工材料制造领域,公开了一种银氧化锡复合电接触材料制备方法。采用粉末预氧化法和粉末冶金法相结合的工艺制备的电接触材料,使得导电陶瓷颗粒在Ag基体中的分布非常均匀,而且由于导电陶瓷的添加不仅降低了材料的电阻率,还赋予材料很好的抗电弧侵蚀性以及灭弧性。此工艺得到的第二相颗粒尺寸小于1μm,晶粒细化后材料的硬度及电寿命得到了提升。本发明可以满足材料在交流和直流的大电流条件下的使用,电寿命均超过15万次以上。
为了改善粉末合金的硬度、耐磨性,设计了一种纳米SiC颗粒增强铝镁复合材料。采用雾化铝粉,镁粉和SiC颗粒为原料,所制得的纳米SiC颗粒增强铝镁复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,纳米SiC颗粒的加入,SiCp/Al–Mg复合材料的硬度逐渐增加,相对密度和抗拉强度先增加后降低,少量的纳米SiC颗粒经过球磨后可以在基体中得到很好的分散,加入过多的纳米SiC颗粒会在基体中产生团聚现象,使得复合材料的性能降低。纳米SiCp/Al–Mg复合材料颗粒主要强化机制有细晶强化、弥散强化和位错强化三种,使得复合材料产生强化和硬化。本发明能够为制备高性能的铝镁复合材料提供一种新的生产工艺。
本发明公开了一种无底料气流磨制粉设备,包含加料装置、第一磨室、第一分选轮、第二磨室、第二分选轮、旋风收集器;所述的加料装置设置在第一磨室的上部,加料装置与第一磨室相连,第一磨室内设置有喷嘴和与合金片发生撞击的撞击板,在第一磨室还设置有带叶片的第一分选轮;分选轮的排气口与第二磨室底部的接管相连;第二磨室的侧壁上设置有喷嘴,所述的喷嘴2个以上;第二磨室的上部设置有带叶片的第二分选轮,第二分选轮的排气口与旋风收集器的进气口通过管路相连;本发明还公开了无底料气流磨制粉方法和采用本发明设备制造钕铁硼稀土永磁体的方法。
为了改善粉末合金的硬度,耐磨性,设计了一种热等静压原位合成的SiC‑TiC复相陶瓷。采用纳米级SiC粉末,Si粉末,C粉和TiH2粉为原料,所制得的热等静压原位合成的SiC‑TiC复相陶瓷,其硬度,致密化程度,抗弯强度都得到大幅提升。其中,以SiC,Ti,C粉末为原料的原位合成反应无副反应发生,更易得到成分符合预期,致密度良好且性能优秀的SiC‑TiC复相陶瓷。以SiC,Ti,C粉末为原料的热等静压原位合成样品,热等静压压力从80MPa提高到140MPa,材料的致密度,三点弯曲强度,硬度以及断裂韧性均得到一定程度的提高。复相陶瓷具有最好的致密度,硬度,三点弯曲强度以及良好的断裂韧性。本发明能够为制备高性能的SiC‑TiC复相陶瓷提供一种新的生产工艺。
为了改善粉末合金的硬度,耐磨性,设计了一种烧结溶解法制备的多孔铝材料。采用纯Al粉,纯Mg粉及水溶性造孔剂为原料,所制得的烧结溶解法制备的多孔铝材料,其硬度,致密化程度,抗弯强度都得到大幅提升。其中,随着烧结温度的升高,生成孔边缘由尖锐逐渐变得圆滑,间隙孔数量减少,致密化程度增大,在650℃烧结效果最好,延长烧结时间有利于烧结的进行,过长的烧结时间容易引起铝颗粒熔化,影响造孔剂颗粒的脱除。在Al粉中加入少量Mg颗粒,可以破除Al2O3薄膜,促进Al颗粒间冶金结合,促使孔结构收缩,同时在孔隙内壁生成质硬高强的MgAl2O4尖晶石,有利于多孔铝材料力学性能的提升。本发明能够为制备高性能的多孔铝材料提供一种新的生产工艺。
两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法,属于冶金技术领域,按以下步骤进行:(1)以氟化钠和氟钛酸钠为原料,或者以氟钛酸钠为原料,以铝钛合金粉为还原剂;(2)混合压制成球团,进行一段铝热还原和真空蒸馏;(3)将含钛冰晶石取出后磨细,与还原剂混合压团,进行二段铝热还原;(4)将低钛的铝钛合金和高钛的铝钛合金分离,制粉返回到两铝热还原中作为还原剂;或者重熔后制成粉再进行两段铝热还原。本发明的方法反应过程易于控制,生产成本低,钛元素可得到最大限度的回收利用,并可副产高纯度的冰晶石。
本发明属于冶金与环保技术领域,特别涉及一种氧化铝赤泥的综合利用方法。针对氧化铝赤泥难以处理与有效回收利用的问题,该方法采用真空热还原法处理赤泥,以碳或铝为还原剂,在真空条件下使赤泥中的氧化铁还原为金属铁,然后通过磁选将还原渣中的铁分离出来用于生产还原铁粉,使化合态的氧化钠还原为金属钠,并被蒸馏出来,从而达到赤泥除碱和回收碱的目的,同时使赤泥中的其它有价物质(如:钪、铌、铯等)被还原为金属态并与铝形成合金,从而与主要成分为氧化硅和氧化铝的渣相分离,实现氧化铝赤泥的无害化处理和有价元素的综合回收利用的效果,且处理过程中没有废气、废水、废渣等二次污染。
为了改善硬质合金的硬度、耐磨性,制备了一种表层富钴无立方相梯度硬质合金。采用WC粉末、Co粉末、TiN粉末、TiC粉末、VC粉末和Cr3C2粉末为原料,表层富钴无立方相梯度硬质合金,TiN的含量对硬质合金的性能产生重要的影响。TiN的添加量过多则会在硬质合金表面形成过厚的分布不均匀的氮化物相,导致硬质合金的力学性能降低。TiN的添加量过少则不能在硬质合金表面形成氮化物相,导致对硬质合金性能提升的失败。所制得的表层富钴无立方相梯度硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的梯度硬质合金提供一种新的生产工艺。
本发明公开了一种高性能钕铁硼稀土永磁器件的制造方法,所述的高性能钕铁硼稀土永磁器件由R-Fe-Co-B-M速凝合金、微晶HR-Fe合金纤维和TmGn化和物微粉制成;制造方法由R-Fe-Co-B-M速凝合金的制造、微晶HR-Fe合金纤维的制造、合金的氢破碎、前混料、气流磨制粉、后混料、磁场成型、烧结和时效工序组成,制成烧结钕铁硼永磁体,烧结磁体再经过机械加工和表面处理制成各种稀土永磁器件。
本发明公开了一种具有复合主相的钕铁硼稀土永磁体及制造方法,复合主相以主相PR2(Fe1-x-yCoxAly)14B相为核心,主相ZR2(Fe1-w-nCowAln)14B相包围在主相PR2(Fe1-x-yCoxAly)14B相的外围,ZR2(Fe1-w-nCowAln)14B相与PR2(Fe1-x-yCoxAly)14B相之间无晶界相,其中ZR表示主相的稀土元素中的重稀土的含量高于平均重稀土含量的稀土元素之和,PR表示主相的稀土元素中的重稀土的含量低于平均重稀土含量的稀土元素之和;制造方法包括LR-Fe-B-Ma合金熔炼、HR-Fe-B-Mb合金熔炼、合金的氢破碎、金属氧化物微粉表面吸附和制粉、磁场成型、烧结和时效工序,制成钕铁硼稀土永磁体。
本发明属于耐火材料技术领域,具体涉及一种凝胶注模成型制备氧化钇耐火材料制品的方法及坩埚。针对纯相的氧化钇只适合制备尺寸相对较小的坩埚,无法满足大尺寸铸锭的熔炼与铸造的需求的问题,本发明提出了一种制作工艺简单、尺寸可控、性能优良的制备氧化钇耐火材料制品的方法,采用四种不同尺寸的Y2O3颗粒或微米细粉,将不同尺寸的Y2O3按照合理的顺序和配比加入,所获得制品同时具有良好的力学性能和抗热震性能。同时结合分散剂和悬浮剂的合理选择,排胶及烧结的精确制度,最终获得的制品,特别是氧化钇坩埚具有优良的综合性能。
本发明公开了一种双坩埚真空熔炼速凝设备,包含真空壳体和感应加热电源;真空壳体包含卧式炉体和两个侧开炉门,侧开炉门分别通过铰链与炉体相连,在两个侧开炉门内侧安装有熔炼坩埚和坩埚翻转装置,熔炼坩埚外设置有感应加热线圈,感应加热线圈与电缆相连,卧式炉体内设置有旋转辊;熔炼坩埚与旋转辊之间设置有中间包,旋转辊的空心转轴水平设置;生产方法是将熔融的合金液通过中间包浇铸到带水冷却的旋转辊的外缘上形成合金片,合金片随着旋转辊旋转,之后离开旋转辊下落到第二旋转辊的外缘上,随后离开第二旋转辊下落,形成双面冷却的合金片。本发明还公开了一种稀土永磁速凝合金的制造方法和一种双合金烧结钕铁硼永磁体的制造方法。
本发明公开了一种无底料气流磨制粉方法,首先将装有合金片的料罐与加料器的加料口对接,打开阀门将合金片导入加料器的进料口,通过加料器的送料器将合金片加入到第一磨室,合金片在喷嘴喷射的高速气流带动下与撞击板对撞,之后再被旋转的破碎棒粉碎,粉碎后的粉末随气流进入第一分选轮分选,通过第一分选轮分选后进入第二磨室继续磨削,磨削后的粉末随着气流上升,经过第二分选轮分选,达到制粉要求的粉末进入旋风收集器收集,少量的细粉随着旋风收集器排气管的气流排出,再进入第二收集器收集;本发明还公开了采用无底料气流磨制粉方法生产的钕铁硼永磁铁及其制造方法。
本发明公开了一种添加镧铈的稀土永磁器件及其制造方法。该稀土永磁器件含有Nd、Pr、La、Ce、Tb、Fe、B元素;主相具有R2T14M的结构,晶界相主要为富R项和稀土氧化物,从器件的断面分析,主相所占的面积率为95%以上,富R项所占的面积率大于0.5%;从主相中心到晶界,稀土Nd或Pr的浓度逐渐升高,富R项含有Nd、Pr、Tb元素,稀土氧化物中的稀土元素包含La、Ce元素;稀土永磁器件中的稀土元素Nd、Pr、La和Ce的合计重量占稀土永磁器件总重量的28‑34%,La和Ce的合计重量占稀土永磁器件中稀土成分总重量的3‑60%,Tb的重量占稀土永磁器件中稀土成分总重量的5%以下。本技术可以在用镧铈替代器件中一部分镨钕的同时,使器件保持较高的磁性能以及耐热性能。
一种近α型钛合金及其制备成型方法,属于钛合金加工技术领域。该近α型钛合金,其含有的成分及各个成分的质量百分比为:Al为5.0~6.5%,Sn为2.0~3.0%,Zr为3.0~4.0%,Mo为0.3~0.6%,Si为0.3~0.6%,Y为0.1~0.3%,余量为Ti。其制备采用粉末冶金制坯,热挤压成型及后续的真空退火制备。通过粉末冶金工艺,可以消除偏析,避免成分不均所带来的影响,所获得坯料可以直接后续成型,无需加工;结合热挤压工艺可以消除粉末冶金低致密度的缺陷,同时可以一次成型,直接挤出产品最终形状,减少后续加工量;随后的真空退火工艺,将提高合金稳定性。最终达到应用标准。
本发明公开了一种钕铁硼稀土永磁合金的制粉方法和设备,先将混料后的氢破碎粉末装入加料器的料斗,通过加料器将粉末加入到磨室,利用喷嘴喷射的高速气流进行磨削,磨削后的粉末随气流进入离心式分选轮选粉,细粉通过分选轮分选后进入旋风收集器收集,少量的细粉会随着旋风收集器排气管的气流排出,再进入后旋风收集器收集,旋风收集器收集的粉末和后旋风收集器收集的粉末通过收料器导入收料罐中,后旋风收集器排出的气体经过压缩机压缩和冷却机冷却后再进入到喷嘴的进气管循环使用。
一种耐磨耐蚀金属陶瓷刀刃材料,其特征在于:所述刀刃材料以TiC颗粒为基体,含有Ni粉25.0~40.0wt.%、Cr粉6.0~10.0wt.%、少量的Al粉和Ti粉,Al粉和Ti粉的总含量低于3.0wt.%。本发明耐磨耐蚀金属陶瓷刀刃材料,具有耐磨性、耐蚀性、抗氧化性好,高温硬度、强度高,制造成本低等优点。用该材料制作的耐蚀耐磨金属陶瓷复合材料塑料切粒刀,适合于塑料、木材和造纸等行业的切削加工。也可用该材料制作模具、喷嘴和密封环等耐磨耐腐蚀机械零部件。
本发明一种可由近紫外或蓝光芯片激发的红光发光材料,所述红光发光材料的化学组成通式为:(RE1‑x‑y‑z‑mLamZryMgz)2O3:xEu,0.01≤x≤0.2,0.001≤y≤0.2,0≤z≤0.1,0≤m≤0.2,其中,RE=Lu1‑p‑rYpGdr,0≤p<1,0≤r<1。本发明的红光发光材料的激发光谱覆盖范围宽,可与近紫外或蓝光LED芯片相匹配。本发明的红光发光材料制品包括红光胶粉材料、红光透明陶瓷材料及红光透明薄膜材料。此外,本发明的红光发光材料还可与蓝色、绿色和黄色荧光材料(YAG:Ce)组合使用,与近紫外或蓝光芯片进行不同形式的封装,应用于制作白光LED照明光源。
本发明公开了一种双合金钕铁硼稀土永磁材料及制造方法,分别熔炼由重稀土Dy、Tb、Ho和Gd组成的A1合金和由轻稀土La、Ce、Pr和Nd组成的A2合金,并按着A1/A2=0-0.5的比率在氮气保护下用二维或三维混料机进行混料;混料后在气流磨中制粉,进一步对细粉进行收集,并将粉末与细粉在氮气保护下加入到二维或三维混料机中进行混料,混料后在氮气保护下将磁粉送入磁场压机成型,经过烧结、时效处理等制成永磁体产品;本发明可显著节省重稀土的使用量,同时还能提高稀土永磁体的磁能积和矫顽力。
一种医用TiMoCu合金及其制备方法,属于医用钛合金及其制备方法领域;医用TiMoCu合金由Ti、Mo和Cu元素组成;按质量比Ti∶Mo∶Cu=(100‑x‑y)∶x∶y,x=10~20,y=5~20;其致密度为98.5~99.9%;制备方法:1)将商用Ti粉、商用Mo粉和商用Cu粉,按配比混合均匀得混合物;2)将Ti粉Mo粉Cu粉混合物,压制成设定形状的坯料;3)将坯料置于模具中,在真空下,以≤10℃/min的速度加热至1150~1200℃,保温4~6h;再持续加压5~30MPa,2~4h后,随炉冷却至室温,制得医用TiMoCu合金;本发明制备的医用TiMoCu合金,用于牙根或骨骼替换,对军团菌和金黄色葡萄球菌有持续抑制作用。
本发明公开了一种叠片稀土永磁器件的制造方法,包括:制备稀土永磁体;将两片以上的稀土永磁体沿稀土永磁体的磁场取向方向层叠排列;通过相邻两片稀土永磁体间涂覆的胶体粘接使其联结成叠片稀土永磁器件。在所述的叠片稀土永磁器件中,相邻两片稀土永磁体之间存在间隔膜层,且间隔膜层的厚度在300μm以下。所述的制造方法中包括在稀土永磁体预制件表面附着含有Tb元素的粉末或膜层的步骤,并对表面附着有粉末或膜层的稀土永磁体预制件进行真空热处理制成稀土永磁体。本发明采用叠片的结构形式制造渗铽效果优异的超厚磁体,同时还可以减小电机工作时在永磁器件内部产生的涡流损耗。
本发明一种漫渗燃烧Ti‑Al‑Cu‑Sn‑Ni微孔金刚石砂轮的制造方法:先将Al和Ti粉混合均匀,然后将金刚石粉和Ti、Al混合粉加入模具,保证金刚石颗粒优先与Ti、Al混合粉接触。添加Cu、Sn、Ni粉,搅拌均匀。按成型密度90%~93%冷压成型,保证一定的气孔率。冷压成型后,金刚石颗粒周围包裹着一些Ti、Al混合粉,外层是浸提材料Cu‑Sn‑Ni混合粉。真空热压烧结时,金刚石颗粒表面碳原子与金属Ti漫渗反应生成TiC层,Ti与Al漫渗反应生成TiAl合金层。多余的金属Al融化,将Cu、Sn、Ni金属和TiAl金属间化合物粘结在一起,形成Cu‑Sn‑Ni‑Al基体层,并由于液体张力在金刚石颗粒间形成微气孔。由于TiC和TiAl的生成,实现了金刚石与Cu、Sn、Ni金属基体的过渡,大大提高了金刚石颗粒的把持力,利于均匀微孔的生成。
为了改善WC‑Ni硬质合金的硬度、耐磨性,研制了一种WC‑15Ni高性能无磁硬质合金。采用WC粉、电解Ni粉、Cr3C2粉、碳黑为原料,碳元素的添加能够提升硬质合金的力学性能。其作用机理为能够抑制烧结过程中硬质合金晶粒的长大,使制得的硬质合金具有均匀的物相组成且缺陷较少。碳元素添加量为7%时,显微组织无缺陷,性能优异,平均横向断裂强度达到3300MPa。所制得的WC‑15Ni高性能无磁硬质合金,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的WC‑Ni硬质合金提供一种新的生产工艺。
本发明公开了一种双辊冷却的稀土永磁速凝合金的制造方法,将钕铁硼原料在真空或保护条件下加热熔化精炼成熔融合金液,将合金液通过中间包的缝隙浇铸到水冷的第一旋转辊的外缘上形成合金片,合金片随着第一旋转辊旋转,之后离开旋转辊下落到带水冷的第二旋转辊的外缘上再随着第二旋转辊旋转,之后离开旋转辊下落,形成双面冷却的合金片;采用本发明合金制造的钕铁硼永磁体,具有R2T14Q主相和晶界相,其中R选自Pr、Nd、Dy、La、Ce、Gd、Tb、Ho中的元素一种以上,T选自Fe、Co、Al、Mn中的元素一种以上,Q选自B、N和C中的元素一种以上;主相之间由晶界相隔离,在晶界相中分布有Pr和Nd的氧化物和氮化物。
中冶有色为您提供最新的辽宁沈阳有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!