本实用新型为高真空机组,涉及一种以油扩散泵为主泵的、使被抽空器件获得高真空的设备,与有关附件构成可进行真空蒸镀和溅射、真空热处理、真空烧结和扩散,还可应用在实验室及其它工业生产中。其特征是在高真空阀体上设有线圈,线圈内设有芯杆;手轮上设有销孔,芯杆的一端插接在手轮的销孔内;线圈通过导线与控制箱中的继电器连接。预抽阀和前置阀的拉杆连在一起形成联动的拉阀。在高真空阀体与拉阀的管路上设有电离真空规,在拉阀与放气阀的管路上设有预抽热偶真空规,在拉阀与真空缸的管路上设有前置热偶真空规。本实用新型的目的在于解决被抽真空器件漏气时机组不能工作,必须拆卸、进行清洗、更换扩散泵的工作介质等方面存在的问题。
本实用新型公开一种回转式真空隔离阀,用于真空热处理炉、真空钎焊炉和真空烧结炉,涉及真空炉行业。本实用新型包括阀体、阀板、压臂、旋转轴、转臂、气缸;阀体通过螺栓与相邻真空室连接,阀板和压臂位于阀体内部,旋转轴一端位于阀体内,且与压臂相连接,压臂与阀板连接,阀板、压臂和旋转轴一起旋转,旋转轴的另一端从阀体的上盖伸出,伸出端通过键与转臂连接,转臂与气缸连接在一起;阀板数为2个,分别密封阀体上对应的法兰;旋转轴位于阀体的同侧或两侧;阀板、压臂由气缸驱动;阀板、压臂、旋转轴旋转实现阀门开闭。该隔离阀为独立模块,与相邻真空室用螺栓简单连接即可;阀门不受相邻真空室腐蚀性气氛影响,寿命大幅增加。
本实用新型提供了一种直接水冷的粉末烧结多元合金镀膜靶,所要解决的问题是:粉末烧结的靶材其内部存在微细空隙,会漏水,只能采用间接水冷的方式。本实用新型的要点是在靶块的下面复合一个金属轧制的靶座。制造时采用真空烧结炉,将底座与靶材通过紫铜焊料烧结在一起。本实用新型的有益效果是:在合金靶材底面设置了不透水的靶材底座,可直接对镀膜靶的底座进行水冷,提高了冷却效果和成膜质量。节省约1/3的贵重多元粉体金属材料,降低靶材的制造成本。
本实用新型公开了一种吊篮式连续真空炉,可适用于真空热处理、真空钎焊和真空烧结,涉及真空炉领域。该真空炉包括:2个以上的真空室,其中至少1个真空室内还包括加热室;转板阀,用于隔离相邻的两个真空室;装料车,用于装载工件,吊装在真空室内上部;传动机构,用于驱动转料车,实现真空室内和真空室之间工件的传送;电机,用于驱动传动机构;所述的传动机构位于真空室内的上部,所述的传动机构位于加热室外面。这样,可以使传动结构避免承受加热室内的高温,对所采用材料的耐温性要求不高,材料成本较低;另外,传动机构位于加热室外,可提高加热室的容积利用率,有利于提高真空炉的生产效率。
本发明提供一种医用连续梯度多孔纯钛的制备方法,首先将Ti粉与造孔剂NH4HCO3按不同配比进行称量;然后在氩气保护下用行星式球磨机混合均匀;将不同配比的混合粉放入内外层分层设计的磨具中,再利用放电等离子烧结系统进行真空烧结得到一种医用多孔纯钛。本发明通过梯度多孔设计,并采用粉末直接放电等离子烧结的方法,获得内密外疏且孔隙率连续变化的梯度多孔材料,同时具备优异的生物相容性和力学性能。该发明制备方法工艺简单可行、成本低廉,可获得孔隙率可控(孔隙变化范围从内到外5~50%)、低弹性模量(5~15GPa)、高强度(400~1200MPa,比均一孔隙率的多孔纯钛强度提高约20%~90%)的多孔纯钛,是一种极具前景的生物医学领域硬组织修复及替换用多孔材料之一。
本发明提供一种TiB增强医用多孔钛的制备方法,首先将Ti粉、TiB2粉、造孔剂NH4HCO3按一定配比进行称量;然后在氩气保护下用行星式球磨机混合均匀;再利用放电等离子烧结炉进行真空烧结;最后经真空热处理后得到一种低弹性模量、高强度、孔隙率适中的TiB增强医用多孔钛。本发明将多孔结构设计与原位自生TiB增强相结合,可在保持与人体骨相近的弹性模量、维持合适孔隙率的同时显著提高多孔钛的力学性能,且少量添加TiB无生物毒性。该发明制备方法和工艺简单可行,可获得孔隙率可控(10~60%)、低弹性模量(10~20GPa)、高强度(200~1400MPa,添加TiB比未添加TiB同等参数下强度提高1~3倍)、良好生物相容性的多孔钛,是一种极具前景的生物医学领域硬组织修复及替换用多孔材料之一。
一种高致密度铁酸镍超细晶陶瓷材料的制备方法,包括以下步骤:(1)准备铁酸镍纳米粉作为原料,或者与五氧化二钒粉末/二氧化锰粉末混合作为混合原料;(2)加入粘结剂混合均匀,再筛分≤74μm的部分;(3)通过冷等静压成型;(4)在真空条件下以10~30℃/分钟的速度升温至1150~1300℃,完成一次烧结,以50~100℃/分钟的速度降温至1050~1175℃,完成二次烧结,随炉冷却。本发明的方法能在普通的真空烧结炉实施,具有成本低、工艺和操作流程简单等优点。
本发明提供一种碳氮化钛涂层的制备方法,涉及一种金属涂层制备技术领域。该发明包括以下步骤:备料:打磨:清洗:预涂:干燥:高温扩散。本发明方法简单,成本低,提高了碳氮化钛增强钛基复合涂层的制备效率,从根本上解决了等离子体化学气相沉积、中温化学气相沉积、空心阴极离子镀、离子束辅助沉积、粉末冶金真空烧结、激光熔覆等方法存在的问题,开辟了碳氮化钛增强钛基复合涂层制备的新途径。
本实用新型实施例公开了一种智能化可移动保护进料手套箱,包括箱体、电控柜、驱动轮组、激光测距仪以及位置传感器。箱体上设有位置传感器,激光测距仪安装在箱体的顶部,且激光测距仪的感应方向朝向箱体的前侧。驱动轮组安装在箱体的底部,电控柜固定在箱体上,且电控柜内设有PLC控制器。驱动轮组、激光测距仪以及位置传感器分别与PLC控制器电气连接,使PLC控制器将激光测距仪和位置传感器感知的信号,传递给驱动轮组,并控制箱体的移动速度和水平位移。本实用新型采用伺服电机驱动移动平台,以控制箱体的移动速度和水平位移,进而利用激光测距仪、位置传感器感知等实现与真空烧结炉的炉号自动选择和对接模式,大大提高了生产效率,节约了成本。
一种Fe2GeS4纳米颗粒的制备和使用方法,属于催化化学领域。该Fe2GeS4纳米颗粒采用真空烧结?高能球磨法制备,具体包括:将原料混合,装入石英管中真空密封,在700~800℃烧结,球磨后烘干,制得结构为正交晶系的Fe2GeS4纳米颗粒。Fe2GeS4纳米颗粒使用方法是将其作为非均相芬顿试剂体系的催化剂,与H2O2组成非均相芬顿试剂体系,应用到催化降解有机污染物中,具体为:Fe2GeS4纳米颗粒与目标降解物混合后,加入H2O2,在20~60℃催化降解目标降解物。该非均相芬顿试剂体系,与传统芬顿试剂相比,在较宽pH工作范围下,催化降解效果得到明显提升,同时试剂稳定性明显提高,无二次污染产生,实现了有机污染物催化的稳定清洁高效。
本发明提供了一种铜表面电解铬烧结制备CuCr电触头材料的方法,属于材料技术领域。本方法避免了烧结用高纯度电解铬粉易吸气和产生不易还原的化合物,使得CuCr合金中含气量增大引入杂质的问题;也避免了常规固相烧结产品质量相对较低,很难达到行业标准的要求,合金韧性不高的问题;还避免了液相烧结出的产品偏析严重问题。本方法将铜丝或铜网的表面活化处理后,经电解铬处理,再将吸附铬的铜丝或铜网压坯,最后放入真空烧结炉进行烧结,得到CuCr电触头材料。该方法解决了电触头材料的偏析问题,减少CuCr合金中气体与杂质的含量,改善触头材料的综合性能;此方法适用范围广,比传统烧结大幅度缩短时间,降低生产成本。
一种多孔梯度Ti-12Mo-6Zr-2Fe合金的粉末烧结方法,包括以下步骤:取TiH2、Mo、Zr和Fe粉末。取造孔剂碳酸氢铵粉末。按质量比TiH2∶Mo∶Zr∶Fe=83.09-83.59∶11.75-12.25∶5.75-6.25∶1.75-2.25的比例取四种粉末,混合成金属粉末混合物。从金属粉末混合物中至少取出三份分别与造孔剂混合,制成至少三种金属粉末与造孔剂的混合物,并依次放入模具制成坯料。坯料放入真空烧结炉中,加热首先使造孔剂分解,坯料内生成孔隙。然后继续加热,使氢化钛粉末分解。然后再继续加热完成烧结。本合金具有与人体硬组织匹配的弹性模量,其结构与人体松质骨的微观结构相似,可用于人体硬组织如骨骼、牙根等的替换与修复。本发明工艺简单,节能效果好,造孔质量高,孔隙度范围宽,平均孔隙尺寸范围宽。
一种可吸收骨修复材料及其制备方法,属于生物医用金属材料领域。材料组成包括具有三维连通的多孔支架结构的金属材料和填充物;填充物位于多孔金属的空隙内;所述三维连通的多孔支架结构的金属材料由金属丝绕制而成;所述可降解填充物为可降解聚合物或可吸收的生物陶瓷材料;制备方法:1)选取金属丝和可降解填充物;2)绕丝与编织,形成缠绕式的螺线卷几何体;3)冲压成型,获得骨修复材料骨架;4)电阻焊或真空烧结,获得强度提高的骨修复材料骨架;5)填充可降解填充物,成型后制得可吸收骨修复材料。本发明材料具有足够的力学强度,在骨骼愈合过程中逐渐降解,保持骨骼愈合过程中正常的应力环境。
一种石墨烯增强的高硅铝基复合材料及其制备方法,复合材料含有成分按质量百分比:硅:15.0~20.0%,铜:2.0~4.0%,镁:0.5~1.0%,钛:0.05~0.07%,硼:0.02~0.05%,石墨烯:0.3~0.6%,余量为铝;制备方法:1)将原料各成分,在气体保护下,混料得合金粉末;2)将合金粉末压制成块状烧结坯料后,真空烧结得烧结后的坯料;3)针对不同硅的含量,对其进行淬火处理+回火处理,或多向锻造+退火处理,制得石墨烯增强的高硅铝基复合材料;本发明的方法使增强相颗粒分布更均匀,并且在材料内部产生大量位错,位错胞破碎成亚晶或细晶,达到细晶强化;其抗拉强度提高到400MPa以上;同时材料的屈服强度提高到236MPa以上。
本发明公开一种快速回收陶瓷结合剂CBN砂轮中高纯磨料的方法:(1)将陶瓷结合剂CBN砂轮放入烧结炉烧结处理,以便去除砂轮基体得到砂结体;(2)将砂结体放入真空烧结炉高温煅烧处理后放入水中急冷;(3)将急冷料放入球磨机进行水磨,水磨后过筛,烘干;(4)将烘干料放入酸性溶液煮沸一定时间后放入振荡器中震荡,(5)将烘干料放入碱性溶液煮沸一定时间后放入振荡器中震荡,然后通过超声波清洗机洗涤反应沉降后,烘干后得到CBN磨料。本发明的技术方案优点如下:1.本发明工艺简便快捷,回收砂轮中昂贵的磨料成本低;2.在回收的磨料粒度允许的范围内,本发明不影响磨料的多次使用;3.本发明不影响磨料性质的情况下,磨料回收率可达85%。
一种泡沫TiMoCu合金及其制备方法,合金由Ti、Mo和Cu元素组成;按质量比,Ti∶Mo∶Cu=(100‑x‑y)∶x∶y,其中x=10~25;y=5~20;该泡沫TiMoCu合金具有近球形的孔隙结构,平均孔隙尺寸为100~460微米,孔隙度为14.94~67.50%;制备方法:1)混合Ti粉,Mo粉和Cu粉,并取碳酰胺颗粒,备用;2)将上述原料混合后,制得金属粉末‑造孔剂混合物;3)在模具中,压制成坯料;4)分两段式真空烧结,制得泡沫TiMoCu合金;本发明制备的泡沫TiMoCu合金,力学性能与人体松质骨的力学性能相匹配,孔隙结构与松质骨相似,对军团菌、金黄色葡萄球菌等有抑制作用。
本发明制备的高矫顽力和高耐蚀性烧结钕铁硼永磁材料及制备方法,属于磁性材料技术领域。将平均粒径50-90纳米的M(这里的M代表?Mg、Al、Cu及其混合粉)粉末进行表面改性;再加入2-4微米钕铁硼粉末中混合均匀,加入量为?0.1-2.0wt%?;在?2.5T的磁场中取向并压制成型,再经20-40MPa冷静压后,置入真空烧结炉内;然后升温,在200-300℃,800-900℃分别停留1-2小时和2-3小时,在1020-1120℃?烧结2-6小时,最后进行二级热处理,一级热处理温度900-950℃,时间2-3.5小时;二级热处理温度480-630℃,时间1-3小时,获得烧结钕铁硼永磁材料。本发明纳米粉及其混合粉的加入,使得烧结钕铁硼基永磁材料的矫顽力和耐蚀性得到了提高。
本发明公开了一种钕铁硼稀土永磁体的预烧结方法和设备,所述的真空预烧结是在连续真空预烧结设备中进行,烧结料架依次进入连续真空预烧结设备的准备室、脱脂室、第一脱气室、第二脱气室、第三脱气室、第一预烧结室、第二预烧结室和冷却室进行预热脱脂、加热脱氢脱气、预烧结和冷却,冷却采用氩气,冷却后烧结料架从连续真空预烧结炉取出再将料盒装到时效料架上,时效料架吊着送入连续真空烧结时效炉进行烧结、高温时效、预冷却、低温时效和快速气冷。
一种蛋白质发泡制备生物医用可降解多孔锌的方法,按以下步骤进行:(1)将锌粉、蛋白质发泡剂、蔗糖和去离子水混合均匀;(2)球磨混合制成球磨浆料;(3)加热至70~110℃进行发泡,随炉冷却;(4)静置固化或者烘干制成固化预制体;(5)进行真空烧结或覆盖石墨烧结,150±2℃、180±2℃、260±2℃、290±2℃、320±2℃、390±2℃和435±2℃时保温25~35min;200±2℃、230±2℃、360±2℃和435±2℃时保温55~65min;随炉冷却。本发明的方法选择蛋清和胶原蛋白作为发泡剂,对身体无害,发泡效果优良,发泡程度可控;产品孔隙率相对较高;与人体松质骨匹配,能够满足人体植入材料的要求。
一种多孔Ti-15Mo合金的粉末烧结方法,是按88.55∶15的配比取TiH2和 Mo粉末混匀,再加入0-40%的碳酸氢铵,并放入混料器中混合24-48小时, 再通过模具压成设定形状,然后放入真空烧结炉中,收≤50℃/分钟的速度加热 至780-820℃,保温1-2小时制成坯料,将该坯料加热至1050-1150℃,保 温4-8小时完成烧结,经冷却即得。Ti-15Mo合金孔隙度为7.9-68.5%,平均 孔隙尺寸为12-206μm。本发明工艺简单,节能效果好,造孔质量好,孔隙度 达到7.9-68.5%,平均孔隙尺寸为12-206μm。
一种新型碳化物颗粒增强铁基粉末冶金材料,将石墨粉添加到包含Fe‑40%V、Fe‑60%Mo和Fe‑57%Cr合金的物化铁粉中,以硬脂酸锌作为润滑剂进行球磨混合,然后压制、真空烧结。随着烧结温度的提高,碳化物由块状M6C碳化物向针状M2C碳化物转变;材料的相对密度和硬度先升后降,硬度在1270℃时达到最大,抗弯强度和冲击韧度在1240℃时最高;在晶界上呈半连续网状分布的针状碳化物脆性大,降低了材料的力学性能。高温退火能有效消除晶界上半连续网状分布的针状碳化物,使其分解、球化,从而显著提高材料的性能;其中密度略有提高,硬度、抗弯强度和冲击韧度分别提高了11.8%,20.8%和72.7%。
本发明公开了一种耐磨、耐腐蚀Ti(C,N)金属陶瓷材料,由下述质量百分比的粉末原料组成:TiC 28‑45%;TiN 3‑5%;Ni 35‑50%;Cr 11‑13%;余量为4‑6%的Mo、Ti、Al、Cr3C2、VC混合。其制备方法为将原料粉末按照配比配制成混合粉末,混合粉末在真空振动混料机混料,混料后不需要添加任何成型剂,采取模压成型压制成坯料,坯料经塑封后,进行冷等静压,之后进行真空烧结。本发明金属陶瓷材料,具有耐磨、耐酸蚀、耐汽蚀性好,高强度、高硬度、制造工艺流程简洁,不需要添加成型剂、制造成本低等优点。
一种粉末冶金法制备医用可降解开孔泡沫锌的方法,按以下步骤进行;(1)将锌粉和造孔剂烘干后混合;(2)加入酒精;(3)填充到模具中压制成型;(4)置于烧结炉内,进行真空烧结或覆盖石墨粉烧结,随炉冷却;(5)烧结物料置于水中,使造孔剂溶于水中,剩余物料取出烘干。本发明的方法可以控制孔径的大小和孔隙率;可由烧结温度和时间来控制样品的力学强度和力学性能,所制备的开孔泡沫锌抗压强度高于人体松骨质,而弹性模量与松骨质相匹配,能够满足人体植入材料要求。
一种掺杂稀土铈的铪酸钡陶瓷闪烁体的制备方法,涉及一种陶瓷材料的制备方法,该制备方法包括如下步骤:(1)按Ba1-xHfO3 : Cex称取原料硝酸钡Ba(NO3)2、氯氧化铪HfOCl2和硝酸铈Ce(NO3)3;(2)采用共沉淀法合成粉体;(3)选择滴定方式;(4)控制滴定速度、体系温度及滴定终点的pH值;(5)清洗,抽滤;(6)恒温干燥;(7)研磨过120~200目筛;(8)还原性气氛下煅烧;(9)干压成型;(10)真空烧结。本发明的闪烁体可应用于医学成像及无损检测系统,该方法可实现准确掺杂,工艺简单,成本低,适宜大批量生产。
本发明涉及一种石墨烯纳米片/铝复合材料及其制备方法,制备方法主要步骤如下:(1)将石墨烯纳米片分散到无水乙醇溶液中,制得石墨烯纳米片的无水乙醇分散液;(2)在氩气的保护下通过球磨将球形铝粉转变为片状铝粉;(3)在充有氩气的手套箱中将片状铝粉移入石墨烯纳米片的乙醇分散液,机械搅拌制得石墨烯纳米片/片状铝粉的复合浆料;(4)抽滤、干燥制得石墨烯纳米片/片状铝粉复合粉末;(5)冷压、真空烧结制得石墨烯纳米片/铝复合材料坯料;(6)通过热挤压制得石墨烯纳米片/铝复合材料。该制备工艺具有石墨烯纳米片结构损伤小、分散均匀,石墨烯纳米片‑Al界面结合良好的特点,制备的石墨烯纳米片/铝复合材料强度高、塑性好。
一种多孔梯度TiNb合金的制备方法包括以下步骤:按一定的质量比称取钛粉和铌粉以及造孔剂氯化钠颗粒,备用。分别按不同的造孔剂含量将金属和造孔剂混合成多个具有不同孔隙度的生坯混合物,而后依次放入模具的多个套筒中,制成坯料。将所压制得坯料浸没在70‑80 OC的纯净水中清洗15‑‑20次,使造孔剂溶解。将坯料放入真空烧结炉中加热至1160‑‑1350OC并保温4‑‑8小时,经冷却得到多孔TiNb合金。本材料具有与人体硬组织匹配的弹性模量,其结构与人体松质骨的微观结构相似,具有仿生材料的特点。可用于人体硬组织如骨骼、牙根等的替换与修复。
本发明公开了一种稀土永磁真空热处理炉以及真空热处理方法。真空热处理炉主要包括炉壳、加热室、风冷换热系统、加热电源、控制系统、真空系统和充放气系统。真空系统中包括真空粉尘收集器,风冷换热系统包含风冷粉尘收集器,真空粉尘收集器和风冷粉尘收集器都采用旋风收集器的结构。加热室设置在炉门和炉体构成的真空容器内,加热室包括前端盖、加热筒体、后端盖和炉床,热处理的工件放置在炉床上;前端盖包含前端金属屏、前端保温体和前端框架,前端盖与炉门相连;加热筒体从内到外包含加热器、筒体金属屏、筒体保温体和筒体框架。该真空热处理炉可用于稀土永磁的真空烧结、真空时效和真空渗金属处理。
一种多孔钛及其制备方法,属于材料技术领域,多孔钛为通孔骨架结构,骨架成分为金属钛,宏孔孔壁上分布着微孔,宏孔孔径范围为200~1000μm,微孔孔径范围为5~55μm,孔隙率35~85%。制备方法为:以钛粉为原料,以镁颗粒、镁粉为造孔剂,以无水乙醇为分散剂和粘结剂,先将镁粉和钛粉混合均匀,然后用无水乙醇将镁颗粒充分润湿并倒入镁粉、钛粉的均匀混合物,再次混合均匀,然后将压制的预制坯用真空蒸馏除去金属镁,再对多孔钛前驱体进行真空烧结。本发明采用的方法在反应过程中不生产氧化物,造孔剂可全部回收;制备的多孔钛结构均匀、孔结构可调、孔隙率高、杂质少、力学性能好。
本发明公开了一种基于晶粒重组的烧结钕铁硼永磁铁及其制造方法,永磁铁具有重稀土RH含量高的主相分布在重稀土RH含量低的主相周围的复合主相,复合主相内部无连续的晶界相;复合主相外围的平均重稀土RH含量高于复合主相心部的重稀土RH含量,复合主相的平均晶粒尺寸6-14μm;重稀土RH包含Dy、Tb、Ho、Gd、Y元素一种以上;制造方法包含熔炼第一合金工序、熔炼第二合金工序、氢破碎工序、合金片混合工序、气流磨制粉工序、磁场成型工序、真空烧结和时效工序;熔炼第一合金工序包含制备含有Pr、Nd元素的第一合金片的过程;熔炼第二合金工序包含制备含有重稀土RH元素的第二合金片的过程。
一种激励元素呈连续梯度分布的氧化钇激光透明陶瓷材料及其制备方法,其基质材料为Y2O3,激励元素RE为Yb、Tm或Nd,其特征在于:激励元素RE在基质材料中的浓度沿基质材料轴向呈连续梯度分布;制备方法为:(1)配制Y(NO3)3溶液、RE(NO3)3溶液和尿素溶液;(2)制备RE:Y2O3球形纳米粉体;(3)制备Y2O3球形纳米粉体;(4)将粒径相同的Y2O3球形纳米粉体和RE:Y2O3球形纳米粉体混合制成混合粉体,球磨分散,再超声分散,获得高悬浮稳定性浆料;(5)离心分离去除液相;干燥后获得梯度坯体;(6)素烧后真空烧结,再退火。本发明采用普通的陶瓷材料制备工艺,工艺简单,成本低廉,适合大规模生产。
中冶有色为您提供最新的辽宁沈阳有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!