本申请涉及粉末冶金技术领域,具体公开了一种高致密度TiAl及TiAlMe靶材的制备方法,包括以下步骤:S1、将海绵钛和铝块混合后熔炼得到TiAl合金铸锭;S2、将TiAl合金铸锭破碎成一定粒度的TiAl合金粉;S3、将TiAl合金粉与Ti粉或TiAl合金粉、Ti粉与Me粉按照比例称量后混合均匀分别制得TiAl粉末或TiAlMe粉末;S4、将制得的TiAl粉末或TiAlMe粉末模压成型制得冷压坯;S5、将上述预成型冷压坯进行脱气处理后,采用热等静压成型,制得坯料;S6、将热等静压后的坯料进行加工后,得到所需要的靶材产品。本申请的制备方法具有降低高Ti低Al靶材的成型难度的优点。
本发明提供了一种7000系超大规格铝合金铸锭的铸造方法。所述方法包括备料、熔炼、炉内除气精炼、在线过滤除渣、晶粒细化和半连续铸造等步骤,通过上述步骤的组合可以克服7000系超大规格铝合金铸锭容易出现的底部开裂等问题,制备得到的铸锭经超声探伤检测无明显内部缺陷,晶粒细小均匀,无其他冶金缺陷,表面平整,成品率高。不仅如此,制备得到铸锭还具有较好的综合力学性能,可以用于航空航天领域。
本发明公开一种低密度低成本Fe‑Mn‑Al‑C中熵合金的制备方法,属于金属材料及制备领域。其合金化学成分按原子百分比为:Fe33.0~38.0%,Mn33.0~38.0%,Al21.0~25.0%,C4.0~7.0%。该合金的制备工艺为将冶金原料Fe、Mn、Al、C去氧化皮,采用超声波或酸洗方法进行清洗;用非自耗真空电弧炉或感应炉熔炼合金,通过真空吸铸或浇铸方法,获得中熵合金板状或棒状材料。该中熵合金具有低密度的同时,材料还具有高强度和高塑性,并且合金元素成本低,可用于交通、机械和能源等工业领域。
本发明公开了一种(Ti,W)Cp/Fe原位复合材料双金属定位熔合工艺,包括:将硬质相颗粒(Ti,W)C和活性元素颗粒Cr、Mo、Cu与冷胶混合,制成颗粒后压制成预制块,放置在指定位置;在负压环境下,向预制块浇注熔炼处理好的基体材料钢液,浇注温度为1600~1650℃;浇注完成,凝固后淬火即生成(Ti,W)Cp/Fe原位复合材料。硬质相颗粒(Ti,W)C的质量与基体材料合金钢钢液质量比为5~30%,硬质相颗粒(Ti,W)C与铁基金属液体的密度比为0.9~1.1。本发明通过(Ti,W)C颗粒、活性元素与基体材料的原位熔合,强化了硬质相与基体材料的冶金结合,避免了硬质相脱落分离,增强了颗粒的均匀分布,加强了产品定位增强区域的强度、韧性和耐磨度,改善了产品适应范围和使用寿命,降低工艺难度和生产成本。
本发明涉及一种耐高温的Mo-Si-B合金的制备方法,包括如下步骤:(1)按照重量百分比例配制Mo-Si-B合金的原料,其中,Mo:70~89%、Si:10~25%、B:1~5%;(2)将步骤(1)的原料采用粉末冶金方法烧结成块料,再用电子束熔炼的方法进行熔铸,得到耐高温的Mo-Si-B合金。本发明熔铸后得到的Mo-Si-B合金,化学成分均匀、无孔洞全致密,熔铸后得到的Mo-Si-B合金的金相组织为Mo、Mo3Si与Mo5SiB2。
本发明提供了一种用于制作年产量20000t玄武岩纤维用拉丝漏板的铂铑合金金属材料,该金属材料为四元合金,为Pt‑Rh‑Y‑Zr合金,其中,各金属成分的添加量为Rh 20%,Y 0.010‑0.015%,Zr 0.4‑0.5%,其余为Pt;利用该金属材料制作拉丝漏板的制造方法为:(1)高温熔炼;(2)粉末冶金;(3)内氧化;(4)高温烧结锻造;(5)低温退火。利用上述金属材料以及制造方法制造出的拉丝漏板高温强度大,不易变形,拉丝漏板报废率降低,生产成本降低,随着拉丝漏板底板上漏嘴数量的增加,拉丝漏板的变形率小,从而大大提高了玄武岩拉丝漏板的生产效率。
本发明提供一种耐磨阻燃多主元合金及涂层制备方法。多主元合金质量百分比为:10.0%~25.0%的Ti、15~30%的Ni、15%~30%的Cr、15%~30%的V,此外,还包含0.1%~4.0%的Si。耐磨阻燃多主元合金及涂层采用电火花沉积方法制备,采用熔炼浇铸、粉末冶金及选择性激光烧结制备多主元合金的电极材料制作电火花沉积电极,沉积工艺为电压50~200V、电容30~270uF、频率120~2000Hz、沉积速率1~4cm2/min,采用氩气保护。本发明可获得高硬度、高耐磨性及高阻燃等优异性能于一体的优质涂层,特别适用于高温环境下同时要求阻燃及耐磨的钛合金表面防护。
自溶解材料及其制备方法,其中制备方法包括以下步骤:(1)提供至少两种金属原料和具有多孔或多层微观结构的陶瓷粉体作为原料;(2)采用粉末冶金工艺或熔炼浇铸成型工艺将上述原料复合形成自溶解材料。通过本发明所制备的自溶解材料,不仅具有较高的力学强度,还能在电解质溶液中自行溶解。从而能够广泛应用到油气等矿产资源的开发中,可以实现在井下完全可溶,不需要返回操作,大大提高了生产效率。
本发明涉及金属铸造领域,具体公开了一种含异型缝隙孔的钛及钛合金铸件制备方法,所述钛及钛合金铸件具有异型缝隙孔,依次包括以下步骤:基础蜡模制备、整体蜡模制备、型壳制备、熔炼浇注、辅助结构切割打磨、焊接以及局部酸洗;所述基础蜡模制备包括以下步骤:根据钛及钛合金铸件异型缝隙孔的不同结构,将其分为A区整体蜡模、B区整体蜡模以及C区整体蜡模,所述A区整体蜡模包括:部分A区蜡模、上单片以及下单片,利用凹对接槽和凸对接槽进行位置定位,形成整体蜡模。通过该方法可制备有含异型缝隙孔的钛及钛合金铸件,能够有效解决有复杂内腔的薄壁精密钛及钛合金铸件成型难、尺寸精度低及冶金缺陷难处理的问题。
本发明属于有色金属加工技术领域,具体涉及一种刻蚀法制备的硅基合金材料,并进一步公开其制备方法,以及其制备锂离子电池负极材料的用途。本发明所述硅基合金材料,以金属掺杂的硅铝多元合金材料为制备原料,采用刻蚀的方式进行制备,该方法基于硅、铝与其他金属比较容易互溶或形成金属间化合物,在较低的温度下熔炼或粉末冶金等方法形成SiAlX三元或多元合金;并以此通过酸或碱进行刻蚀铝硅合金,以去除铝硅多元合金中全部或部分铝,得到硅基合金材料。本发明所得到的硅基合金材料具有高容量、长寿命、高导电性特点,可直接作为电池的负极材料,也可进一步与碳或其他材料复合作为锂离子电池负极材料,同时也可应用于电子、半导体等领域。
一种高性能光热转化多基元合金氮化物薄膜及其制备方法,采用粉末冶金法和真空电弧熔炼法成功制备出多基元合金溅射靶材,并采用真空磁控溅射镀膜工艺通过改变溅射时间和工作气压制备出不同厚度的多基元合金氮化物薄膜,为太阳能光谱选择吸收涂层提供新材料。太阳能选择吸收涂层典型结构:红外反射层、双吸收层、减反层三明治结构,该涂层具有更高的吸收率和热稳定性。本发明在抛光的不锈钢基体上溅镀单层多基元合金氮化物薄膜,经检测单层多基元合金氮化物薄膜在太阳能光谱范围较其他单层光热转化薄膜具有更高的吸收率为79.82%,且获得的多基元合金氮化物薄膜厚度均匀,与基体具有良好结合能力和耐高温性能。本发明适用于高温真空集热管,在太阳能光热领域具有广阔的应用前景。
本实用新型属于湿法冶金领域,提供一种用于“一步酸溶法”生产氧化铝工艺中有机物和中间价态离子的氧化处理系统,包括:氧化剂储罐,用于提供氧化气体;料液储罐,用于提供“一步酸溶法”生产氧化铝工艺中的料液;水射器,用于将氧化气体与至少部分料液混合形成气液混合料;氧化罐,用于将料液和氧化气体进行反应,得到氧化后料液和尾气;辐流曝气器,用于将气液混合料中的氧化气体与料液混合均匀;尾气处理装置,用于除去氧化罐排出的尾气夹带的酸性气体和水分;引风装置,用于将处理后尾气引入氧化铝的焙烧炉。该系统能够将氯化铝料液中的中间价态离子进行同等程度氧化的条件下,所用的氧化时间缩短;也提高了氧化剂的利用率,节约了成本。
一种加热稀相粉料的高温辐射炉是将固体粉状物料从炉顶加入,呈悬浮态相互碰撞,自由沉降,受炉壁辐射热量和向上热流的作用,迅速加热后进入底部储料室,达到所需的温度。本实用新型采用了立管式的结构,包括有加料器、炉体、炉管、固定架、连接套、膨胀圈、清理器、储料室、分布器。其中,炉体放置在储料室上,炉管设置在炉体中,炉管进料口处设置一分布器,炉体顶部有一清理器。本实用新型具有结构简单,操作方便,加热速度快,热效率高,温控精确,调节灵活,产品质量好,无污染等特点。可广泛应用于化学、建材、冶金等工业中固体粉状物料的高温焙烧工艺。
本发明公开了氟碳铈精矿的处理方法,包括:(1)将氟碳铈精矿进行球磨处理,得到氟碳铈精矿颗粒;(2)将氟碳铈精矿颗粒与浓硫酸混合并熟化,得到熟化矿;(3)将熟化矿进行焙烧,得到焙砂;(4)将焙砂调浆并水浸和过滤,得到浸出液和浸出渣;(5)将浸出液进行萃取处理,得到稀土和含钍萃取液;(6)将含钍萃取液进行反萃处理,得到硝酸钍。该方法可以有效处理四川氟碳铈精矿,并且流程简单,REO浸出率高,能耗低,辅料消耗少,同时钍放射性含量大大降低在标准范围内,整个过程无氟和放射性钍排放,浸出渣经水洗后可直接排放,环境友好且能高效分离稀土并综合利用氟钍资源,是一种清洁的冶金处理氟碳铈精矿的生产新工艺。
本发明公开了一种含铷矿中提取铷的新方法,属于铷提取技术领域。将低品位云母、铯榴石、长石等含铷矿石磨细或选矿产出的铷精矿与适量浓硫酸混合均匀、熟化后,与还原剂在一定温度下进行高温快速还原焙烧脱硫,含硫烟气通过制酸实现硫酸再生循环利用。还原焙砂采用水浸提铷、锂、钾、铯等,含铷溶液进一步纯化,主要有分步结晶分离法、离子交换法、沉淀法和萃取法等湿法冶金过程,得到相应铷产品及锂、钾、铯产品。碱浸水浸渣制备氧化铝。本发明利用浓硫酸强化含铷矿中铝硅酸盐的分解和还原气氛下熟化料中硫酸盐的分解,实现硫酸的循环利用,形成了从低品位云母、铯榴石、长石等含铷矿石或铷精矿中经济回收铷、锂、钾、铯资源的新方法。
本发明涉及国际分类中F27B通用的炉窑和C22B冶金技术领域。主要特征是由炉壁(101)、炉衬(102)组成封闭的鼓风炉(1)与窑壁(201)、窑衬(202)、窑室(203)组成的冷凝窑(2),通过气道(105、205)对接构成冶炼设备的整体结构。矿料在鼓风炉(1)中1400~1500℃时产生炉气B,进入冷凝窑(2)中,又于多个窑室(203)中按不同温区,冷凝回收锌、铅、铜、银等有价金属。基本工艺流程:矿料予热焙烧-入炉-冶炼-气化-冷凝-回收-产品。本发明具有结构简单易操作,体积小功能大,适应范围广等特点。特别适合于从低品位氧化锌矿石或非矿石(矿渣、烟尘、废料等)材料中提取锌等有价金属。
一种由含钙氢氧化镁制备高纯高活性氢氧化镁的方法,属于无机化工材料制备技术领域。本发明以含钙氢氧化镁为原料,首先通过液相转化法利用除钙剂和分散剂对原料进行脱钙和分散,得到分散状高纯氢氧化镁;然后将上述氢氧化镁在中低温真空条件下进行活化焙烧,得到高比表面积多孔氧化镁;再将上述氧化镁加入含表面活性剂的水溶液进行活化转化,得到高纯高活性氢氧化镁产品。本发明工艺简单、过程温和易控,产品纯度高、比表面积大、活性好,可作为基础无机化工产品或高效吸附剂用于医药、阻燃、冶金、催化、脱硫、吸附等领域。
本发明属于湿法冶金领域。本发明的从含钒钛渣中提取钒和钛的方法,包括以下步骤:(1)将含钒钛渣和氧化剂与盐酸混合浸出,获得含钒酸浸液和富钛料;(2)含钒酸浸液加入还原剂获得还原溶液;(3)调节还原溶液pH值获得萃原液;(4)将萃原液进行萃取获得含钒有机相;(5)将含钒有机相进行反萃获得钒溶液;(6)将钒溶液制备成五氧化二钒;(7)将步骤(1)获得的富钛料与碱性溶液反应、水洗后获得水洗钛渣;(8)将水洗钛渣进行酸洗得到酸溶性钛渣。本发明避免了传统提钒工艺高温多次焙烧,能耗高,三废污染严重等问题;该工艺能够破坏含钒钛渣中黑钛石结构,大幅度提高钒的浸出率,实现钒的高效浸出和钒钛的高效提取。
本发明提供一种铁锰多金属氧化矿中提取有价金属的方法和有价金属溶液,涉及有色金属冶金领域。铁锰多金属氧化矿中提取有价金属的方法,包括:将包括所述铁锰多金属氧化矿和酸溶液在内的原料混合,然后熟化得到酸化熟料;将所述酸化熟料进行焙烧得到焙砂,使用溶剂对所述焙砂进行浆化、浸出,分离得到有价金属溶液。有价金属溶液,由所述的方法制得。本申请提供的铁锰多金属氧化矿中提取有价金属的方法,能够有效的将铁与其他有价金属分离开,有价金属浸出率高,能耗低、成本低。
本发明属于稀土湿法冶金领域。具体涉及一种分解氟碳铈矿的方法。本发明中氟碳铈矿经氧化焙烧后采用氢氧化钠进行碱转除氟,碱转矿经洗涤后,进行盐酸优溶,获得少铈氯化稀土料液。优溶渣经洗涤后经过盐酸全溶、沉淀、灼烧后获得纯度大于95%的CeO2产品。碱转过程折百NaOH∶矿中REO为(0.1-1.5)∶1,在50-150℃条件下进行保温反应,然后洗涤碱转矿。优溶过程获得的优溶液以碱转水洗渣调制,废碱液用来吸收盐酸全溶过程产生的氯气。优溶过程盐酸消耗与矿中TREO重量比为1-1.5,盐酸全溶过程盐酸消耗与矿中REO的重量比为0.5-3.0。工艺过程无废气,产生的废渣中稀土含量低,废水量小,环境友好,稀土收率高。
一种含硫铝土矿制备氧化铝的方法,涉及一种采用常规拜耳法工艺处理高硫铝土矿制备氧化铝的方法。其制备过程采用拜耳法工艺,其特征在于在制备过程中加入铝酸钡。本发明的方法,采用常规拜耳法工艺处理高硫铝土矿制备白氧化铝的方法。高硫铝土矿经破碎、溶出、稀释得到含硫矿浆,通过添加0.01-1%(重量比)的铝酸钡除硫、除铁脱色处理,经种分分解、焙烧得到白氧化铝,达到冶金级氧化铝白度指标要求。其工艺流程简单,生产成本低廉。
本发明涉及一种转底炉处理铜渣的方法,包括原料处理、配料、混合、成型、物料烘干、焙烧还原、烟气处理、成品冷却、磨矿、磁选及铁粉冷压步骤,采用碳氢联合还原技术将铁氧化物还原为金属铁、氧化锌还原成金属锌后挥发再氧化收集,可使铜渣中的Fe2SiO4高效还原,中间产品直接还原铁金属化率可达到90%以上,锌脱除率达到95%以上,整个工艺铁回收率达到85%以上;采用碳氢联合还原技术,还原温度低,能耗低。本工艺还原温度在800~1230℃;还原后期采用氢气作为主要还原剂,副产物是水,绿色环保,处理每吨铜渣碳排放量是碳冶金转底炉工艺的50~70%;本工艺中的还原煤采用低阶煤,代替无烟煤,成本低。
一种从白烟尘中综合回收有价金属的方法,属于冶金领域。步骤如下,(1)在白烟尘中配入硫化砷渣,加入到浓硫酸中调浆混合;(2)将步骤1得到的料浆进行低温间接焙烧,回收烟尘中的三氧化二砷;(3)将步骤2得到的脱砷焙砂采用稀硫酸溶液进行浸出;(4)将步骤3所到的浸出渣采用盐酸浸出;浸出渣采用氯化浸出提取金,浸出渣为可出售的铅渣;将浸出液进行电解沉积,阴极所产铋经熔铸精炼得到精铋,(5)将步骤3所得浸出液采用硫酸氧钛进行脱砷;所得净化液进行电积脱铜,得到阴极铜;得到的脱铜后液一部分返回步骤3用于浸出,一部分经浓缩结晶,得到粗制硫酸锌。本发明工艺操作简单、节能、无污染,实现了白烟尘的无害化处置,可消除对环境的污染。
一种含镍烟道灰的常压羰基化方法,属于粉末冶金技术领域。工艺步骤为:第一步,将含镍烟道灰采用机械方式制成1-5mm的颗粒,然后在空气气氛下于400-500℃将其焙烧30-60分钟;第二步,将第一步制成的颗粒置于回转密闭系统中,通入H2于350-500℃温度下还原1-4小时,H2流量控制在100-300L/ h·Kg物料;第三步,将完成第二步反应的回转密封系统控温在40-80℃,然后通入CO和H2S气体的混合气,CO流量控制在100-400L/ h·Kg物料,H2S流量控制在5-50L/ h·Kg物料,保持反应时间3-24h。通过以上步骤可以很好实现镍的分离纯化,并用于生产制备各种镍制品。
本发明提供了钴镍铁多元合金精矿的应用及制备方法和固相金属化还原的钴锰多金属氧化矿选冶联合方法,涉及钴锰多金属氧化矿选矿与冶金技术领域。该应用包括钴镍铁多元合金精矿作为金属团聚剂在钴锰多金属氧化矿的应用;该制备方法包括将钴锰多金属氧化矿粉矿与金属团聚剂的混合料进行金属化还原焙烧后磁选分离,得到富集了钴镍的钴镍铁多元合金精矿。该选冶联合方法采用镍钴铁多元合金精矿为金属团聚剂制备得到富集了钴镍的钴镍铁多元合金精矿和富集了锰的锰精矿,钴镍铁多元合金精矿分离回收钴和镍。本发明利用自产钴镍铁多元合金精矿循环配料做超微细金属形核团聚金属团聚剂,不仅工艺简单、后处理量少、回收率高,而且能耗低、成本低。
一种硫化锌精矿的臭氧常压浸出法,该方法是利用臭氧在常压及硫酸体系中,直接将硫化锌精矿分解为硫酸锌溶液,硫化锌精矿中的硫转化为硫单质。本发明的优点是:锌的浸出速率很高,锌精矿中的硫以元素硫形态产出,省去了传统焙烧工艺中的庞大的制酸系统,元素硫可堆存,方便运输;无需像加压浸出工艺所需的专门的加压浸出设备,投资省,处理量大,同时便于现有锌冶炼企业的技术改造,浸出液可采用常规除铁工艺除铁,而后进行电积,工艺衔接性好;该工艺排出的尾气仅有臭氧及富氧空气,而且臭氧可迅速被分解为氧气,这种尾气可以循环利用,同时不污染环境,因此是一种对环境友好的绿色冶金新工艺,符合国家节能降耗的政策要求。
本发明提供了一种高均匀超细/纳米钨粉的制备方法,属于难熔金属和粉末冶金技术领域。本发明第一球磨将氧化钨粗颗粒粉碎至纳米级,按照比例加入碳源后进行第二球磨,使碳源与纳米氧化钨粉混合均匀;本发明在焙烧过程中,在葡萄糖熔点(120~170℃)或蔗糖熔点附近温度(170~190℃)保温一段时间,由于纳米粉末具有高表面能,葡萄糖或蔗糖熔化后会自发均匀的包覆于纳米氧化钨粉表面;随后升温至葡萄糖或蔗糖碳化温度(300~500℃)并保温,葡萄糖或蔗糖中H、O元素以水蒸气的形式释出,生成的碳均匀地留存于氧化钨颗粒表面。在高温还原温度(800~1200℃)保温,纳米氧化钨被还原,最终生成均匀的超细/纳米钨粉。
本发明提供了一种基于碱法改性和低温硫化还原的铜渣制备铁粉的方法,属于冶金资源综合利用技术领域,用以解决现有铜渣还原熔分过程中无法避免Cu、S、As在金属铁相溶解的技术问题。该方法包括以下步骤:S1.通过碱盐焙烧和湿法浸出对铜渣进行碱法预处理;S2.将碱法预处理后的铜渣与FeS和固体碳质还原剂混合制备含碳球团,S3.将含碳球团进行硫化还原反应;S4.硫化还原后的物料经破碎、研磨后磁选回收金属铁粉,磁选渣经浮选回收含铜锍相。本发明可以有效脱除硅和砷,并将铁氧化物转化为易还原的氢氧化铁,提高铜渣还原活性;通过控制硫化还原温度避免锍相在金属铁中的溶解,获取As、S、Cu含量符合要求的合格还原铁粉。
本发明提供了一种超细碳化钨的制备方法,涉及冶金化工技术领域,制备工艺简单,生产成本低,资源可循环利用;该方法用黄钨作为钨源,碳黑和甲烷作为碳源,分两步焙烧,得到所述碳化钨;步骤包括:S1、将所述黄钨和所述碳黑按预设摩尔比混合,在惰性气氛条件下进行碳热还原反应,碳热还原反应结束后冷却;S2、将S1中冷却后得到的产物置于甲烷和氢气的混合气氛下进行渗碳反应,渗碳反应结束后冷却,得到所述碳化钨。本发明提供的技术方案适用于碳化钨的制备过程中。
中冶有色为您提供最新的北京有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!