一种浮选氧化锌精矿预处理浸出工艺,包括以下步骤:首先加入少量浓硫酸到浮选氧化锌精矿中拌匀;将所得的矿粉在低温下进行保温熟化以部分分解浮选氧化锌精矿表面的浮选药剂;再将所得熟料用废电解液浸出,并过滤分离;最后往过滤分离后的硫酸锌溶液中加入少量活性炭进行吸附,再进行过滤分离,得到氧化锌精矿浸出液。本发明具有工艺简单、绿色环保等优点,可优化精矿浸出条件、并解决浮选药剂等残留问题。
一种回收高炉瓦斯灰中锌的方法,本发明首先将瓦斯灰在亚氨基二乙酸‑硫酸铵‑氨水组成的浸出体系中进行配位浸出,使大部分锌进入溶液中,并抑制铁的溶解,实现瓦斯灰中锌与铁的分离;对于含锌浸出液,进行蒸氨和氨气的吸收,所得氨水返回浸出过程重复利用;蒸氨后液通过加入稀硫酸调节溶液pH,使浸出液中的亚氨基二乙酸重结晶析出,过滤所得析出后液为硫酸锌溶液,可与传统的溶剂萃取‑电积回收锌工序衔接。本发明不但避免了强酸性体系对浸出设备的腐蚀,也避免了强碱性体系中生成的锌酸钠难以回收问题。锌的浸出率为65%以上,而铁几乎没有被浸出,采用了硫酸铵作为混合配位浸出剂之一,在浸出过程中避免了瓦斯灰中铅、钙杂质元素的溶解。
一种辉钼矿的电氧化浸出方法,其特征在于,将辉钼矿精矿或中矿在含有碳酸盐酸式碳酸盐的氯化钠溶液中进行无隔膜电解,辉钼矿被选择性氧化而浸出,而铜、铋、镍等金属硫化矿物则不能氧化而留在固体渣中,过滤分离后,得到较为纯净的钼酸盐水溶液,可采用萃取、反萃、结晶等常规钼冶金工艺生产钼酸铵产品;钼精矿或钼中矿所含的铜、铋、镍等矿物则在浸出渣中加以回收。本发明由于采用碳酸盐酸式碳酸盐体系进行辉钼矿的电氧化浸出,显著提高了电氧化过程的电流效率及钼浸出率,具有电流效率高、选择性好、金属回收率高、工艺条件温和且无污染等特点。
本发明公开了一种无皂化萃取分离钴和/或镍溶液中杂质的方法,包括下述步骤:(1)调节待萃溶液pH值;(2)配制有机萃取剂;(3)对待萃溶液中杂质进行无皂化萃取,分离杂质;(4)对负载有机相进行反萃取脱杂,使有机萃取剂循环再使用。本发明具有工艺流程简单、效率高、钴镍直收率高、成本低等有益效果。
一种低成本处理红土镍矿的方法,该方法将红土镍矿在常压酸浸槽中浸出,将产品过滤后所得滤渣进行磁选,分成磁性部分和非磁性部分。非磁性部分可直接用于硅产品的深加工。磁性部分在高于大气压的压力下浸出,浸出渣可以用作炼铁工业的原料,浸出液循环至常压浸出槽,用作常压浸出所需的酸原料。常压浸出液可用溶剂萃取、离子交换、硫化沉淀等方法回收镍钴与镁。本发明适用于处理各种类型的含有铁、镁矿物的红土镍矿,实现了酸的循环利用和镍、钴、铁、硅、镁等金属的综合回收,且大大减少了高压釜的体积和结垢量,是一种低成本高效处理红土镍矿的环保工艺。
本发明涉及一种含铜钼精矿的处理方法,将含铜钼精矿磨细,获得矿粉;将矿粉与水按1:3‑5的质量比混合均匀,进行一段氧压浸出后,固液分离,获得第一浸出液和第一浸出渣;将第一浸出渣与水按1:6‑9的质量比混合均匀,进行二段氧压浸出后,固液分离,获得第二浸出液和第二浸出渣;对第二浸出渣进行碱浸处理,获得pH值为8‑10的矿浆;将第二浸出液与矿浆混合,反应,获得混合浆液;对混合浆液进行固液分离后,获得第三浸出渣和富含钼的第三浸出液。本发明的处理方法浸出率高,且酸得到有效利用。
一种控电位选择性沉淀分离钴的方法,用铜钴锰渣中和铜钴锰溶液至要求的pH值,然后同时控制溶液电位和pH值条件下加入硫化钠硫化除铜,除铜后液同时控制溶液电位和pH值条件下加入乙基黄药沉淀除钴,除钴后液同时控制溶液电位和pH值条件下加入硫化钠硫化除锌,除锌后液再加入纯碱中和产出碳酸锰。本发明的实质是同时采用控制溶液中金属离子混合电位和pH值实现溶液中铜、钴和锌的分步沉淀分离,尤其是钴沉淀产物中钴含量达到20.0%以上,这些过程紧密关联,单独过程都不能达到有价金属分步分离的预期效果。
本发明涉及一种矿浆电解法从含钒石煤矿中提钒的工艺,属于钒的湿法冶炼技术领域。本发明在电解槽内,以碱性含钒石煤矿浆为原料,按摩尔比Cl-:V3+==2-3 : 1,将水溶性氯盐加入矿浆中,搅拌、在通入含氧气体的条件下进行电解;电解时,控制槽电压为4.5-6V,电流密度为10-40A/dm2。通气电解时,阳极区产生的氯气作为浸出钒的氧化剂,阴极区不断通入空气,空气中的氧气在阴极区发生反应生成OH-离子,为钒的浸出提供碱性环境。同时,可以避免阴极区发生析氢反应,和阳极区产生的氯气发生爆炸。本发明钒的浸出率≥90%,电解电流效率≥95%。本发明具有流程短,效率高、成本低、资源利用率高、环保、安全等优势,便于产业化应用。
本发明公开了一种含油电镀污泥中金属资源综合利用的方法。该方法包括热酸浸出‑协同芬顿氧化、硫化沉铜、有机螯合盐沉镍钴、电沉积锌和还原熔炼铬铁合金等工序,该方法在高效深度降解污泥中的有机物的同时,实现了含油电镀污泥中锌、铜、镍、钴、铬、铁等资源的综合回收利用,相对现有处理含油电镀污泥的方法,具有处理原料适用性强、产品价值高、无二次危废产出、流程简单等显著优势。
金属钨湿法冶炼中季铵盐碱性萃取三相絮凝物的处理方法。本发明涉及一种对钨碱性萃取产生的三相絮凝物进行处理的方法,所述方法包括采用石灰对三相絮凝物进行混合、搅拌、加热、保温等过程,对三相絮凝物进行破乳,从而便于进行后处理,进行压滤后的滤渣经过隔膜压榨后作为添加剂加入焙烧料进行烧结回收其中的钨,水相返回生产线,有机相返回萃取线,从而实现对物料的回收。
一种利用高铁闪锌矿强化斑铜矿浸出的方法,包括以下步骤:将高铁闪锌矿和斑铜矿分别进行磨矿,得到高铁闪锌矿粉和斑铜矿粉;将9K基础培养基进行高温高压蒸汽灭菌,将所述高铁闪锌矿粉和斑铜矿粉进行间歇灭菌;将灭菌后的所述高铁闪锌矿粉和斑铜矿粉进行混合,然后加入已灭菌的所述9K基础培养基,得到矿浆,然后调节矿浆pH至1.5‑2.0;将上述矿浆进行搅拌浸出,并调控浸出溶液化学条件。本发明缩短了整个浸出周期,同时大大提高了浸出率和浸出速率,清洁环保,成本低,适合大规模推广应用。
本发明公开了一种再生修复废旧锂离子电池正极材料的方法。首先,将拆解、除去表面有机质的废旧锂离子电池正极材料分级处理,去除废旧锂离子电池材料中粉化的细碎颗粒。然后,将分级得到的废料与适当比例的锂盐球磨混或浸渍于锂盐溶液中,得到均匀混锂的废料。最后,采用微波烧结的方法,将混锂废料置于空气或氧气气氛下进行热处理,再生制备锂离子电池材料。该方法采用微波焙烧,材料升温速率快,效率高,且在整个回收过程中,无需强酸、强碱,无废渣、酸碱性废水生成,不易产生二次污染。同时,该方法流程简单,微波加热时,材料内部温度更均匀,再生产品质量稳定,性能良好。
本发明提供一种强化黄铜矿与斑铜矿生物浸出的方法。选用嗜酸氧化亚铁硫杆菌,喜温嗜酸硫杆菌和嗜铁钩端螺旋菌中的一种或几种作为浸矿微生物。控制黄铜矿与斑铜矿的配比在5:1-1:5之间。浸出过程中,控制搅拌速度为100-600rpm,控制溶液pH值为1.5-2.5,溶液电位为350-480mV(Ag/AgCl为参比电极),黄铜矿与斑铜矿可协同浸出,Cu浸出率显著增加。该方法通过黄铜矿与斑铜矿的合理配矿,控制合适的浸出工艺条件,提高黄铜矿与斑铜矿的生物浸出效率,该方法高效、简单、易操作。
本发明涉及电池回收技术领域,公开一种镍氢电池模组破碎高效分选装置及方法,包括破碎机;干燥破碎混合物料的干燥机;筛分干燥混合物料分离出正负极粉的振动筛;对筛分物行磁选分离分别得到塑料外壳、夹带少量正极片的隔膜、负极钢网、正极片的磁选机;对磁选所得物料清洗以使负极钢网上的负极粉、隔膜上吸附的正负极粉洗脱至清洗水中的清洗机;压滤清洗水以回收正负极粉的压滤机;还包括用于往破碎机内通入惰性气体的进气口和确保破碎机内为绝氧环境的抽气口,电池模组在破碎机内无需放电即可进行破碎,不会有爆炸风险,大幅提升生产效率;仅设置振动筛、磁选机、清洗机即可实现各物料分类回收,减少正负极粉流转工序,确保电池回收价值最大化。
本发明公开了一种溶液除铁方法以及铁基吸附材料的制备方法。在含亚铁离子溶液中加入具有吸附功能的载体并通入一定流量的空气/氧气,以金属氧化物MeO或金属碳酸盐MeCO3为中和剂,在一定的温度、pH值条件下进行高剪切氧化除铁反应。反应结束后,液固分离得到的沉铁产物在酸性溶液中进一步改性反应一定时间后液固分离,之后洗涤、烘干,得到性能良好的铁基吸附材料。本发明方案不仅能实现溶液高效除铁,而且可将得到的除铁产物直接制备得到性能良好的铁基吸附材料,实现铁资源的高值化利用。
一种分离铅和银的方法,本发明将铅渣用热水洗涤,洗水冷却后得到纯的氯化铅,洗水加热后再返回利用;洗涤后的残渣用氢氧化钾溶液溶解锑,溶解过程中加入过氧化氢,氧化渣中的三价锑,过滤后的渣即为富集了银的富银渣,浸出液用氢氧化钠沉淀产出锑酸钠,沉淀后母液返回溶解锑。本发明流程简单、不使用化学试剂、无环境污染;溶解锑后可以直接得到含银达70%以上的富银渣,银直收率高;锑回收过程中试剂循环利用,锑酸钠产品质量好;处理时间短、综合成本低。
一种废线路板铜粉酸碱联合分步脱除杂质的方法,废线路板铜粉在盐酸溶液中浸出,使其中的铝选择性浸出,得到的脱铝渣再采用碱性加压氧化浸出铅和锡,浸出渣采用水力旋流分选方式产出优质的火法炼铜原料。本发明的实质是采用两段浸出和水力旋流的方式处理废线路板铜粉,不仅选择性的脱除了铝、铅、锡等杂质金属,而且分离了其中的有机物和玻璃纤维组分,采用湿法浸出的方式对废线路板铜粉进行了预处理,解决了火法熔炼回收废线路板铜粉时杂质金属和有机物的危害。
一种含铜固废资源化利用的富集熔炼方法,含铜固废在石灰溶液中通入氧气氧化转化,转化渣与其他含铜固废配料混合,使混合物料的水分、铜含量和FeO∶SiO2∶CaO质量比分别保持在要求范围,同时加入淀粉后制备砖块,将混合料砖块与焦炭交替加入到熔炼炉中,通入富氧空气进行富集熔炼,熔炼产出的重相熔体控制冷却制度分离产出粗铜与冰铜,熔炼渣在烟化炉中造锍贫化和烟化分别回收铜和锡,熔炼渣再磨细后选矿进一步回收铜。本发明的核心首先是硫酸钙作为新型固硫剂,其次是采用淀粉同时作为粘结剂和还原剂,再次是通过控制熔炼渣中铜含量实现含铜固废的无害化与资源化利用,最后是采用造锍贫化和烟化过程实现熔炼渣中铜和锡的回收。
本发明公开了一种从红土镍矿浸出液分离富集镍钴的方法,将红土镍矿浸出液与矿渣固液分离后,向浸出液中加入硫化剂,反应沉淀后固液分离,沉淀固体用新浸出液进行洗涤得硫化物沉淀;硫化物沉淀浆化后,加入硫酸和硝酸混酸溶液氧化浸出;采用针铁矿法对上级酸浸液除铁;加入硫代硫酸钠溶液进行除铜;所得滤液即为镍钴富集溶液。与现有技术相比,本方法在常温、常压下进行,无须使用高压釜,设备投资少,运行费用低;工艺路径简单,流程短,生产规模大小可控;工艺中所用的硫化剂和酸可最大限度的循环利用,无排放,不污染环境;镍钴提取率在95%以上,生产成本低,易于产业化。
一种废旧线路板铜粉球磨分选脱除杂质金属的方法,废线路板铜粉在球磨罐中用硫酸溶液浸出,使其中的铝和铁选择性浸出;得到的浸出渣烘干后采用机械筛分的方式使铅和锡分离进入细颗粒,铜富集于粗颗粒;最后采用控电位盐酸氧化浸出的方式处理粗颗粒,深度脱除其中的铅和锡,使铜得到进一步富集。本发明的实质是采用化学浸出和机械处理相结合的方式选择性脱除废线路板铜粉中的杂质金属,解决了废线路板铜粉中杂质金属对火法炼铜的危害问题以及实现了金属资源的回收利用。
本发明公开了一种镍钴协同萃取剂及其用于镍钴与杂质萃取分离的方法,协同萃取剂包括吡啶基磷酰胺化合物和二烷基萘磺酸;以含镍钴协同萃取剂的有机相对含镍离子和/或钴离子及杂质金属离子的水溶液进行萃取,萃取有机相经过反萃取,即得脱除杂质金属离子的含镍离子和/或钴离子的溶液;该协同萃取剂能实现镍和钴的分离以及镍钴与杂质金属离子(如镁、锰、钙等)的有效分离,且具有选择性高,分相快等优点。
本发明公开了一种废旧钴酸锂正极材料的回收方法,包括以下步骤:S1、碱浸除铝:将粉碎后的废旧钴酸锂正极片浸泡在碱性溶液中将铝转化为偏铝酸盐,固液分离获得除铝沉淀渣;S2、焙烧除杂:将所述除铝沉淀渣煅烧处理,得到粗制钴酸锂粉末;S3、机械活化:将粗制钴酸锂粉末与草酸粉末混合得混合粉末,将所述混合粉末经机械活化处理,再经浸泡、固液分离,收集固相部分为草酸钴。该方法工艺路径合理、操作简单、工艺耗材少、试剂用量小、锂钴回收率高。
本发明公开了一种基于原电池的生物冶金方法及装置,所述方法是基于原电池以浸出剂与原电池的负极槽循环连通,以微生物菌液与原电池正极槽循环连通,将待浸出原料置于浸出剂中,利用浸出剂和菌液的电位差可转换待浸出原料的部分化学能为电能。原电池槽将菌液和浸出剂分开,待浸出原料和其中的有毒离子不能直接接触微生物,微生物也不会随浸出废料进入自然环境。本发明用含有高浓度酸和氧化剂的浸出剂提升溶解速率,用可再生氧化剂的菌液维持溶液高电位,用原电池槽将微生物和环境隔离,同时再生浸出剂中的氧化剂,杜绝了微生物泄漏,提升了物料浸出效率。
本发明涉及冶金料液电位在线检测技术领域,公开了一种液体电位检测装置,包括升降装置、电位计组件、冲洗装置与控制装置,本发明通过升降装置带动电位计组件上下运动,实现电位计组件适时离开溶液,避免电位计组件长期浸泡在溶液中,降低结垢及受污染的风险;而且,通过冲洗装置对电位计组件进行定时冲洗,保持电位计组件表面清洁,防止电位计组件结垢被污染,从而使得电位计组件对溶液中化学反应的氧化还原电位准确监测,为后期冶金过程反应进行优化控制提供准确信息支持;另外,还能够保证电位计组件灵敏度,增加电位计组件使用寿命,也防止测量误差加大,控制生产过程的生产成本和能源消耗。
一种从冶金物料酸浸液中分离回收砷的方法,是以锑或/和铋的氧化物及其水合物为吸附剂,选择性地吸附脱砷,过滤得脱砷后液和负载吸附剂;脱砷后液用于回收其中的有价金属,负载吸附剂加入碳酸钠或/和氢氧化钠溶液搅拌解吸再生,过滤得再生吸附剂和解吸后液;再生吸附剂返回吸附脱砷工序循环使用,解吸后液冷却结晶析出砷酸氢二钠晶体,砷酸氢二钠结晶母液返回负载吸附剂解吸工序循环使用。所得砷酸氢二钠烘干作产品出售,或作为亚砷酸的生产原料,从而实现酸浸液中As的资源化利用。本发明具有工艺简单,操作简便,生产成本低,脱砷效果好等优点,且对溶液中有价金属的回收无副作用,彻底消除冶金物料酸浸液除砷过程对环境造成的污染。
一种从含锑难处理金矿中脱除锑并制备立方晶型焦锑酸钠的方法,本发明先将含锑难处理金矿在Na2S和NaOH混合体系中浸出,使锑以硫代亚锑酸钠形式溶解进入浸出液,含锑浸出液加入沉淀剂后在高温下使浸出液中的铁和砷沉淀,除铁和砷后液加入添加剂并在高压釜内通入氧气氧化,使三价锑氧化后以NaSb(OH)6形式沉淀,沉淀物洗涤烘干后即为立方晶型焦锑酸钠产品,氧化后液直接蒸发浓缩结晶,得到硫代硫酸钠产品。本发明的实质是采用湿法浸出方法从含锑难处理金矿中脱除锑,然后在沉淀剂存在下高温沉淀铁和砷,最后再控制条件加压氧化直接制备立方晶型焦锑酸钠产品。本发明不仅脱除了影响氰化提金过程的锑,而且直接制备出合格的立方晶型焦锑酸钠产品,实现了脱除和回收锑的双重目的。
本发明涉及一种利用高铁高磷锰矿制备电解金属锰的方法,包括下列步骤:将高磷高铁锰矿和黄铁矿分别球磨成粉后按比例混合在自制焙烧设备中进行焙烧,以水为浸出剂对所述经过硫酸化焙烧的混合物进行浸出得到硫酸锰溶液,对所述硫酸锰溶液进行除杂得到硫酸锰电解液,在所述硫酸锰电解液中加入电解添加剂,同时向溶液中加入铵盐作缓冲剂,将所述电解液放入电解槽,通直流电并保持恒温后,产生电析作用,在阴极上析出金属锰,对所述析出金属锰进行钝化、水洗、烘干、剥离等处理,获得电解金属锰产品。本发明具有工艺流程短,能耗低,对环境污染小,将适合高铁高磷等贫锰矿的开发和应用。
本发明公开了一种废加氢催化剂的处理方法及其应用。本发明提供的废加氢催化剂的处理方法包括以下步骤:S1.将废加氢催化剂和碱液混合、进行溶剂热反应后分离,得油相、水相和固相;S2.酸浸所得固相后进行固液分离,得浸出液和浸渣。本发明提出的废加氢催化剂的处理方法,通过流程的优化,能够在省略传统煅烧步骤的基础上,实现废加氢催化剂的去油;并能在提升各金属元素浸出率的同时,将各金属元素进行初步提纯分离。
一种废线路板铜粉分步回收有价金属的方法,废线路板铜粉在盐酸溶液中浸出,使铝以氯化铝形式溶解进入浸出液,同时使铜得到初步富集;得到的脱铝渣再采用盐酸氧化浸出,控制电位使锡转化为氯化锡进入浸出液,铅转化为氯化铅进入浸出渣,浸出渣再采用热水洗涤使氯化铅溶解,浸出液中的锡采用电积的方式回收。本发明的实质是采用控电位的手段分步脱除废线路板铜粉中的杂质金属,实现了这些杂质金属的分离回收,采用两步盐酸浸出的方式对废线路板铜粉进行了预处理,解决了废线路板铜粉中杂质金属对火法炼铜的危害问题以及实现了金属资源的回收利用。
一种从红土镍矿浸出液中富集镍钴的方法,包括酸浸液浓缩、PH值调整,采用复合硫化剂沉淀、固液分离、洗涤、滤液处理。复合硫化剂由含氢离子的硫化剂A与不含氢离子的硫化剂B组成。复合硫化剂中硫化剂A的用量为1-95%,硫化剂B的用量为5-99%。调整红土镍矿的酸浸液的PH值到设定值,缓慢加入复合硫化剂,使浸出液的PH值保持不变或缓慢变化,得到富集镍钴的硫化物产品。镍与硫化剂的质量比为1∶1.6-5。本发明中硫化剂A与硫化剂B构成一种缓冲体系,调节、控制硫化沉淀过程中PH值的变化,防止氯化铁、氯化镁水解成氢氧化物进入硫化物中,提高了镍、钴与铁、镁的分离率;得到的硫化物沉淀易过滤;硫化剂用量少。
中冶有色为您提供最新的湖南有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!