本发明公开了一种从白钨矿中提取钨的方法,将白钨矿、磷酸和硫酸的混合溶液混合进行反应,加入二水石膏作为晶种,控制SO42-浓度、P2O5含量和反应温度,得到过滤和洗涤性能良好的二水石膏。本发明的优点在于实现了白钨矿的一步高效常压浸出,节省了资源和能源消耗,而且其分解率可达98%以上;克服了传统的酸分解工艺中的Cl-腐蚀和HCl挥发严重问题;基本实现了磷酸的循环利用,极大降低了浸出成本和废水排放量;浸出设备简单,操作方便,易于实现工业化;得到单一、稳定的二水石膏,该石膏过滤效率高,洗涤性能好,经洗涤后该石膏中P2O5含量降低到2%以下,降低了磷酸的损失;避免了钨矿浸出时硫酸钙固体膜的“钝化现象”。
本发明公开一种湿法高效分离铬铁的新方法。所述方法包括以下步骤:(1)调整含铬、铁溶液的pH值至1.5‑2.5;(2)向溶液中加入适量氧化剂,使铁全部氧化为三价铁,铬保持三价状态;(3)向氧化后的溶液中加入一种有机络合物,该有机络合物与溶液中的三价铁形成不溶于水的络合物析出,而三价铬仍留在溶液中;(4)固液分离后,得到除铁后的含铬溶液;(5)所得含铁沉淀物加碱液转化成氢氧化铁,同时实现有机络合物的再生回用。本方法流程短,操作简单,能实现溶液中铬铁的高效分离以及铬铁的资源化,同时能实现沉铁剂有机络合物的循环利用,处理成本低,易于工业化应用。
本发明涉及一种利用化学氧化剂从含锌铜精矿中选择性除锌的方法,包括以下步骤:将含锌铜精矿与水混合成矿浆,接着向矿浆中加入化学氧化剂,然后调节矿浆pH;将所述矿浆进行搅拌浸出;将浸出后的矿浆固液分离获得低锌高品位铜精矿和含锌浸出液。本发明采用浸出法优先浸出锌,简化了生产工序,降低了生产成本,大幅提高了铜矿品位;此外,浸出液可作为金属锌的生产原料,提高了矿物资源的综合利用率,增加了经济效益。该方法清洁、简单、易操作,适于大规模推广应用。
本发明公开了一种废旧三元锂离子电池粉末中有价金属回收的方法,先将废旧三元锂离子电池粉末放入通入氧气的井式炉中进行氧化焙烧,得到焙烧产物,焙烧产物中碳的含量减少99%以上,再将焙烧产物溶解于氨‑氯化铵溶液体系,放入反应釜,并加入体积分数为1.6%的水合肼作为还原剂,调节所得浸出液的pH值为8.00,按照O/A比为2加入到萃取剂中,其中Versatic 911的体积分数为20%,磺化煤油的体积分数为80%,控制反应温度为30℃,反应5min后经分离得到萃余液和有机相,通过3级逆流萃取,钴的萃取率为98%以上。本发明使用的设备简单、投资运营成本低、工艺能耗显著降低、有价金属回收率高。
本发明公开了一种从锰银矿中回收锰和银的方法:将乙二胺四乙酸或氨基三乙酸或它们的盐和锰银矿在水中搅拌发生还原浸出反应,过滤,得到含银浸出渣和含锰配合物浸出液;将得到的含银浸出渣加入到含硫代硫酸盐的溶液中,再加入一部分含锰配合物浸出液进行银的催化浸出,过滤,得到含银浸出液和尾渣;将金属锰粉加入到含银浸出液中得到含金属银的银精矿;将另一部分含锰配合物浸出液用硫酸酸化,沉淀、过滤,得到乙二胺四乙酸或氨基三乙酸和硫酸锰溶液;将得到的硫酸锰溶液进行中和除杂及硫化沉淀除杂,得到硫酸锰净化液,电解得到金属锰。本发明将锰的浸出反应和银的浸出反应分步进行,方便分别对两种浸出液进行处理,实现了锰和银的高效浸出。
本发明公开了一种阴极电沉积法制备锰钴复合材料的方法,其包括:在电解槽中加入含锰离子和钴离子的电镀液,将复合阳极和不锈钢阴极插入电解槽内,在室温下恒流电镀预设时间;其中,复合阳极包括质量百分比为10~30%的锡和质量百分比为0.1~5%的钴,余量为铅。本发明可以在同一个电解槽中完成在不锈钢阴极上电沉积Mn‑Co尖晶石涂层的工序,电沉积过程中无MnO2生成,既减少了MnO2颗粒夹杂对涂层性能的影响,又降低了电镀液中锰离子的消耗。
本发明公开了一种高效富集铼制备高铼酸铵的方法,包括如下步骤:第一步,含铼铜砷滤饼物料的浸出;第二步,铼的沉淀富集;第三步,铼的反溶;第四步,高铼酸铵的结晶。本发明属于铼回收利用生产技术领域,具体是提供了一种原料适应性强,设备投资小,金属回收率高,生产效率高,能稳定产出工业级3个9以上的粗高铼酸铵的方法。
本发明涉及一种多功能生物冶金反应器,包括反应装置和检测装置;反应装置包括阳极反应室、阴极反应室和设置在所述阳极反应室与阴极反应室之间的半透膜、底座;检测装置包括阳极与阴极反应室pH计、OPR计、温度计、pH计监控界面、OPR计监控界面、温度计监控界面。本发明基于微生物冶金体系的生物反应器,实现了将微生物冶金体系中的电能进行有效回收和利用,提高了微生物冶金体系中金属矿的浸出率,可进行硫化矿光催化作用下促进浸矿微生物生长固定二氧化碳的实验与应用。
本发明涉及一种提高含锗、镓物料中锗、镓浸出率的方法。采用以下步骤。(1)将物料进行粉碎预处理;(2)将处理后的物料与碱性浸出剂、表面活性剂按照一定比例混合,进行超声碱性浸出,浸出后固液分离;(3)将上述浸出渣进行苛化处理,处理后进行机械力活化浸出,浸出后固液分离。两段浸出液混合后进行锗、镓的回收。与常规酸性浸出相比,本方法通过两段碱浸工艺,可大幅度提高锗、镓的浸出率,且本方法无需添加氟化物,可降低对生产设备的腐蚀。
本发明公开了一种五烷基二乙烯三叔胺及其制备方法和应用,该五烷基二乙烯三叔胺由以下方法制备得到:将溴代C4~C8的烷烃缓慢滴加到含二乙烯三胺的有机溶液中,在无水碳酸钾的存在下,加热进行取代反应,再分离纯化后,得到具有新型结构的五烷基二乙烯三叔胺化合物,该制备方法操作简单、反应条件温和,制得的五烷基二乙烯三叔胺化合物可作为萃取剂对水溶液中的钼酸根、钨酸根或钒酸根阴离子进行有效萃取分离,该五烷基二乙烯三叔胺化合物拓宽了钨、钼、钒的萃取分离技术领域中萃取剂的选择范围。
本发明涉及一种湿法综合回收银阳极泥直接提纯金的方法,使银阳极泥在经过硝酸浸出外层氯化银包裹物后,再通过氯化浸出金、钯,此浸出渣通过亚硝酸钠浸出银与前面硝酸浸出液一起通过甲醛还原得到银粉,氯化浸出液经过还原得到99.99%的金粉,还原后液可循环至氯化浸出或通过置换后再溶解还原得到钯粉。直收率分别达到99%与98%以上。本发明适用从富含金、银的银阳极泥中直接提纯金并回收了其中的银、钯贵重金属,有利于解决金银冶炼行业银阳极泥回收过程中由于生产周期过长而造成资金大量积压的问题。
本发明提供的一种提高锌精矿中铟回收率的工艺,它包括以下步骤:(1)将锌精矿直接加入到次氧化锌,先用球磨机球磨后,再进行中性浸出;(2)将中性浸出的浓密底流进行压滤,滤渣用水或电解废液浆化后,再进行酸性浸出,得到富铟浸出液;(3)对富铟浸出液进行直接萃取、反萃、置换、电解熔铸等处理,最终得到精铟产品。该铟提取新工艺可将锌精矿中铟的回收率提升至75%以上,生产周期缩短至10天以内。
本发明提供一种从独居石冶炼酸不熔渣中回收钍、铀和稀土的分离工艺方法。具体为将酸不溶渣与浓硫酸混合均匀后恒温焙烧,焙烧渣加水室温浸出后用叔胺类萃取剂提取铀,提取铀以后的溶液用伯胺类萃取剂提取钍,提取铀和钍以后的溶液用碱沉淀得到稀土混合物产品。该工艺流程简单,易于大规模生产;化工材料常见且消耗低;能有效地从独居石冶炼过程中剩下的酸不溶渣中提取稀土,并获得单一的钍和铀产品,总回收率可达到90%以上,消减渣量50%以上,实现环境友好,具有明显的社会效益与经济效益。
本发明公开了一种从钨冶炼的仲钨酸铵结晶母液中一步回收钨与氨的方法,在仲钨酸铵APT蒸发结晶完成后,母液泵至吹脱处理的反应釜中,母液中加入含量90%以上的氧化钙或含量95%以上的氢氧化钙,通过APT制备工艺中结晶母液常用的吹脱工艺对氨进行回收,反应温度在25℃~90℃范围内,氨通过冷凝浓缩气液分离后,用盐酸喷淋,制备成氯化铵返回主流程配解析液,白钨渣返回压煮工序;至反应体系pH值维持在9~11范围内,水中氨氮浓度降至30mg/L左右,反应结束,除去氨氮后的废液与主流程工序中产生的离子交换后液混合处理。本方法大大简化了工艺流程,且钨沉淀率高,是一种工艺简单、易操作,处理成本较低。?
本发明涉及一种高铁锌渣的处理方法,将高铁锌渣与碳源混合均匀,造粒,获得渣粒;对所述渣粒进行熔炼,获得熔渣;将所述熔渣输入烟化炉,于1300‑1350℃条件下吹炼50‑60min,获得炉渣和烟尘;吹炼期间,控制烟化炉内渣位高度为500‑600mm,按700‑800Nm3/t‑高铁锌渣的量通过第一喷嘴和第二喷嘴向烟化炉内鼓入空气,控制各喷嘴的鼓风压力为60‑80kPa,同时,按150‑200kg/t‑高铁锌渣的量通过第一喷嘴和第二喷嘴喷入粉煤;对所述炉渣进行水淬,获得弃渣。本发明无需配入溶剂即可获得满足更高环保要求的弃渣,Zn<0.5wt%,Pb<0.01wt%,实现了对高铁锌渣的进一步无害化处理。
本发明公开了一种含烷氧基伯胺类萃取剂及其制备方法和作为钨萃取剂的应用。含烷氧基伯胺类萃取剂的制备是将脂肪醇与丙烯腈通过迈克尔加成后通过加氢反应,即得以下结构含烷氧基伯胺类萃取剂:该含烷氧基伯胺类萃取剂的合成具有原料便宜、工艺简单、条件温和、操作方便、产率高等优点,且该含烷氧基伯胺类萃取剂的物化性质稳定、饱和容量大、萃合物油溶性好,且对钨选择性萃取能力强,选择性高,非常适用于高钼高钨或高钼低钨的钼酸盐溶液中钨钼的萃取分离。
本发明涉及一种利用氧化性气体从含锌铜精矿中选择性脱锌的方法,将含锌铜精矿粉末与水混合,得到不同矿浆浓度,接着通入气体氧化剂,然后调节矿浆pH,将得到的矿浆在一定的温度下搅拌浸出,控制浸出体系的氧化还原电位,从而选择性去除锌,然后得到高品位的铜精矿。本发明采用不同气体氧化剂浸出法优先浸出锌,大幅提高了铜矿品位,解决了当下铜锌分离难的问题,而且浸出液可作为金属锌的生产原料,简化了生产工序,降低了生产成本,减少了不必要的能源浪费,脱除的锌在溶液中又可作为金属锌的生产原料,最大限度的利用现有的矿物资源,减少对环境的危害,增加了经济效益。该方法清洁、简单、易操作,适于大规模推广应用。
本发明公开了一种铜电解液中砷的原位沉淀分离方法,在铜电解精炼过程中,控制电流密度为400~600A/m2,采取“下进上出/平行极板间进液”的电解液循环方式进行反应,并在反应至少4h之后加入BiAsO4晶种,使得铜电解液中含砷晶态沉淀原位诱导形成。本发明利用铜电解液中含砷和锑、铋的物质之间易发生反应的特性,在保证电解过程正常运转的前提下通过电解精炼中的相关参数(电流密度、电解液循环方式、阳极板与电解液进液口的间距、晶种浓度)的协同作用来诱导含砷晶态沉淀的形成和长大,从而实现其在电解液中的高效沉降及其与阳极泥等泥状物质的原位分离。
本发明公开了一种阴极沉积金属片预剥离检测机构,包括光电开关组件和探测组件;所述光电开关组件包括安装座及安装于安装座上的光电开关;所述探测组件包括导杆和固定在导杆下端的探测板,所述安装座上开设有导向孔,所述导杆穿过导向孔且可相对安装座轴向往复运动,所述探测板上设有当导杆轴向向下运动至下止点时使光电开关打开的感应件;所述探测板在导杆轴向向下运动时可被阴极板上预剥离成功的沉积金属片阻挡。该机构可检测是否已经成功将沉积金属片与阴极板预剥开,从而提高预剥离效率和产量。
本发明公开了一种从含钼钨酸铵溶液中萃取分离钨钼的方法,该方法使用含有甲基三烷基铵的碳酸氢盐及其碳酸盐复合萃取剂的有机相分别与经硫代化处理的含钼钨酸铵料液和碳酸氢铵‑碳酸铵混合洗涤剂接触进行分馏萃取,使钼进入有机相中,钨留在水相中,获得高纯度的钨酸铵水溶液和负载纯钼的有机相,然后将负载纯钼的有机相经双氧水溶液氧化后采用碳酸氢铵‑碳酸铵混合溶液反萃取获得高纯度的钼酸铵溶液,反后有机相不需处理可直接返回萃取重复使用。本发明具有钨钼相互分离深度高,不引入有害杂质,能同时获得高纯度的钨、钼产品液的特点。
本发明公开了一种白钨矿的清洁冶金方法,该方法是将白钨矿、阴离子交换树脂与水混合调成浆料,向所述浆液中逐步加入无机酸对白钨矿进行酸分解,酸分解所得混合物进行过滤,分离出负载离子态钨的树脂,所述负载离子态钨的树脂用碱液解吸,得到钨酸盐溶液;该方法利用无机酸与阴离子交换树脂协同分解白钨矿,能使白钨矿中的钨转化成离子态,大大提高了钨的回收效率,解决了传统酸分解过程中白钨矿被钨酸包裹而影响分解率的问题,同时克服了传统酸分解使用浓盐酸造成酸雾大、设备腐蚀严重的缺点,实现了白钨矿的高效清洁分解。
本发明公开了一种钴、乙二胺四乙酸催化硫代硫酸盐浸金的方法。其采用钴、EDTA取代传统的铜、氨催化,即在矿浆中加入硫酸钴和EDTA取代硫酸铜和氨水的加入。由于硫代硫酸盐法因浸出剂无毒且价格便宜、浸金速率快、在碱性介质中浸金对设备腐蚀小等优点,被广泛认为是最有潜力的非氰化浸金方法,但同时也存在Cu(NH3)42+氧化S2O32-导致浸出剂消耗大和氨的使用威胁环境的问题。为解决这些问题,本发明方法能显著降低硫代硫酸盐的消耗,避免氨水对环境的威胁,且其浸金率与传统的铜、氨催化方法相当。
本发明公开了一种锌‑氨‑铵盐溶液体系置换沉积海绵铜粉的方法。该方法是将锌阳极与阴极浸入含铜离子的锌‑氨‑铵盐溶液中,通直流电进行置换反应,固液分离,得到海绵铜粉。该方法与单纯用锌粉置换铜相比,直流电能促进、加速置换过程,大大提高置换效率,且大大减少了锌的消耗量,降低成本。置换所得海绵铜粉与传统锌粉置换所得铜渣相比,铜粉没有包裹锌、纯度高、杂质少。置换后溶液经过深度净化后再用于电积金属锌板;该方法工艺简单,所得海绵铜粉纯度高,可以用于黄铜生产;与锌冶金过程相结合,便于实行产业化生产。
本发明公开的一种立体均衡电场分解槽和煤炭在无酸碱介质下预脱硫工艺,本发明的立体均衡电场分解槽将两梳状电极板在分解槽内均衡排布,将传统的平面电场立体化,保证了分解槽中任何一点的分子都可被等力电离,分解效率大大提高。本发明还提供了煤炭在无酸碱介质下利用立体均衡电场分解槽进行脱硫的一整套工艺,使黄铁矿硫在中性介质中实现分解聚集达到极化脱硫的目的,脱硫效率高,无污染,还可以回收聚集在极板上的硫加工成副产品。本发明的立体均衡电场分解槽及立体均衡电场预脱硫工艺除了可以用于煤炭脱硫外,还可以应用于其他电化学工业领域。
本发明公开了一种利用废旧锌锰电池为原料制备高纯硫酸锰和硫酸锌的方法。锌锰电池中主要含有锰、锌、铁、铜等有价金属成分,通过硫酸溶解、铁粉置换、氧化中和除铁、萃取提纯分离、结晶等工序制备高纯硫酸锰和硫酸锌产品。本发明得到的高纯硫酸锰可用于制备电池材料,高纯硫酸锌可用于医药、饲料、食品及化工等领域。本发明方法具有资源利用和回收率高、产品质量高等特点。
本发明提供一种用稻草杆浸取低品位软锰矿制备高纯硫酸锰的方法,是将软锰矿加入硫酸溶液和干稻草杆,在70~950C下不断搅拌反应8~15小时,过滤,得软锰矿浸出液;分别用氨水溶液、硫化钡、氟化铵除去铁离子、Ni2+、Co2+等重金属离子以及钙、镁等离子,得到硫酸锰初液;加入碳酸铵形成白色沉淀,过滤,将所得到的固体与500C的水混合,搅拌10分钟后,过滤,再将得到的固体与500C的水混合,搅拌10分钟后,过滤,得到碳酸锰固体;加入硫酸溶液,使碳酸锰固体完全溶解,继续搅拌30分钟,再将溶液加热浓缩、结晶、离心脱水、热气流干燥而得到高纯硫酸锰固体。本发明简化了流程,改善了操作条件,大大降低了能耗,具有巨大工业应用前景。
本发明公开了一种含铟氧化锌烟尘的氧压浸出方法,首先将经熔池熔炼得到的含铟氧化锌烟尘加入到酸性溶液中进行中性浸出,控制液固比4~5:1,始酸浓度为40~50g/L,反应温度60~70℃,反应时间1~1.5h,反应终点pH 3~4,获得中性浸出液和中性浸出渣;然后将中性浸出渣加入酸性溶液及锌电积废液进行高酸浸出,控制液固比4~5:1,始酸浓度为170~180g/L,温度85~95℃,反应时间2~3h,终酸浓度为40~50g/L,产出高酸浸出液和高酸浸出渣;最后将高酸浸出渣加入锌电积废液并通入氧气进行氧压浸出,控制液固比4~5:1,始酸浓度为170~180g/L,温度150~160℃,压力1.2~1.3Mpa,反应时间1.5~2.5h,终酸浓度为120~130g/L,获得氧压浸出液和氧压浸出渣。
本发明公开了一种从镍钼矿冶炼烟尘提取硒后废液中分离回收高酸和高砷的方法,该方法主要是指采用扩散渗析法对所述废液进行处理,扩散渗析法中用到的扩散渗析器主要包含由多张阴离子交换膜,每张所述阴离子交换膜两侧分别注入废液和酸化蒸馏水,废液和酸化蒸馏水经过扩散渗析器后,从注入酸化蒸馏水的一侧分离回收废液中的高酸,从注入废液的一侧分离回收废液中的高砷,进而实现从镍钼矿冶炼烟尘提取硒后废液中分离回收高酸和高砷。本发明的方法具有流程短、操作简单、能耗低、生产成本低、节能环保等优点。
一种从超富集植物中提取有价金属,以实现超富集植物资源化利用的方法,具体过程包括超富集植物收获物的焚烧、浸出、净化、电沉积/化学沉淀等步骤。创新点在于将氨浸—净化—电化学沉积/化学沉淀技术引入到环境工程中超富集植物收获物的处理,对超富集植物收获物中的重金属进行分离、提取;实现超富集植物收获物的减量化和能量利用,达到植物收获物中各有价金属的资源化利用的目的。本发明具有原料适应性强、重金属回收率高的突出优点,同时,能确保植物修复技术的完整性。既可以提供金属提取的有价资源,又可达到环境效益和经济效益的统一。
中冶有色为您提供最新的湖南有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!