一种航空结构件用1500MPa级超高强度钛合金的制备方法,按照重量百分比有以下元素组成:Al:4.0%~8.0%,Mo:2.0%~6.0%,Sn:0.5%~4%,Zr:2%~6%,Cr:0.50%~4%,Fe:0.5%~3.0%,Nb:0.5%~3.0%,O≤0.30%,余量为Ti和不可避免的杂质,杂质元素总量不超过0.30%,以上组分重量百分比之和为100%。本发明还公开了上述钛合金的铸锭及棒材的制备方法。本发明的超高强度钛合金成分均匀,成功突破了工业吨级铸锭化学成分均匀性控制技术,减少了铝元素在熔炼过程中的烧损,避免了高熔点钼、铬、铌元素形成不熔块等冶金缺陷。本发明通过棒材锻件的制备工艺研究,获得了组织均匀,抗拉强度大于1500MPa,延伸率大于5%,断面收缩率大于15%的Φ80~Φ350mm航空结构件用钛合金棒材的制备技术,为超高强度航空结构件用钛合金提供了材料保证。
本发明公开了一种柱状硬质相复合耐磨颚板的制备方法,该方法制得的柱状硬质相复合耐磨颚板的齿条是由高硬度柱状硬质相和高韧性基体金属复合而成,用合金粉芯丝材按照颚板上的齿条形状编织合金粉芯丝材骨架,并通过绑扎或焊接固定于颚板上,通过铸造方法,利用经熔炼的基体金属液的高温使合金粉芯丝材在基体中原位反应生成柱状硬质相,并使硬质相与基体界面处实现冶金结合,从而在颚板齿条上形成高耐磨高韧性的复合材料。本发明制备的复合颚板具有高耐磨性、高韧性、高抗拉强度和高抗压强度等优点,具有投入小、成本低、操作简单等特点,可广泛应用于各式颚式破碎机上。
本发明提供了一种选区激光熔化工艺制备铜合金的方法,包括:S1、Cu‑Cr‑Zr真空熔炼;S2、气雾化制粉;S3、选区激光熔化。解决了激光难以持续熔化铜金属粉末,从而导致成形效率低,冶金质量难以控制的问题,具有制件力学性能和电导率都大大提升的优点。
本发明公开了一种高纯净GH825合金细晶板材的制备方法,按照以下过程实施:配制GH825合金原料,进行真空感应熔炼制备电极锭,电渣重熔制备电渣锭,将电渣锭表面的非金属材料渣皮去除干净,均匀化热处理制得扁形铸锭,进行轧制开坯制得板坯,将得到的板坯放入热处理炉中进行热处理,热轧,得到板材,将板材表面进行修磨,去除冶金质量及形状差的板材的头部与尾部,进行冷轧,按照尺寸要求切割加工,得到GH825合金细晶板材。本发明方法能够抑制Ti元素的烧损,提高合金成材率及合金强度。
提供一种提高GH4145合金板材表面性能的处理工艺,本发明针对石化、核电等领域用的高品质变形高温合金GH4145带材存在的表面硬度低、批次性能波动大、残余应力高、疲劳寿命短等问题,结合板材制备、激光冲击强化等技术,设计出包括GH4145合金纯净熔炼、机加工、热轧、冷轧、激光冲击强化等工序,有助于提高GH4145合金板材的冶金质量水平与性能稳定性,制备的GH4145合金板材表面光洁度高、抗疲劳性能好,制造成本较低,满足制备的零部件高可靠、长寿命的需求。
本实用新型提供一种超低钾二钼酸铵及高纯三氧化钼的制备装置,属于冶金设备领域,包括用于制备钼酸钠溶液的反应系统、用于对所述钼酸钠溶液中的钼酸根进行吸附的离子交换系统、用于吸收氨气并形成氨水以对离子交换系统内的钼酸根进行解析的氨气吸收系统、用于对解析得到钼酸铵溶液进行处理以获得超低钾二钼酸铵及高纯三氧化钼的结晶焙解系统;所述结晶焙解系统与所述氨气吸收系统的进气口连通以将焙解过程中产生的氨气导入氨气吸收系统中吸收,所述离子交换系统与所述氨气吸收系统的出液口连通以将氨气吸收系统内的形成的氨水溶液导入离子交换系统中解析。本实用新型不仅能得到超低钾的二钼酸铵等产品还可以实现零废气废水排放。
一种梯度气液雾化强化PbO还原零碳化方法及装置,在反应炉内自上而下平行设置有若干层强化雾化单元。即通过PbO与H2还原铅冶金技术连接前段PbO与PbS共还原工艺。即在前段PbO与PbS共还原,减少了PbS烧结焙烧量,产生高浓度SO2可降低制酸成本。前段还原过程中过量的PbO在PbO与H2还原过程中,通过多层级梯度液滴化与H2强力雾化作用下,显著提升溶液中液滴体量占比,增加气液界面面积,延长液滴持续时间,实现PbO充分还原和一定提纯作用,在满足国家“双碳”目标和节能减排的要求的同时,实现铅冶炼全过程的高效、节能、清洁的目的。
一种超细氧化钨的生产方法,涉及一种采用湿法冶金制取超细粉末的方法。其特征在于生产过程是以采用钨酸铵溶液为原料,将钨酸铵溶液加入热到的硝酸溶液中,搅拌得到黄色钨酸沉淀,经过滤沉淀、烘干、焙烧、气流粉碎得到超细氧化钨。发明的方法原料廉价、易得,生产工艺、设备简单,生产成本低,产率高,产品粒度小,纯度高。
本发明公开了一种促进镍渣还原的物料及其制备方法,属于冶金、工业废渣资源化利用技术领域,其目的在于高效低成本的改善镍渣物相结构,达到强化还原的目的。所述方法为在镍渣中添加适量的复合氧化剂,控制气氛为弱氧化性条件,高温焙烧改善镍渣中含铁物相组成。所述复合氧化剂以质量百分数计,由45%‑85%固体氧化剂、8%‑30%辅助剂和7%‑25%强化剂组成。所述复合氧化剂组分分配合理、生产工艺简单、使用方便,具有均衡氧化镍渣含铁物相,改善镍渣物相组成及微观结构的作用。复合氧化剂与低浓度含氧气体配合,避免了直接使用高浓度含氧气体氧化镍渣过程产生的高温板结现象;该工艺避免了镍渣中铁以铁橄榄石存在难以直接还原的窘境,实现了镍渣的资源化利用。
本发明主要涉及一种检测铬矿高温熔化能力的方法及试样组件,属于冶金技术领域,检测的步骤包括:1)将铬矿细磨到0.074mm以下,然后将铬矿冷压成型为一定直径和高度的圆柱状试样;2)将圆柱状试样按照“刚玉垫片+石英垫片+试样”的结构放入高温炉中,3)高温炉中通入定流量的还原性气体,并按照设定的升温速率加热焙烧,升温过程连续摄像,记录实时温度;当铬矿软化百分比(T温度下的试样高度与原试样高度的比值)为90%时,确定为铬矿开始熔化温度。本发明工艺流程简单,可操作性强,检测结果能够分析不同铬矿的熔化能力。
一种制备含钌耐蚀钛合金的方法,涉及钌元素在钛锭冶炼中的添加方法, 用于核电、冶金、石油化工等领域用钛及钛合金的制备过程。采用海绵钛、中 间合金原料压制电极,真空电弧熔炼的方法制备,其特征在于合金成份钌的加 入是在压制电极时以钌粉的形式加入。本发明不改变原钛及钛合金生产工艺, 仅需在电极压制工序添加一定量的钌粉即可生产含钌钛合金的新冶炼工艺,生 产的钛锭钌元素分布均匀,无夹杂等冶金缺陷。本发明具有操作简便、成本低 廉和成分控制准确、稳定等显著优点,解决了钌元素在钛锭冶炼中的添加问题, 生产的含钌钛合金材不影响其常规性能的前提下,提高了钛材料的耐蚀性,可 以满足工业领域钛材的使用需要。
本发明提供了一种低成本工业用钛合金及其制造方法,在钛中加入Mp、S、Al、B、p、Si、C、O八种能降低制作成本的廉价合金元素,其含量的重量百分数为:Mp:0.1‑5%,S:≤20%,Al:≤8%,B:≤1%,p:0.006‑0.5%,Si:0.05‑5%,C:0.05‑5%,O:≤4%,余量为Ti及其它不可避免的杂质,可以用真空电弧炉熔炼、粉末冶金、喷射成型等常规方法,也可以用原位生成硬化质点复合方法以及表面冶金等方法制作,并通过热处理硬化后达到HRC=48‑54、σb=980‑1420Mpa、δ%=2‑6,全面超过现有钛合金使用的上述指标,不仅大大降低了钛合金的制造成本,而且钛合金的应用范围得到进一步扩大。
一种钛镍钼合金铸锭的制备方法,特征在于添加了一种镍钼中间合金(钼元素质量百分含量20~35%),钛钼镍合金铸锭的生产步骤为:采用海绵钛、镍钼中间合金或Ti-Mo中间合金配料,原料混匀后首先将其压制成电极块,再使用等离子弧等焊接方式将电极块焊接成自耗电极,经两次真空自耗电弧熔炼得到钛钼镍合金铸锭。本发明生产的钛钼镍铸锭,化学成分均匀、稳定,其化学成分偏差小于0.15%,无偏析和高密度夹杂冶金缺陷。本发明适用于生产冶金质量要求高的钛钼镍合金铸锭。
本发明公开了以Ti粉和Ta粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Ta中间合金;其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Ta中间合金与混合料进行压制,得到电极块;其中,混合料由0级或1级海绵钛颗粒和工业级HZr‑1海绵锆颗粒组成;将多个电极块组焊为自耗电极,将自耗电极进行至少四次真空自耗熔炼,得到Ti‑Zr‑Ta合金铸锭;本发明可以通过控制钛合金的相转变温度范围及稳定性来调节钛合金的超弹性和形状记忆效应。
本发明公开了一种由钛铁矿制备钛铁合金的方法,包括以下步骤:一、制备钛铁矿电极:将选矿后矿中主要杂质元素为P、S、MG、AL、CA、O和SI的钛铁矿原料经粉碎、均匀混合、压制成型及高温烧结后制成钛铁矿电极;二、熔盐电解反应:以钛铁矿电极为阴极,石墨棒为阳极且在氩气保护下进行熔盐电解反应,获得矿中主要杂质元素为S、P和SI的钛铁矿初级产品;三、真空熔炼:对钛铁矿初级产品进行清洗且烘干后,放入真空炉中进行真空熔炼,去除钛铁矿初级产品中所含有的杂质元素S、P和SI后获得钛铁合金。本发明制备工艺步骤简单、操作简便且成本低,能大幅度减少冶金过程中的能耗和环境污染,并且能有效避免矿产资源的浪费。
本发明属于粉末冶金及增材制造技术领域,具体涉及一种低氧铝及铝合金粉末的制备方法和制备装置,包括以下步骤:S1、将铝锭、中间合金添加元素采用真空熔炼法进行熔炼,制得合金熔液;S2、将S1制得的合金熔液加入至雾化塔内进行雾化,调整惰性气体雾化压力,制得所需铝及铝合金粉末;S3、在雾化制备铝及铝合金粉末冷却飞行末端,通过一段气态有机物分子层,在S2铝及铝合金粉末的表面包覆有机物薄膜;有机物为还原性有机物,且不含有氧元素;S4、将S3包覆后的铝及铝合金粉末冷冻干燥后,得到低氧铝及铝合金粉末。本发明制备的铝及铝合金粉末由于存在有机物薄膜层,可以防止铝粉尤其是超细铝粉在储存及深加工过程中的氧化问题。
本发明涉及一种金属基复合材料真空低压铸造装置及铸造方法,将熔炼装置外部增加了承压室,与搅拌装置、抽真空功能及相应的气控系统,不仅可以实现金属基复合材料的真空熔炼及真空搅拌除气处理,提高金属基复合材料熔体的冶金质量,而且在低压铸造时可实现熔体持续搅拌,强化了坩埚内金属基复合材料熔体内悬浮颗粒的对流运动,促进了熔体成分的均匀性,进而保证低压铸造时不同时刻进入铸型型腔的熔体成分均匀一致,从而使所生产的金属基复合材料构件具有成分均匀、性能优良的特点。并且与真空吸铸相比,本发明采用的真空低压铸造方法适合生产的铸件类型更为广泛。
本发明公开了一种双液离心浇注制造双金属复合耐磨管的方法。在离心机模管内喷涂石墨涂料,火焰烘干涂料,封装离心机模管后,把熔炼好的普通钢熔液浇注入高速旋转的离心机模管,制作成普通钢外套管,待外套管凝固后,浇注熔炼好的耐磨合金熔液,制作成内衬管,在高温的作用下,使外套管和内衬管实现整体冶金结合,冷却后拔管清理,即成为外层为普通钢管,内衬为耐磨合金的双金属复合耐磨管。用本发明的方法生产双金属复合耐磨管,工艺简单,生产成本比常规方法低20%以上,两层金属之间结合力强,抗热振性好,并可实现超长、超薄复合管的生产。
本发明公开的一种降低高铁成分钛合金铸锭偏析的方法,包括以下步骤:步骤1,以0级海绵钛、Al‑V‑Fe、Ti‑Fe、铝豆、TiO2为原料,按照钛合金的组份比例,称取所需原料重量;步骤2,将0级海绵钛、Al‑V‑Fe、铝豆和TiO2混合均匀,得到初步混合物,将Ti‑Fe组分使用铝箔包裹成合金包条;随后采用边缘反偏析布料法进行布料;步骤3,油压机压制,得到单个电极块;步骤4,将单个电极块焊接,得到整体自耗电极;步骤5,将整体自耗电极烘干,熔化铸锭。本发明一种降低高铁成分钛合金铸锭偏析的方法通过将易偏析合金用边缘反偏析布料方式,有效的解决了含易偏析元素钛合金熔炼成分不均匀、易偏析等问题,在熔炼时,采用大磁场小电流的方式,保证铸锭的冶金质量。
本发明公开了一种制备钼钛合金溅射靶材的方法,该方法为:一、用多孔筛筛选出海绵钛;二、将钼粉和筛选出的海绵钛进行机械混合得到混合料;三、将制成的混合料和平均粒度不超过15mm的海绵钛按照下层海绵钛、中层混合料和上层海绵钛的顺序进行布料,压制后制成钼钛合金电极;四、将制备的钼钛合金电极置于真空自耗电弧熔炼炉中进行熔炼,得到钼钛合金铸锭;五、将钼钛合金铸锭经过表面处理后,切割成特定形状的钼钛合金溅射靶材。本发明制备的钼钛合金靶材较传统粉末冶金方法制备的合金靶材具有工艺简单、成本低、尺寸可调范围广的特点,而且制备的合金靶致密、成分均匀性良好,品质稳定,适合大批量工业化生产。
本发明蒸发器内壁铝合金箔材连续铸轧方法涉及材料成型领域,具体涉及蒸发器内壁铝合金箔材连续铸轧方法,包括以下步骤:首先准备好所需的原料,原料中的废料使用纯铝,废料的总投入量≤35%,其中二级废料投入量≤30%,原铝锭≥65%,并将原料装入熔炼炉内熔化;对熔化后的原料进行搅拌、扒渣并调整原料成分;将扒渣后的原料在熔炼炉内进行精炼处理;将精炼处理后的原料再转入温保炉内进行二次精炼及静置处理;将二次精炼处理后的原料排入除气箱进行除气扒渣处理;本发明生产过程简单,能提高生产效率,且生产的最终箔材具有良好的成型性、焊接性、抗腐蚀性,组织和性能均匀,冶金缺陷少,各向异性小,非常适合用作蒸发器内壁。
本发明涉及一种WSTi6421钛合金的制备方法,包括如下步骤:S1、将海绵钛、海绵锆、TiSi中间合金和AlMoNb三元合金颗粒进行混料,并将其压制成多根正六边形电极棒;S2、采用非钨极氩气保护等离子焊接方法将S2压制完成的多根电极棒焊接成一根自耗电极;S3、将S2得到的自耗电极置于真空自耗电弧炉中进行三次熔炼,得到WSTi6421合金铸锭。该方法成功突破了工业1吨到8吨级大规格铸锭化学成分均匀性控制技术,控制了铝元素在熔炼过程中的烧损,避免了高熔点钼、铬、铌元素不熔块等冶金缺陷,有效地解决了成分偏析,杂质和间隙元素的含量控制、批次稳定性等问题。
本发明公开了一种大型薄壁壳体铝合金铸件的铸造方法,包括采用激光快速成型制作蜡模、浇注系统制作、组型、制壳、脱蜡、模壳焙烧、造型、熔炼浇注、铸件清理、X射线检验、固溶和时效步骤。本发明的大型薄壁壳体铝合金铸件的铸造方法为此种大型薄壁壳体铝合金铸件的研制提供了可靠的技术方案,制造出符合要求的铸件。同时,采用这种复合铸造方法为今后同类型铸件的开发和研制以及后续的生产奠定了很好的技术支持。
本实用新型涉及真空感应炉精确测温辅助结构,本实用新型采取如下技术方案:石英漏斗(1)上方有孔(2),传动部分内部的传动杆(3)与孔(2)连接,传动机构(4)与传动杆(3)相连。以上整个传动机构保证漏斗插入熔炼液,在漏斗中涌入纯净熔炼液,直接通过观察窗用红外测温仪打在漏斗中熔炼液液面上直接测温。具有如下有益效果:采用本辅助结构,可以精确迅速测温,满足现代冶金高效高精度要求。
本发明公开了一种TA22钛合金铸锭的制备方法,该方法包括:一、根据目标产物TA22钛合金铸锭的设计成分,采用海绵钛、铝豆、铝钼合金、镍钼合金、海绵锆为原料压制电极块;二、将电极块组焊得到自耗电极;三、将自耗电极进行VAR熔炼得到TA22钛合金铸锭。本发明通过采用镍钼合金代替钛镍合金作为镍元素来源,节约了原料成本,且无需剪切加工而是直接分散加入,大大提高了生产效率,缩短了生产周期,结合控制VAR熔炼工艺,促进了VAR熔炼过程中原料的熔化及均匀扩散,防止镍元素偏析,制备得到高品质、无冶金缺陷的TA22钛合金铸锭,改善了TA22钛合金铸锭的质量。
本发明公开了一种耐蚀Ti35钛合金铸锭的制备方法,该方法包括:一、根据目标产物耐蚀Ti35钛合金铸锭的设计成分准备Ti粉和Ta粉;二、将Ti粉和Ta粉清洗后混匀采用冷等静压机进行压制得到合金坯料,再在1200℃下真空烧结得到中间合金坯料;三、将中间合金坯料与海绵钛按比例进行混料后放置于电子束熔炼炉中抽高真空进行熔炼,得到耐蚀Ti35钛合金铸锭。本发明采用电子束冷床熔炼的方法制备耐蚀Ti35钛合金铸锭,解决了耐蚀Ti35钛合金铸锭成分均匀性差,铸锭成品率低及钽不熔块风险等主要难题,有效控制和避免了高熔点Ta元素形成不熔块以及铸锭横纵向成分不均匀性差等冶金缺陷,适用于乏燃料后处理关键设备。
一种含铌Ti3Al合金铸锭的制备方法,首先制备出纯钛铸锭,再将纯钛铸锭加工成光亮钛棒,然后将获得的光亮钛棒与光亮铌棒、光亮铝棒拼焊成自耗电极,经3次真空自耗电弧熔炼,获得含铌Ti3Al合金铸锭。本发明采用棒材拼焊的方式制备自耗电极,省去了制备中间合金,以及压制电极块的步骤,简化了工艺。同时,由于采用钛棒、铝棒与铌棒拼焊的方式制备自耗电极,可保证熔炼过程中同一熔炼横截面上的各元素含量一致,由于钛棒、铝棒、铌棒均为密实料,避免了因局部熔化速度不同产生的化学成分不均匀或掉块产生的夹杂等冶金缺陷。本发明制备的合金铸锭的成分均匀,克服了现有技术中铌元素偏析严重、合金成分不准确以及均匀性差的问题。
本发明涉及材料与冶金技术,具体涉及一种航空航天级钼铝合金的制备方法。其特征在于,通过控制真空电子束熔炼参数,使反应保持在合理的速率范围,有利于钼元素在钼铝合金中的均匀分布。通过在真空电子束熔炼前重新加入铝豆,抵消电子束熔炼条件下,高温度对铝元素的损耗,使最终产品的铝元素含量达到设定值。本发明的有益效果是生产出的钼铝合金中钼元素分布均匀,杂质元素含量较少,且铝元素含量稳定,达到航空航天级钼铝合金的要求。
本发明公开了一种航空用热强钛合金铸锭,其各元素重量百分比:6.2%~7.3%Al,0.4%~1.0%Mo,3.5%~4.5%Zr,0.5%~1.5%Nb,2.0%~3.0%Sn,0.1%~0.25%Si,0.04%~0.15%O,0.05%~0.14%C,余量为Ti,以上组分重量百分比之和为100%。本发明还公开了上述铸锭的制备方法。本发明通过改变合金元素的添加方式来提高大型铸锭的成分均匀性,成功突破了成分均匀性控制技术;同时在熔炼过程中,通过控制电流来控制熔炼速度,以达到均匀化成分的目的,有效的解决了采用常规方法熔炼WSTi62411SC钛合金易产生铝偏析和钼难熔块等冶金缺陷的问题。
中冶有色为您提供最新的陕西有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!