本发明提供一种含草酸溶液的萃取方法,属于湿法冶金技术领域。该方法首先将三辛基甲基草酸铵、磷酸三丁酯和磺化煤油按比例混匀,得到有机相;采用氢氧化钾将含草酸溶液pH调节至1~4,得到萃原液;将有机相和萃原液按体积比为1∶(1~6)混合,逆流萃取1~5级,得到负载有机相和萃余液;将负载有机相和硫酸按体积比为1∶(1~6)混合,逆流反萃1~5级,得到富金属溶液和贫有机相;将贫有机相与氢氧化钾溶液混合,反萃2~5次,得到三辛基甲基氢氧化铵;将三辛基甲基氢氧化铵与草酸溶液混合,反萃2~5次,得到再生有机相,返回萃取使用。本发明具有萃取剂用量小、成本低、萃取能力强、萃余液可循环利用和绿色环保的特点。
本发明提供了一种离子吸附型稀土的原地浸取方法,涉及湿法冶金技术领域。本发明将原地离子吸附型稀土按风化程度不同划分为强风化稀土层、中等风化稀土层和微风化稀土层;分别提取各稀土层的部分稀土作为样本,采用浸取液对每一类稀土层的样本进行浸出试验,通过EDTA滴定法测定每一类稀土层的样本浸出率最高时对应的浸取液pH值;根据浸出试验测定的浸取液pH值,调配每一类稀土层浸取所需pH值的浸取液,然后分别注入对应稀土层的浸取通道进行原地浸取。本发明针对不同风化程度的稀土层采用不同pH值浸取液,提高了中等风化层和微风化层的稀土离子浸出量,对于不同品位的稀土矿,可以有效地提高稀土的浸取效率,减少稀土矿物资源的浪费。
本发明涉及湿法冶金中无机粉体材料制备技术,是从(NH4)2WO4溶液中通过悬浮层流工艺制备单晶仲钨酸铵及其制备方法。本发明包括一种单晶仲钨酸铵,其松装密度1.5~3.0g/cm3,费氏粒度在30~60μm之间,霍尔流动性30~50s/50g,粉体单晶率≥95%;以及单晶仲钨酸铵制备方法,其结晶过程中,晶核出现前,控制搅拌转速为30转/分;晶核出现后,控制搅拌转速为40转/分;晶核出现1小时后,控制搅拌转速为50转/分;溶液密度下降为1.14g/cm3后,控制搅拌转速为60转/分。
本发明属于稀土矿湿法冶金技术领域,具体涉及一种风化壳淋积型稀土矿的浸取方法。该方法包括如下步骤:S1:在矿体表面钻孔,通入气体;S2:加注浸取剂,保持一段时间,然后加注顶水。该方法先在矿体中通入气体,能够使得矿体本身发生一定程度的松散,使得矿体内部的微孔隙进一步发展为中、大孔隙,然后注入浸取剂进行浸取,能够提高浸取剂与矿体的接触面积,提高浸取效率和浸出率。本发明先通气体再加注浸取剂的浸取的方法,相比与直接加注浸取剂来说,重大孔隙的存在能够缓和矿体由于吸水发生膨胀带来的影响,能够缓冲稀土矿由于吸水膨胀而引发的山体滑坡。
一种铜电解液净化除杂质的方法,涉及有色金属湿法冶金过程中电解液净化除杂的方法,特别是铜电解液净化除锑、铋的方法。其特征在于在铜电解液中加入高砷溶液,将电解液含As浓度维持为10g/L-15 g/L,使电解液中绝大部分杂质Sb、Bi与As形成过饱和砷酸锑和砷酸铋结晶物质进入阳极泥中而除去。本发明除Sb、Bi效果显著,脱除率几乎达到100%,生产成本低。应用范围广,有广泛的推广价值。
本发明属于湿法冶金技术领域,涉及了一种分解氟碳铈矿的方法,该方法具体包括以下步骤:S1)氟碳铈矿氧化焙烧;S2)熟矿低温络合酸浸;S3)絮凝沉淀固液分离,得到含氟稀土料液和酸浸渣;S4)含氟稀土料液脱氟处理,得到稀土氟化物和氯化稀土溶液;S5)稀土氟化物利用碳酸钠碱转后酸溶,得到氯化稀土溶液;S6)将S4)得到的氯化稀土溶液与S5)得到的氯化稀土溶液混合后除杂,通过萃取分离得到相应稀土产品。稀土精矿REO浸出率可达71.5%,镧浸出率95%,铈浸出率48%,镨钕浸出率高达97%。大幅降低碱转过程碱消耗、减少碱转废水的排放量,节约能源,同时能够获得较高的稀土浸出率,经济效益显著。
本发明涉及有色金属湿法冶金领域,特别涉及一种从红土镍矿中提取镍、钴、锰的方法。本发明包括步骤:将矿样破碎研磨过筛,矿样的粒度控制在0.074~0.15mm;将氯盐溶解到盐酸中,配制成盐酸氯盐溶液;采用盐酸氯盐溶液直接浸出红土镍矿,控制浸出温度和浸出时间,同时从底部通入氧化性气体来强化有价金属的浸出和抑制杂质金属的浸出。本发明可以浸出有价金属镍、钴的同时抑制铁的浸出,防止后续工序中浸出液中的铁生成沉淀而造成镍钴的损失,镍浸出率达到83%以上,钴的浸出率达到72%以上,锰的浸出率达到89%以上,而铁的浸出率只有11—19%,很大程度上降低了铁的浸出。
本发明属于稀土湿法冶金技术领域,尤其涉及一种综合回收氟碳铈矿中稀土和氟的方法,具体步骤为:S1.氟碳铈矿氧化焙烧分解,得到熟矿;S2.熟矿盐酸浸出,得到浸出料浆;S3.向经过S2处理后得到的浸出料浆中加入絮凝剂,经固液分离得到含氟稀土溶液和酸浸渣;S4.在除氟剂作用下,含氟稀土溶液除氟,得到氟化稀土沉淀和氯化稀土溶液;S5.氯化稀土溶液经除杂后,进入萃取体系分离,得到相应稀土产品和萃余液。本方法的稀土精矿的总稀土氧化物浸出率大于65%,镨钕浸出率大于95%,实现了氟碳铈矿中高值稀土元素的高效浸取,氟以氟化稀土的形式得到利用,具有绿色高效、流程简单、成本低的优点。
本发明属于有色金属湿法冶金技术领域,具体涉及到一种分离回收阳极泥分金液中碲的方法。该方法通过选择性还原使复杂溶液的碲保留在溶液中,然后再以还原方式回收溶液的碲,得到粗碲粉。本发明的优点和产生的积极效果是:本发明提供的一种分离回收阳极泥分金液中碲的方法无需复杂的操作而能够高效分离阳极泥分金液中碲,并实现溶液中碲高效回收;该方法通过选择性还原使复杂溶液的碲保留在溶液中,然后再以还原法方式回收溶液的碲,选择性分离效果好,回收率高。
本实用新型涉及湿法冶金萃取槽设备,提供一种新型萃取槽混合室,包括槽体,槽体内设有搅拌轴、搅拌桨,搅拌轴连接槽体顶部外电机,所述水相进料管、油相进料管分别从槽体外侧下部平直通入槽体内,所述水相进料管与油相进料管的出口在槽体内从相对的方向伸至槽体底部中心搅拌桨位置两侧,所述搅拌桨设在搅拌轴靠底部位置,所述搅拌轴最底端、贴近槽体底面位置一侧设有一刮板,所述槽体靠上端内壁设有环形缓冲板。本实用新型通过刮板在反应的同时清理混合室中待沉积的钙渣,减少了大量的清槽工作,减轻了操作人员的工作强度;此外,通过软质环形缓冲板的设计,解决反应过程中液体漩涡的产生,起到阻流的效果,实用效果强。
一种轻稀土矿预分萃取及负载有机相的中重稀土分离工艺方法,属稀土湿法冶金。本发明利用预分萃取轻稀土矿料液出口有机相含Sm‑Lu,Y及少量La‑Nd稀土,因有机相没经洗涤,负载稀土饱和,有机相稀土浓度高的特点。将这负载中重稀土的出口有机相直接作为中重稀土萃取分离的原料,进人中重稀土萃取分离工艺。中重稀土分离工艺中包含有Nd/Sm分离,其出口水相La‑Nd轻稀土进入预分萃取出口水相的下接LaCePrNd分离工艺。省去预分离萃取法分离轻稀土矿的预分离洗涤段和细分离工艺Nd/Sm分组。从而,使化工试剂酸碱消耗下降,工艺处理能力提高,萃取设备减少,并使萃取剂和稀土金属存槽量减少,生产成本降低,整体经济效益更好。同时工艺排放减少,利于绿色环保。
本发明公开了硫代二甘酰胺酸类萃取剂及其制备方法和应用,属于萃取剂合成和湿法冶金领域的萃取分离技术领域。本发明的萃取剂是按配比将硫代二甘醇酸酐、烃基取代的仲胺和有机试剂混合,将所得混合反应物在冰水浴中搅拌反应10‑60min,然后转移至20‑50℃条件下继续搅拌反应6‑24h,反应结束后,萃取产物,将所得有机相洗涤、干燥,抽滤,旋蒸得到。该类萃取剂合成方法简单易操作,具有良好的耐盐和耐酸性,对贵金属离子萃取效率高且选择性好,能够实现从酸性料液中短流程、高效率的回收贵金属离子,具有一定的工业化应用价值。
本实用新型属于湿法冶金领域,公开了一种阴离子交换膜多级连续电解槽。该电解槽包括阴极室,阳极室,阴极及阳极,阴极室和阳极室之间通过阴离子交换膜隔开。相邻两阴极室之间互相串联,相邻两阳极室之间互相串联,所有阴极之间并联,所有阳极之间并联。且在电解槽阴极室设有液体入口和液体出口,分别用于导入电解液和导出电解液;在阳极室设有阳极液入口和阳极液出口,阴极室和阳极室还分别设有气体出口。为降低能耗,电解槽的阴极采用耐酸碱腐蚀的低析氢过电位网状阴极,电解槽的阳极采用惰性阳极或可溶性金属阳极。本实用新型能够达到连续工业生产的目的,同时在电还原氧化铕提纯稀土的实验中同样取得了很好的电解效果;电还原率>99%。本实用新型不仅投资成本低,同时操作也很方便。
本发明公开了一种草酸废水综合利用的方法,所述方法包括以下步骤:(1)向草酸废水中加入铁;加入铁与草酸的摩尔比为n(Fe):n(Ox)≤4:3;(2)草酸废水加碱调节pH在1.0~8.0区间内;最后得到回用水。本发明可显著降低后续盐的排放,有利于实现绿色循环经济,具有显著社会价值。本方法处理后的回用水中COD可降至100mg/L,且后续可无缝对接蒸发回收盐,本发明具有显著的社会经济效益,低成本、过程易控制、易实现工业化。本发明为湿法冶金行业绿色发展以及废水综合利用提供了一种新的解决方案,具有显著的推广价值。
一种从废弃磷酸铁渣中回收电池级磷酸铁的方法,涉及一种回收电池级磷酸铁的方法。本发明是要解决现有的湿法冶金回收磷酸铁锂后剩余的磷酸铁渣中Cu和Ni杂质金属含量较高,晶型杂乱,还需进一步处理的技术问题。本发明将废弃磷酸铁渣用无机酸浸出,再进行煅烧,最后得到电池级磷酸铁用来重新制备磷酸铁锂。本发明通过寻找适合的无机酸种类、陈化时间、浓度和煅烧温度等,从而去除其中大量的杂质金属,使其磷酸铁晶型得到恢复。本发明通过对废弃磷酸铁渣进行安全有效的资源化回收处理,在实现节能环保的同时还能获得显著的经济效益,这对于即将到来的磷酸铁锂电池井喷式退役回收具有重要意义。
本发明公开了一种电路板的无害化处理以及资源综合回收方法,包括以下步骤:包括:(1)采用电解法脱焊锡,使得元器件无损伤脱落;(2)电路板粉碎,静电分选,使金属成分与非金属成分分离;(3)取金属成分进行湿法冶金,回收有价金属;(4)非金属成分用有机溶剂萃取,使环氧树脂和玻璃纤维分开,以便回收利用。本发明在温和的条件下实现电路板中金属成分和非金属成分的绿色回收,回收率高,工艺简单,不仅可减少污染物的排放,而且使资源得到充分利用。
本发明属于湿法冶金领域,涉及一种从低钼氨浸渣中浸出回收钼的方法,该方法具体包括以下步骤:S1)将氨浸后的低钼氨浸渣进行脱水,在进行浆化,备用;S2)将浆化后的低钼氨加入反应釜中,加压,加热,进行保压反应,得到反应液与钼渣;S3)将反应液与钼渣分离,将反应液进行负压浓缩,浓缩液进行酸沉压滤形成钼酸滤饼;S4)滤饼重新返回钼酸铵生产工序,产出钼酸铵产品符合GB/T3460‑2017MSA‑1级别产品。本发明的有益效果是,由于采用上述技术方案,本发明的方法工艺简便易行,氨浸渣无需烘干,研磨,流程短,工艺稳定,生产成本低,浸出回收率不低于94.98%,整个工艺流程环保。
本发明提供了一种反萃废酸的回收方法,涉及废水处理技术领域。本发明以三辛癸烷基叔胺和磺化煤油作为萃取剂(即有机相)对含铁反萃废酸进行逆流萃取,所得回收反萃酸中铁的浓度<0.01g/L,铁杂质的去除率在99.5%以上,铁含量低,回收反萃酸能够循环再利用,降低了湿法冶金反萃段,尤其是P507萃取体系反萃段的酸的用量,大大降低了生产成本。而且,本发明提供的回收方法操作简单,成本低,安全环保。进一步的,经过反萃剂对含铁萃取剂进行反萃后得到的再生萃取剂能够循环利用,从而能够实现含铁反萃废酸的连续处理,含铁反萃废酸的处理成本低。
本发明属于有色冶金中湿法冶金领域,特别是一种有效地实现铜阳极泥分铜渣中碲的高效分离的铜阳极泥分铜渣高效分离回收碲的方法。该方法将铜阳极泥分铜渣采用盐酸氧化体系实现碲的高效浸出过程,碲浸出率90%以上,金浸出率99%以上,通过均匀缓慢加入弱还原剂方式优先将溶液中金还原沉淀、金沉淀率99%以上,碲基本不沉淀,之后通过均匀缓慢加入弱还原剂方式将溶液中铂、钯还原沉淀,铂钯还原后液中金、铂、钯离子浓度可降至0.001g/L以下,铂钯还原后液加还原剂深度还原沉碲,得粗碲粉品质95%以上,碲回收率90%以上。这些环节紧密关联,共同作用实现了分铜渣中金和碲的高效分离回收。本发明具有工艺技术指标稳定、劳动强度小和生产成本低等优点。
一种利用超低温焙烧从废旧锂离子电池中选择性回收锂的方法,涉及一种从废旧锂离子电池中选择性回收锂的方法。本发明是要解决现有的高温冶金回收废弃锂离子电池中有价金属过程焙烧温度高、能耗成本大,回收效率低;而湿法冶金则存在着酸碱及还原剂耗量大、分离过程中金属流失严重、后续废水废液处理难、环境负荷大的技术问题。本发明加入复合盐从锂离子电池的正极片中选择性破坏锂与氧的层间结构并形成可溶性锂盐,从而实现锂离子的选择性提取。本发明采用300℃的超低温度即可进行,对目标金属具有选择性、锂离子回收率达到90%,回收的碳酸锂纯度高达95%;整个过程无酸和碱的加入,能耗成本低,回收过程中不产生二次污染。
一种以废旧锂离子电池为原料的无酸制备碳酸锂的方法,涉及一种以废旧锂离子电池为原料回收碳酸锂的方法。本发明是要解决现有的高温冶金回收废弃锂离子电池中有价金属的过程污染性气体排放风险大,回收效率低,成本居高难下;而湿法冶金回收废弃锂离子电池中有价金属则存在着酸碱和还原剂耗量大、分离过程中金属流失严重、后续废水废液处理难、环境负荷大的技术问题。本发明对目标金属Li具有选择性、再生成本低、易操作、对设备防腐要求低、回收的碳酸锂纯度高达95%,锂离子回收率达到90%,氯化钠回收率达到80%。本发明的整个过程无酸、碱和还原剂的加入,不产生有害气体,无废水废气排入环境中,回收过程中不产生二次污染。
本发明涉及冶金领域,公开了一种含硫浸出渣的处理方法及其应用。含硫浸出渣的处理方法包括对在混合气体中呈流态化的含硫浸出渣进行焙烧,混合气体中包括体积分数大于22%的氧气。应用此种方法能将含硫浸出渣中的有价金属富集在焙砂中,得以重新利用。在富氧的气氛下燃烧提高了焙烧效率并且焙烧更加完全、彻底。由于氧含量较高,所以焙烧等量的含硫浸出渣,得到的烟气总量较低,烟气中SO2浓度大幅度提高,便于制酸系统回收SO2,降低制酸的投资和能耗。同时该处理方法也提高了余热回收效率,使得蒸汽产量得到一定增加,可以给生产或者生活提供热源,因此节能效果好。含硫浸出渣的处理方法能够应用到湿法冶金的工艺中。
本发明涉及从稀土溶液中除铝(Al3+)提纯稀土的生产方法,属于稀土湿法冶金、化学领域。本发明包括以下步骤:(1)原料准备:稀土溶液:pH≤3,REO20g/L~300g/L,Al2O3?0.8g/L~3g/L;络合沉淀剂:羟基喹啉或羟基喹啉衍生物中的一种;(2)沉淀除铝:向步骤(1)的稀土溶液中加入络合沉淀剂,在恒温下搅拌反应后调节溶液pH值并沉淀,真空抽滤分离得除铝后稀土料液。本发明采用羟基喹啉或羟基喹啉衍生物对含大量铝离子的稀土溶液进行处理,实现了从稀土溶液中去除铝离子,保证了铝离子去除率达到90%以上,稀土损失率不超过5%,极大地降低了稀土溶液中铝离子的浓度。
一种萃取分离La-Nd轻稀土的方法,属于稀土湿法冶金领域;本发明以La-Nd轻稀土为原料,利用预分离萃取法、带支体工艺萃取法、三出口及其优化理论等,挖掘这些方法在La-Nd轻稀土分离优势,选择更佳工艺走向,使这些方法有机结合,形成了一种新的更好的萃取分离La-Nd轻稀土的工艺方法。本发明对La-Nd轻稀土,首先采用预分离萃取法,用较少级数的预分离萃取段、预分离洗涤段1和预分离洗涤段2及反萃段,将La-Nd粗略分离为富LaCe的LaCe(PrNd)、不含La的CePrNd和不含Ce的PrNd水相。这些粗组分从La/CePrNd/PrNd/Nd四出口主体工艺的不同部位进入主体工艺。主体工艺并带Ce/Pr支体和Pr/Nd支体,可获高纯La、Ce、Nd和>99%Pr。本发明整体工艺处理能力大、萃取剂稀土金属存槽量少,酸碱消耗和废水排放减少,利于环保。
一种沉淀稀土的混合沉淀剂,属湿法冶金领域。稀土料液经添加硫化钠和碱除铁、铝等杂质后,在除杂质后的上清液中加入稀土含量二至四倍量的碳酸氢铵与氨化铵组成的混合沉淀剂以代替草酸,不仅提高了稀土沉淀率且可大幅度降低稀土生产成本。
本发明涉及一种含有高价值元素氢氧化铁基原料及其用途。属于资源回收再利用以及湿法冶金技术领域。所述含有高价值元素氢氧化铁基原料主要由铁的氢氧化物、高价值元素化合物、可燃性有机物组成。其中铁以元素计3.5-45wt%,高价值元素以氧化物计之和为2-32wt%,Y(Fe3+)/TFe≥54.47wt%,所述可燃性有机物以C计≤6.5wt%,所述氢氧化铁基原料在≤200℃时不自燃。本发明产品呈粉状或易粉碎团块,具有质地均匀、不易自燃、使用方便、安全等优点。消除了铁基废料在运输、装卸、贮存及生产过程中的火灾隐患,实现安全生产。使用时各高价值元素溶出率高,各种元素可制备成不同产品,实现资源的最大化利用,有利于循环经济的发展。
本发明属于湿法冶金领域,涉及一种磁性花状磷酸钛吸附剂及其制备方法和应用。本发明基于磷酸钛PO43‑和HPO42‑对稀土离子的强配位能力、离子交换能力、高比表面积和耐酸性等优点,将磷酸钛在磁性Fe3O4@SiO2微球上原位沉淀制备出核壳结构的磁性花状磷酸钛吸附剂Fe3O4@SiO2@TiP,用于提取离子型稀土尾水中的稀土资源,吸附率大于90%。本发明的磁性花状磷酸钛吸附剂在外加磁场下容易实现固液分离,无需额外的离心或过滤等处理,提取效率高,且吸附容量大、可循环再生利用,在离子型稀土尾水处理领域具有较高的应用前景。
本发明涉及铜、钴资源湿法冶金技术,特别是复杂高硅铜钴合金碱预处理-常压酸浸工艺。本发明工艺条件为:NaOH用量为铜钴合金重量的70%,碱焙烧温度600℃,焙烧时间2h,焙烧渣细磨至100%-200目,经90℃水洗4h后送第一段浸出;第一段浸出温度90℃,硫酸用量为碱预处理渣中钴、铁反应理论用量0.9倍,液固比ml/g为15/1,浸出时间4h,搅拌转速600r/min,在浸出过程中不断鼓入空气;第二段采用三级逆流连续浸出方式,浸出温度90℃,液固比ml/g为5/1,浸出剂含游离铜离子24g/L,初始硫酸浓度137g/L,各级浸出时间3h、搅拌转速600r/min,其钴、铜浸出率均高达99%以上。
中冶有色为您提供最新的江西有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!