本发明属于废旧电池资源回收领域,公开了一种废旧锂电池中有价金属浸出体系及浸出方法。所述的浸出方法,具体是将氨基磺酸‑葡萄糖浸出剂预热后,加入正极粉料,在反应釜中进行搅拌浸出。Co(III)、Mn(IV)被还原为Co(II)、Mn(II),与Li+、Ni2+一起溶入浸出液。废旧电池正极粉料中锂、钴、镍、锰浸出率可达95%以上。浸出液进一步处理后,可实现其中Li、Co、Ni、Mn的回收或再利用。本发明所述的浸出体系与传统的浸出体系相比,绿色环保、浸出过程安全可控,工业化应用前景较好。
本发明公开了一种低碳高效的废电路板全资源化清洁回收的方法,该方法是将废电路板置于热解炉中,向热解炉中通入氧气和燃气进行欠氧非充分燃烧为废电路板热解提供热源和气氛,控制热解炉内温度持续上升,焊锡以液态形式回收,热解渣富集在炉底,热解气从炉顶回收,热解气通过冷凝回收热解油后,冷凝余气通过碱液洗气后作为燃气返回热解炉,该方法操作简单、低能耗,能实现废电路板的低碳高效全资源化清洁回收利用。
本发明公开了一种综合开发低品位红土镍矿的方法。主要工艺包括矿物制备、氯化浸出、浸出液氧化、盐酸再生及水解沉铁、固液分离、硫化沉淀和氯化物回收等步骤,其特征是:将红土镍矿用盐酸与氯化物混合液常压浸出,并尽可能多的浸出矿石中的铁;将浸出液中的亚铁离子氧化成三价铁离子;在常压、140~180℃的条件下同步实现盐酸再生和水解沉铁,通过对再生盐酸的收集促使水解反应的完全进行,得到副产品铁红;经固液分离后对镍钴富集的滤液进行硫化沉淀,并回收氯化物溶液。本发明摒弃了传统工艺中热水解或高温焙烧的方法,降低除铁和盐酸再生的能耗,提高镍、钴的浸出率,同时合理开发利用矿石中的贱金属,增加工艺的附加值。
本发明公开了一种废旧锂离子电池破碎料水动力分选及湿法剥离工艺。首先将废旧电池进行破碎及电解液低温挥发或有机物热解预处理,处理后破碎料用水动力分选将外壳分选出去,然后再用亲核类试剂对样品进行一段或多段浸泡,由于该类试剂会与PVDF或铝、铜发生化学反应,且某些试剂能够溶解PVDF或铝、铜,从而使得浸出后极粉与铜、铝等完全剥落分离,实现极粉回收率及品位的提高。本发明采用水动力对隔膜、极片、外壳等物质进行高效、清洁预分选,分选效果较现有的技术有很大的提高,同时避免传统风力风选扬尘及粉爆、铝爆风险。采用亲核类试剂浸出的方法对废旧锂离子电池的极粉进行剥离,极粉脱落效果明显,极粉回收率及品位高。
本发明公开了一种硫酸根酸性二氧化锡复合材料及制备和锑精矿火法冶炼协同处置砷碱渣浸出渣的方法。将含Sn4+的溶液采用碱性物质调节至形成胶状溶液,将胶状溶液进行陈化、固液分离和烘干处理,得到氧化锡颗粒;氧化锡颗粒依次进行硫酸浸泡和活化焙烧,即得硫酸根酸性SnO2复合材料,该复合材料用于锑精矿和砷碱渣浸出渣的协同火法冶炼,能够利用其高强酸性和高氧化性来促进砷渣中复杂锑砷组分向挥发性的Sb2O3和As2O3进行高效转变,实现砷碱渣浸出渣高效低成本收锑除砷,真正实现了砷碱渣浸出渣的资源化利用,该方法快速、高效、低成本,且过程简单、操作方便,满足工业化生产。
本发明公开一种锌铬铁选择性分离及电镀污泥中多金属回收的方法,在浸出液中,依次采用特效萃取剂选择性萃取铜;采用特效萃取剂选择性萃取镍;采用还原剂还原三价铁为二价后,利用特效沉淀剂选择性沉淀铬;采用常规酸性萃取剂萃取锌;铬沉淀物用稀酸洗涤,可将夹带的铁洗掉;在一定温度下用浓碱浸出洗后的铬沉淀物,实现磷酸铬沉淀向氢氧化铬的转型,且磷进入溶液中与过剩液碱经蒸发浓缩‑冷却结晶实现磷酸盐和过剩碱的循环回用;回收的浸出液冷却至室温会析出大量含水磷酸盐结晶,过滤后,磷酸盐晶体可返回选择性沉淀回收铬,滤液添加少量固体碱返回浸出转型磷酸铬沉淀。本发明整个流程无废水排放,消除了二次危废的产出。
本发明公开了一种废弃线路板热解回收的处理方法,包括如下步骤:将废弃线路板经过破碎、静电分选、热解处理后得到烟气和含碳多金属物料,含碳多金属物料经过静电分选后得到碳粉和多金属物料,烟气经过二次燃烧、选择性催化还原处理、急冷处理、吸附处理和除尘处理后,得到优于排放标准的烟气。本发明的处理方法,不仅可以有效分离废弃线路板中的金属与非金属类物质,实现废弃线路板的工业连续处理和资源的再生循环利用,金属回收率达到近99.9%,而且还能有效避免二噁英产生,二噁英的脱除效率超过99.9%。
本发明提供一种利用晶种诱导除铁促进黄铜矿生物浸出的方法,本发明选用褐铁矿作为晶种,并将褐铁矿磨细;将磨细的黄铜矿添加到黄铜矿生物浸出体系进行浸出,在浸出过程中加入褐铁矿晶种;黄铜矿中铜浸出之后,进行固液分离,得到铜离子浸出液和生物浸出渣;将得到铜离子浸出液进行铜的提取,最终得到铜。本发明利用褐铁矿晶种诱导除铁原理,通过除铁将溶液电位调控在适合黄铜矿生物浸出的区间,显著促进黄铜矿的生物浸出。该技术所用晶种价格低廉、来源广泛,该方法价格低廉、高效、简单、易操作。
本发明属于冶金领域,公开了一种高效富集氰化金泥中金的方法,将氰化金泥在催化剂存在下的高温氢氧化钠溶液中通入氧气加压氧化,使Zn、MeS、SiO2、Al2O3和有机物溶解,Cu、Pb、Fe和Ag等完全氧化后进入碱性浸出渣,碱性浸出渣再用硝酸溶解时,使CuO、PbO、Ag2O、Fe2O3和CaO等全部进入溶液,金高效富集于溶解渣中。本发明采用两段选择性溶解过程实现氰化金泥中杂质深度脱除和金高效富集,杂质脱除率大于99.0%,富集物中金的含量在99.0%以上;过程中金始终不溶解,回收率大于99.999%;过滤速度快、技术指标稳定;环境污染小、杜绝了氮氧化物逸出;工艺过程简单、劳动强度小和处理成本低。
一种高效回收废弃印刷电路板焊锡的工艺及装置,在密封的液体导热介质存在的体系中,将焊有电子元器件的待处理的废弃印刷电路放入设有多个滤孔的转体内,浸没在导热介质中,升温至焊锡熔化,待温度恒定后,使转体旋转进行离心固液分离,焊锡从滤孔中泄出沉积在底部,冷却成锭,电子元器件也相应的脱离废弃印刷电路板。一种无环境污染、低能耗、高效率回收废弃印刷电路板焊锡的方法,并为其它金属的高效回收创造良好的条件。
一种回收废旧钴酸锂电池有价金属的浸出体系和浸出方法。本发明浸出体系是包括氨、亚硫酸钠和氯化铵的混合水溶液。本发明浸出方法包括以下步骤:(1)将废旧钴酸锂电池通过放电、破碎、分离后,得到正极粉末;(2)将所述浸出体系进行加热,然后向其中加入正极粉末,搅拌条件下,进行浸出反应,反应完成后,得到含Li+、Co(NH3)n2+的浸出液。本发明浸出体系无需使用酸液,无有害气体产生,常压一步浸出,绿色环保无二次污染;本发明浸出方法安全可控,成本低,具有工业应用前景。
本发明提供了一种废弃印刷电路板的资源化回收方法,首先利用钳子将废弃印刷电路板上的元器件从基板上分离,并采用铲刀将基板上的焊点铲除干净,得到焊点粉末和元器件的混合物、基板;基板进行机械破碎和电力分选,得到铜粉和树脂粉;置入带有搅拌装置的容器中,再向容器中加入一定量的石蜡油,然后将容器加热至240‑260℃,启动搅拌装置搅拌2‑3h,焊点粉末和元器件的混合物中的焊锡熔化后在搅拌剪切力作用下,在石蜡油中均匀解离成细小的液态物质;离心分离和高温氧化后得到纳米二氧化锡、二氧化铅的复合粉末。本发明使用工艺和设备简单,安全方便,分离回收效果好,附加值高,可进一步产业化应用推广。
本发明公开了一种从锑矿中浸出锑的方法,包括以下步骤:将锑矿置入盐酸中进行浸出,浸出过程中向浸出体系持续通入臭氧,在搅拌条件下实现金属锑的浸出,再经液固分离后得到锑盐溶液和固相。本发明的方法具有操作简单、工艺条件要求低、清洁环保、金属锑的浸出率高等优点。
本发明公开了一种无需再生可循环萃取体系从碱性粗钨酸钠溶液中萃取钨的方法;该方法是使用含甲基三烷基铵的碳酸氢盐及其碳酸盐复合萃取剂的有机相对碱性粗钨酸钠溶液进行多级逆流萃取,所得负载有机相经水洗涤后用碳酸氢铵和碳酸铵的混合水溶液进行多级逆流反萃取获得钨酸铵溶液,反萃取后的有机相直接返回萃取过程重复使用;该方法可从碱性粗钨酸钠溶液中选择性萃取钨酸根离子制取钨酸铵,实现了钨酸根离子与含磷、砷、硅等的杂质离子的有效分离,更重要的是实现了萃取剂不需要再生就可以直接重复使用,缩短了工艺流程,减小了化学试剂消耗,降低了废水排放,有利于工业化生产。
本发明公开一种低品位复杂难选氧化镍矿的捕收剂及其选矿方法,该捕收剂由对苯醌二肟和油酸钠按质量比为(1~3):1组成。本发明提供的低品位复杂难选氧化镍矿的选矿方法包括以下步骤:首先将含有氧化镍的原矿进行磨矿获得原矿矿浆,再向原矿矿浆中添加本发明提供的捕收剂,进行浮选作业,获得氧化镍精矿。本发明具有清洁环保、镍富集比高,并有效回收了传统方法不能回收的低品位复杂难选氧化镍矿资源。
本发明公开了一种锑或铋的湿法-火法联合冶炼工艺,首先,从含锑(或铋)物料浸出锑;然后,对浸出液进行还原和净化;之后,对净化后液进行水解得到氯氧锑(或氯氧铋),最后,以得到的氯氧锑(或氯氧铋)为原料在Na2CO3体系内进行惰性还原熔炼得到精锑(或精铋)。本方法消除了现行锑(或铋)高温熔炼存在的低浓度SO2及重金属粉末污染重、能耗大、效率低、稀贵金属分散等问题。同时,Na2CO3在还原熔炼时不消耗,又可作为惰性熔剂重新返回熔炼,大大降低了能耗和试剂消耗,避免了现行精炼工序产出大量难于处理的砷碱渣等弊端。本发明具有环境压力小、原料适应性强、金属(富集率)回收率高、能耗小、成本低的突出优点。
一种锰渣无害化处理及综合利用的方法,其包括以下步骤:(1)对锰渣进行洗涤、压滤,将造成环境污染的硫酸锰和硫酸铵从浸出渣中分离出来;(2)将洗渣水与沉淀剂反应,加入的沉淀剂过量5-10%,反应时间0.5-3小时,反应温度30-100℃,将洗渣水中的锰离子转化成氢氧化锰或碳酸锰沉淀出来,然后进行固液分离,实现对锰的回收;(3)将回收锰以后的溶液与石灰乳反应,反应温度60-100℃,反应时间0.5-3小时,反应压力0至-200MMHG,使硫酸铵转化为氨和硫酸钙,氨通过吸收装置吸收成氨水,将固液混合物过滤,分离出固体硫酸钙,滤液返回步骤(1)洗渣工序循环利用。本发明设备投资少,能耗及生产成本低,有价成分回收率高,锰渣无害化处理综合效果好。
一种硫酸锰电解液净化除氯的方法,首先三氧化二铋在浓硫酸中活化使其转化为硫酸氧铋,其次将活化渣加入到硫酸锰溶液并用锰盐调整溶液pH值至初始数值,使溶液中的氯离子以氯氧铋形式沉淀,再次净化渣用浓硫酸浸煮以脱除氯并实现沉淀剂再生,最后加入锰粉置换净化后液中残存的铋离子。本发明的实质首先使氧化铋转化为活性较好的硫酸氧铋,其次再利用氯氧铋溶度积小的特点,用硫酸氧铋脱除硫酸锰电解液中的氯,再次利用氯化氢易于挥发的性质,使氯氧铋再生为硫酸氧铋,最后利用锰的电极电位比铋低的性质,使净化后液中残存的铋置换回收。本发明具有工艺过程短、产品质量好和成本低的优点。
一种从高钼白钨矿中提取钨、钼的方法。工艺为:将高钼白钨矿采用硫酸-磷酸混合酸浸出;浸出液采用冷却结晶法分离得一次磷钨酸晶体后溶于酸溶液中二次冷却结晶,再经氨溶-铵镁盐法除磷-选择性沉淀法除钼-蒸发结晶处理即可得符合国家0级标准的APT;一次冷却结晶母液经萃取提钼-铵盐反萃-除杂-调酸等工艺后可得钼酸铵;将富含余酸的萃余液和二次冷却结晶母液直接返回浸出,实现酸的循环。本发明实现了钨钼的高效、常压提取,钨、钼浸出率在98.5%以上;采用冷冻结晶和萃取工艺可有效实现钨、钼的彻底地分离,减轻了后续工序处理负担;浸出过程简单,酸耗量少,且大部分酸实现了循环浸出,极大地降低了生产成本和废水排放。
本发明属于资源回收与环境保护技术领域,公开了一种从废旧钽钢板中剥离回收钽的方法,将废旧钽钢板材料进行热震实验,获得界面结合强度低于70MPa的钽钢板材料;通过垂直拉伸试验,将钽与钛分离,获得含有微量钛的钽金属块;将钽金属块进行电子束熔炼,通过蒸发‑冷凝,分离出金属钛,得到高纯金属钽。本发明工艺简单,利用热膨胀系数的差异通过热震试验,使得界面产生裂纹,结合力减弱,再由垂直拉伸法进行钽复层剥离,最后通过电子束熔炼进行提纯以获得高纯的钽资源。本发明剥离回收方法主要为物理方法,不产生有毒气体和废液,避免造成环境污染,实现了稀有金属的回收再利用,回收得到的钽金属纯度达到99.9%以上。
一种废线路板铜粉选冶联合脱除杂质的方法,废线路板铜粉在盐酸溶液中浸出,使其中的铝和铁选择性浸出,脱铝渣再采用控电位氧化浸出铅和锡,浸出渣采用水力旋流分选方式分离氧化铝和二氧化硅并产出优质的火法炼铜原料。本发明的实质是首先采用两段湿法选择性浸出和选矿分选相结合的工艺处理废线路板铜粉,不仅选择性的脱除了铝、铅、锡等杂质金属,而且分离了其中的氧化铝和二氧化硅,最终实现铜的富集,解决了火法熔炼回收废线路板铜粉时杂质金属和有机物的危害。
本发明提供一种处理低品位混合铜矿的浮选-酸浸联合工艺。浮选工艺流程包含三步,首先选用新型高效捕收剂MA作为硫化铜矿捕收剂,直接浮选硫化铜矿,再分别通过硫化浮选和直接浮选回收氧化铜矿,分别选用新型高效捕收剂MA作为硫化浮选捕收剂,油酸钠作为氧化铜矿直接浮选捕收剂,浮选混合精矿集中进行酸浸处理,过滤之后收集滤液。该方法通过选冶结合,提高铜回收率,降低生产成本,同时该方法简单、易行。
本发明公开了一种高效回收利用含砷钴镍渣的方法。该方法是先将含砷钴镍渣通过氧压碱浸脱砷,得到滤渣和含砷碱浸液。碱浸液可通过蒸发结晶、溶解和SO2还原制备亚砷酸盐,亚砷酸盐可返回用于湿法炼锌过程中硫酸锌溶液的净化除钴和镍;或者将碱浸液通过硫化除杂、苛化沉砷、真空还原获得单质砷和再生CaO;碱浸渣则通过两段酸浸、锌粉置换除铜、氧化沉钴、扫铜除镍来实现锌、铜、钴、镍等有价金属的综合回收。该方法工艺流程短,清洁高效,回收率高,避免了以往工艺中存在的砷污染问题。
本发明属于重金属检测技术领域,具体涉及一种高盐废水中痕量铊的测定方法。所述的高盐废水中痕量铊的测定方法包含如下步骤:(1)对废水样品通过萃取—洗涤—反萃—反萃液调值—萃取—洗涤—反萃连续除杂富集方法进行预处理;(2)绘制铊标准工作曲线;(3)预处理后的待测水样通过石墨炉原子吸收检测其吸光度;(4)按标准吸光度浓度计算样品浓度。本方法所用萃取剂可以再生重复使用,加标回收率达到98~102%,检测限值可达0.1μg/L,满足工业废水中铊的排放标准检测要求,同时填补了高盐废水中痕量铊测定方法的空白。
一种铜烟灰加压强化浸出的方法,铜烟灰经过筛分后在硫酸体系中一次浸出,使烟灰中的氧化物和硫酸盐溶解进入一次浸出液,使金属硫化物等留在一次浸出渣中,一次浸出液回收锌和铜,一次浸出渣再加入氢氧化锌加压氧化,使金属硫化物氧化进入加压氧化料浆,加压氧化料浆补加硫酸进行二次浸出,硫酸二次浸出液返回硫酸一次浸出过程,硫酸二次浸出渣送回收铅。本发明采用氢氧化锌加压氧化方式提高了铜烟灰中的铜和锌的浸出率,铜和锌的浸出率均达到92%以上,能有效处理目前金属物相复杂,尤其是硫化物含量较高的铜烟灰。
一种用酸性复杂含锑溶液直接制备锑氧化物的方法,包括以下步骤:(1)将酸性浸出母液与萃取剂按液液体积比为1‑3︰1混合均匀,进行萃取;(2)萃取后进行液液分离,得到萃余液和负载有机相;(3)将步骤(2)所得负载有机相与稀硫酸混合,进行反萃取及萃取剂的再生;反萃取结束后,进行分液,分离有机相和悬浊水相,之后将悬浊水相进行过滤,分离出锑氧化物。本发明方法工艺流程短、反应效率高、操作简单,适用于多种酸性含锑溶液的处理,特别适用于含锑、铁的酸性复杂溶液,也可以适用于含锑、铁、砷的酸性复杂溶液。
一种处理硫化铋矿的方法,是将稀盐酸体系硫化铋矿浆料置于浆料槽中,浆料槽中设有机械搅拌桨,保持浆料处于混合均匀状态;浆料经过气动泵按照一定速度进入旋流电解系统,经电解后从电解装置排出继续进入浆料槽,如此循环,一定时间后矿物中的铋得到高效提取。工艺条件为:浆料中稀盐酸浓度为110‑280g/L,温度为55‑85℃,液固比为6‑12 : 1,阴极电流密度为100‑200A/m2。本发明流程短,反应速度快,反应过程传质均匀,与传统方法相比,铋的回收率得到极大的提高,实现矿物中铋的综合高效提取,提高铋资源利用率。
本发明公开了一种低品位钨精矿、钨渣的处理方法,该方法是将低品位钨精矿或钨渣与煤粉及还原焙烧强化剂混合后,进行还原焙烧;还原焙烧所得产物经研磨后进行中性浸出,得到钨酸盐溶液和浸出渣,浸出渣采用磁场进行磁选分离,得到精铁矿和有价金属尾矿;有价金属尾矿依次经稀盐酸脱硅、浓盐酸浸出锰后,再用氢氟酸浸出钽和铌,制备出钽和铌产品;该方法有效地将低品位钨精矿、钨渣中难以提取的有价元素(钨、铁、铜、锰、铋、钴、钽、铌等)的高效富集和分离回收,从而实现低品位钨精矿或钨渣中有价元素的资源化综合利用;且该方法采用的设备简单,流程短,操作简便,经济可靠,有利于工业化生产。
本发明公开了一种同步脱除溶液中氟、氯、铁的方法;在含Fe2+、F‑、Cl‑的溶液中持续通入含强氧化性气体的气体,同时加入催化剂,并加入中和剂控制pH值为1.5~4.2,于剪切强化下反应,固液分离获得净化后液和除铁渣。本发明利用催化剂催化氯离子与强氧化性气体反应形成氯气,并在金属矿物型催化剂存在的情况下,无需引入晶种,只控制pH值于剪切强化下的作用下,即能够高效的生成针铁矿晶型为主的,且具有细小粒径的除铁渣,使更多的氟离子吸附进而实现高效吸附除氟,因此通过本发明的方法,可以同步高效的脱除氟、氯、铁。本发明能够实现一步从溶液中脱除氟、氯和铁,是一种高效、清洁、节能的净化工艺。
本发明提供了一种废电脑CPU的分离回收方法,首先从废旧电脑主板上拆除废旧CPU,将针脚和CPU基座分离;将针脚与钢球、介质油混合,加入立式搅拌球磨机中,球磨将针脚表层的金镀层和少量的铜从铜质针脚上剥离,筛分得到脱除金镀层的铜质针脚、钢球和混入金粉、铜粉的介质油;抽滤清洗得到金粉和铜粉混合物;将金粉和铜粉加入稀硝酸中使铜溶解,过滤得到硝酸铜液体可进一步结晶制取硝酸铜晶体,滤渣为固体粉末,将固体粉末放入坩埚中,采用氧‑丁烷焰喷灯将坩埚中的固体粉末喷射火焰,进行高温熔炼,冷却,得到金颗粒。本发明采用的方法和装置简单、回收效率高。
中冶有色为您提供最新的湖南长沙有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!