本发明公开了一种以硫代巴比妥酸衍生物(thiobarbituric?acid?derivatives,TBAs)作为紫外-可见光(UV-vis)分光光度法探针分子检测仲胺类化合物的方法及其制备路线。本发明的探针分子由伯胺经过一套系统的制备路线而制得。本发明的探针分子具有识别仲胺的呋喃环(或噻吩环),单独的探针分子溶液是黄色的,随着仲胺的加入,溶液由黄色变红色。该分子探针对仲胺的选择性和灵敏性高,对仲胺的响应范围为100-400μM,检测限(LOD)为12μM。利用该探针分子可制备检测试纸,实现对仲胺快速、低成本的定性检测。该方法可广泛应用于工业过程中仲胺化合物的在线检测、食品分析及环境监测等的快速灵敏检测。
一种调控电位强化含砷金矿生物氧化的方法,包括以下步骤:(1)将含砷金矿细磨成矿粉;(2)配制9K培养基;(3)将步骤(1)中得到的矿粉与氧化亚铁硫杆菌(Thiobacillusferrooxidans)加入到步骤(2)中配制得到的9K培养基中进行一次生物浸出得到一次矿浆,然后加入Fe3+溶液调节一次矿浆的电位,同时调节一次矿浆的pH进行二次生物浸出得到二次矿浆;(4)待步骤(3)中的二次生物浸出完成后,对二次矿浆进行固液分离得到浸金渣。本发明可以显著缩短浸出周期,处理效率高、操作简单,可广泛应用于各种规模的矿石企业。
一种分离电弧炉烟尘中锌和铁的方法,以淀粉为还原剂,将电弧炉烟尘在含有添加剂的氢氧化钠溶液中进行水热还原浸出,锌进入浸出液中,铁则转化为磁性铁氧化物进入浸出渣中,实现锌和铁的有效分离;含锌浸出液采用通入CO2方式调节溶液pH值,产出碱式碳酸锌;浸出渣则通过磁选分离产出磁性铁氧化物和尾渣。本发明不但实现了锌与铁的有效分离,同时有利于后续铁的磁选回收;选择CO2气体调节溶液pH进行沉锌,具有环境友好、成本低的优点;碱性水溶液体系对设备腐蚀性大大降低,同时水热反应温度控制在150℃~300℃之间,相对于火法处理工艺,能耗大大降低。
本发明公开了一种熔体萃取分离回收废旧镍基高温合金中镍钴的方法,包括下述的步骤:S1.以熔融Mg‑M合金为萃取介质,以废旧镍基高温合金为待萃取物,进行萃取处理,得到共熔体与合金残渣,在所述Mg‑M合金中Mg为主体金属,M金属为Pb、Bi、Sn中的一种或多种;S2.将S1得到的共熔体进行真空蒸馏,得到金属镍钴粉以及冷凝的萃取介质。本发明提出了一种清洁高效的分离回收废旧镍基高温合金中金属镍钴的方法。本方法工艺流程短,设备简单,镍钴回收率高,成本低,萃取介质可以循环利用,过程清洁环保。
本发明公开了一种废旧镍钴锰酸锂三元正极材料再生的方法。该方法是将废旧镍钴锰酸锂三元正极材料采用磷酸‑柠檬酸混酸溶液浸出,得到浸出液;浸出液通过镍盐、钴盐和锰盐调节其金属离子比例后,添加至草酸溶液中进行共沉淀反应,所得沉淀经过预煅烧得到镍钴锰氧化物,再与锂源通过研磨混合后,煅烧,即得再生镍钴锰酸锂三元正极材料;该方法采用混酸浸出过程,酸耗小,浸出时间短,成本低,对环境影响小,并且无需添加还原剂,工艺简单;且混酸浸出液直接用于合成三元正极材料,避免了现有技术中对浸出液中各种金属进行分离提纯的复杂流程,实现了金属的闭环循环利用。
本发明公开了一种从氨性含镍废水中回收镍的方法,包括以下步骤:(1)以氨性含镍废水为水相,以萃取剂及其稀释剂为有机相,经液‑液萃取后将水相中的镍萃入有机相,得到含镍有机相和萃余液,所述萃取剂的主要化学成分为2‑羟基‑5‑壬基苯乙酮肟,所得萃余液为含氨废水;(2)将步骤(1)所得含镍有机相用硫酸溶液反萃,得到含硫酸镍的反萃液和再生的有机相,即完成对氨性含镍废水中镍的回收。该方法萃取效率高、操作方法简单、条件温和、萃取剂可循环使用、易于实现工业化应用。
一种废铅膏水热还原转化及低温还原熔炼的方法,废铅膏与碱溶液调浆并加入还原剂后加入到高压反应釜中,在要求温度和氮气分压下反应,达到反应时间后固液分离,水热转化液制备硫酸钠;水热转化渣与淀粉充分混合后采用间接加热方式进行低温还原熔炼,产出的粗铅送电解精炼进一步提纯。本发明首先在碱和还原剂同时存在条件下水热转化,实现废铅膏深度转化脱硫和还原转化双重目的;其次在间接加热条件下采用淀粉作为还原剂,实现水热转化渣低温还原熔炼产出粗铅的目的。脱硫率和二氧化铅还原率均达到99.0%以上,铅直收率达到96.0%以上,低温还原熔炼过程熔炼温度降低至800~850℃,本发明具有工艺过程操作简单、技术指标稳定、劳动强度小和生产成本低等优点。
本发明公开了一种从废锂离子电池材料中回收钴和锂的方法。该方法主要包括废锂离子电池材料的放电,高温焙烧,用硫酸和硫代硫酸钠在超声波条件下浸出,硫化钠沉淀除杂,用Cyanex272作为萃取剂萃取钴,再盐酸反萃取钴,含锂萃余液通入CO2气体沉淀得到碳酸锂。采用本发明的方法,工艺简单、钴和锂回收率高,废锂离子电池材料中的钴和锂回收率均在98.5%以上。
一种能有效分离硫化铋精矿中钨钼和铋的方法。本发明先将含钨钼的硫化铋精矿在氢氧化钠溶液中进行加压氧化浸出,钨和钼进入碱性浸出液,铋及其它重金属以氧化物形式进入碱性浸出渣,实现硫化铋精矿中钨钼和铋的有效分离,碱性浸出液再分别用大孔弱碱丙烯酸系阴离子交换树脂D363和D314吸附钨钼,最后用氨水分别解吸钨和钼,实现浸出液中钨钼的有效回收。本发明实现硫化铋精矿中钨钼和铋的有效分离,钨钼的浸出率为99%以上,铋和铜等则被氧化后进入碱性浸出渣中;碱性加压浸出液采用树脂吸附钨钼,钨钼的回收率在99%以上;劳动强度低、处理时间短、操作环境好。
本发明提供一种低成本提高低品位红土镍矿镍钴浸出率的方法。本方法通过对红土矿进行二次焙烧,一次焙烧在90~110℃密闭进行30MIN左右,二次焙烧在260~420℃通空气情况下焙烧1H左右,改变了矿物中包含镍钴金属的物相结构,使其更为容易受到浸出剂的浸取,实现了在较低温度和酸耗的情况下提高镍钴浸出率;焙烧的同时,改变了铁存在的结构,增加了其浸出活化能,降低了铁的浸出。焙烧料空气中冷却至50℃左右,采用加入硫酸或盐酸50℃左右进行浸出,镍钴的浸出率可达93%和87%,铁的浸出率最低可降至30%左右。
本发明属于废旧电池正极材料回收领域,具体涉及一种联合浸出剂,其包含乙二胺与柠檬酸铵。本发明还提供所述的联合浸出剂用于正极材料的浸出方法。本发明中,得益于所述的联合浸出剂成分的联合控制,能够意外地实现协同,能够显著改善正极材料金属元素的浸出率,改善浸出效率。
本发明属于电池正极材料回收领域,具体公开了一种镍钴锰废旧电池的正极材料的回收方法,将镍钴锰废旧电池充分放电、拆解得正极片;将正极片经有机溶剂浸泡、干燥后,在含氧气气氛内400~500℃下热处理;将热处理后的正极片在剥离剂中湿法球磨,随后分离得正极材料。本发明具有步骤简单,耗能少,条件温和,除热处理外的其他步骤均可在常温下进行;整个过程中使用的溶剂均可循环使用,节能、无污染且降低了成本;回收正极材料中所含杂质少,回收过程中不破坏正极材料的结构且锂元素损失较少,铝以单质的形式回收,无需后续处理;回收方法简单、高效。通过此方法回收镍钴锰废旧动力电池,既能够缓解环境压力又能实现资源循环利用。
本发明公开了一种废旧锂电池的全湿法回收工艺,所述工艺包括湿法带电破碎、电池碎料直接浸出、浸出液原位除杂、深度除杂和材料再制备等步骤,该工艺通过一个较短的流程即可实现对废弃锂离子电池的回收,其具有镍、钴、锰、锂元素收率高,设备投资低,废气、废水产量小等优点。
一种硫化铜精矿的氧压浸出方法及铜冶炼方法,先将硫化铜精矿加水磨制成矿浆;再将第一分散剂、第一沉矾剂、二段上清液和矿浆加入到高压釜中,进行一段氧压浸出,获得一段底流和一段上清液;然后将一段底流、废电积液、第二分散剂和第二沉矾剂加入到高压釜中,进行二段氧压浸出,获得二段上清液和二段浸出渣;向一段上清液中加入中和剂,获得中和上清液和中和渣,使用中和上清液电积铜。本方法在保证铜的高浸出率同时,控制浸出液中的铁及硫酸含量。
本发明公开了一种矿区环境样品微生物基因组DNA与总RNA同时提取的方法,步骤S1:环境样品的预处理,通过离心的方法收集液体样品中的微生物或通过过滤的方法剔除固体样品中的杂质;步骤S2:细胞的破碎,将步骤S1中预处理好的样品与石英砂混合后加入液氮研磨三次,再加入pH值为7.0的PIPES抽提缓冲液和十二烷基磺酸钠溶液在65℃下裂解细胞1小时;步骤S3:核酸纯化与沉淀,裂解细胞完毕后通过离心的方法收集上清液,并向上清液中加入萃取剂离心萃取蛋白与脂类,待萃取后,上清液用异丙醇沉淀并离心获取总核酸,总核酸经过分离即可得到宏基因组DNA与总RNA。本发明具有低成本、能够同时从矿区环境样品中提取高纯度、完整性好的宏基因组DNA与总RNA的优点。
一种锑电解液选择性除铁并制备草酸亚铁的方法,本发明在不调节酸度的情况下,通过配合剂配合电解液中铁和锑离子,之后加入还原剂对铁离子配合物进行选择性还原,再对还原后电解液进行固液分离含铁化合物及过量配合剂,最后加入沉淀剂沉淀分离配合剂。本发明无需调整pH值,不破坏原电解液体系,结晶后液可直接返回电解;除铁选择性高,除铁率与沉锑率之比大于80,净化后渣中草酸亚铁纯度达到98%以上;过程环保经济,不产生二次污染。
本发明公开了一种废旧磷酸铁锂正极材料的回收方法,包括以下步骤:S1、取废旧磷酸铁锂正极材料经预处理得到磷酸铁锂粉末,将磷酸铁锂粉末与固体助磨剂混合后进行球磨得到混合粉末;S2、取所述混合粉末经水浸出后,得到含有有价金属离子的浸出液;其中,所述助磨剂为有机酸且所述有机酸中的酸根离子能与铁和锂分别形成可溶性络合物。本发明方案可以较好地解决现有技术中所存在的酸碱用量过多、含盐废水产量过大、易产生二次污染等问题。
本发明属于废旧电池资源回收领域,公开了一种废旧锂电池中有价金属浸出体系及浸出方法。所述的浸出方法,具体是将氨基磺酸‑葡萄糖浸出剂预热后,加入正极粉料,在反应釜中进行搅拌浸出。Co(III)、Mn(IV)被还原为Co(II)、Mn(II),与Li+、Ni2+一起溶入浸出液。废旧电池正极粉料中锂、钴、镍、锰浸出率可达95%以上。浸出液进一步处理后,可实现其中Li、Co、Ni、Mn的回收或再利用。本发明所述的浸出体系与传统的浸出体系相比,绿色环保、浸出过程安全可控,工业化应用前景较好。
本发明公开了一种低碳高效的废电路板全资源化清洁回收的方法,该方法是将废电路板置于热解炉中,向热解炉中通入氧气和燃气进行欠氧非充分燃烧为废电路板热解提供热源和气氛,控制热解炉内温度持续上升,焊锡以液态形式回收,热解渣富集在炉底,热解气从炉顶回收,热解气通过冷凝回收热解油后,冷凝余气通过碱液洗气后作为燃气返回热解炉,该方法操作简单、低能耗,能实现废电路板的低碳高效全资源化清洁回收利用。
本发明公开了一种综合开发低品位红土镍矿的方法。主要工艺包括矿物制备、氯化浸出、浸出液氧化、盐酸再生及水解沉铁、固液分离、硫化沉淀和氯化物回收等步骤,其特征是:将红土镍矿用盐酸与氯化物混合液常压浸出,并尽可能多的浸出矿石中的铁;将浸出液中的亚铁离子氧化成三价铁离子;在常压、140~180℃的条件下同步实现盐酸再生和水解沉铁,通过对再生盐酸的收集促使水解反应的完全进行,得到副产品铁红;经固液分离后对镍钴富集的滤液进行硫化沉淀,并回收氯化物溶液。本发明摒弃了传统工艺中热水解或高温焙烧的方法,降低除铁和盐酸再生的能耗,提高镍、钴的浸出率,同时合理开发利用矿石中的贱金属,增加工艺的附加值。
本发明公开了一种废旧锂离子电池破碎料水动力分选及湿法剥离工艺。首先将废旧电池进行破碎及电解液低温挥发或有机物热解预处理,处理后破碎料用水动力分选将外壳分选出去,然后再用亲核类试剂对样品进行一段或多段浸泡,由于该类试剂会与PVDF或铝、铜发生化学反应,且某些试剂能够溶解PVDF或铝、铜,从而使得浸出后极粉与铜、铝等完全剥落分离,实现极粉回收率及品位的提高。本发明采用水动力对隔膜、极片、外壳等物质进行高效、清洁预分选,分选效果较现有的技术有很大的提高,同时避免传统风力风选扬尘及粉爆、铝爆风险。采用亲核类试剂浸出的方法对废旧锂离子电池的极粉进行剥离,极粉脱落效果明显,极粉回收率及品位高。
本发明公开了一种硫酸根酸性二氧化锡复合材料及制备和锑精矿火法冶炼协同处置砷碱渣浸出渣的方法。将含Sn4+的溶液采用碱性物质调节至形成胶状溶液,将胶状溶液进行陈化、固液分离和烘干处理,得到氧化锡颗粒;氧化锡颗粒依次进行硫酸浸泡和活化焙烧,即得硫酸根酸性SnO2复合材料,该复合材料用于锑精矿和砷碱渣浸出渣的协同火法冶炼,能够利用其高强酸性和高氧化性来促进砷渣中复杂锑砷组分向挥发性的Sb2O3和As2O3进行高效转变,实现砷碱渣浸出渣高效低成本收锑除砷,真正实现了砷碱渣浸出渣的资源化利用,该方法快速、高效、低成本,且过程简单、操作方便,满足工业化生产。
本发明公开一种锌铬铁选择性分离及电镀污泥中多金属回收的方法,在浸出液中,依次采用特效萃取剂选择性萃取铜;采用特效萃取剂选择性萃取镍;采用还原剂还原三价铁为二价后,利用特效沉淀剂选择性沉淀铬;采用常规酸性萃取剂萃取锌;铬沉淀物用稀酸洗涤,可将夹带的铁洗掉;在一定温度下用浓碱浸出洗后的铬沉淀物,实现磷酸铬沉淀向氢氧化铬的转型,且磷进入溶液中与过剩液碱经蒸发浓缩‑冷却结晶实现磷酸盐和过剩碱的循环回用;回收的浸出液冷却至室温会析出大量含水磷酸盐结晶,过滤后,磷酸盐晶体可返回选择性沉淀回收铬,滤液添加少量固体碱返回浸出转型磷酸铬沉淀。本发明整个流程无废水排放,消除了二次危废的产出。
本发明公开了一种废弃线路板热解回收的处理方法,包括如下步骤:将废弃线路板经过破碎、静电分选、热解处理后得到烟气和含碳多金属物料,含碳多金属物料经过静电分选后得到碳粉和多金属物料,烟气经过二次燃烧、选择性催化还原处理、急冷处理、吸附处理和除尘处理后,得到优于排放标准的烟气。本发明的处理方法,不仅可以有效分离废弃线路板中的金属与非金属类物质,实现废弃线路板的工业连续处理和资源的再生循环利用,金属回收率达到近99.9%,而且还能有效避免二噁英产生,二噁英的脱除效率超过99.9%。
本发明提供一种利用晶种诱导除铁促进黄铜矿生物浸出的方法,本发明选用褐铁矿作为晶种,并将褐铁矿磨细;将磨细的黄铜矿添加到黄铜矿生物浸出体系进行浸出,在浸出过程中加入褐铁矿晶种;黄铜矿中铜浸出之后,进行固液分离,得到铜离子浸出液和生物浸出渣;将得到铜离子浸出液进行铜的提取,最终得到铜。本发明利用褐铁矿晶种诱导除铁原理,通过除铁将溶液电位调控在适合黄铜矿生物浸出的区间,显著促进黄铜矿的生物浸出。该技术所用晶种价格低廉、来源广泛,该方法价格低廉、高效、简单、易操作。
本发明属于冶金领域,公开了一种高效富集氰化金泥中金的方法,将氰化金泥在催化剂存在下的高温氢氧化钠溶液中通入氧气加压氧化,使Zn、MeS、SiO2、Al2O3和有机物溶解,Cu、Pb、Fe和Ag等完全氧化后进入碱性浸出渣,碱性浸出渣再用硝酸溶解时,使CuO、PbO、Ag2O、Fe2O3和CaO等全部进入溶液,金高效富集于溶解渣中。本发明采用两段选择性溶解过程实现氰化金泥中杂质深度脱除和金高效富集,杂质脱除率大于99.0%,富集物中金的含量在99.0%以上;过程中金始终不溶解,回收率大于99.999%;过滤速度快、技术指标稳定;环境污染小、杜绝了氮氧化物逸出;工艺过程简单、劳动强度小和处理成本低。
一种高效回收废弃印刷电路板焊锡的工艺及装置,在密封的液体导热介质存在的体系中,将焊有电子元器件的待处理的废弃印刷电路放入设有多个滤孔的转体内,浸没在导热介质中,升温至焊锡熔化,待温度恒定后,使转体旋转进行离心固液分离,焊锡从滤孔中泄出沉积在底部,冷却成锭,电子元器件也相应的脱离废弃印刷电路板。一种无环境污染、低能耗、高效率回收废弃印刷电路板焊锡的方法,并为其它金属的高效回收创造良好的条件。
一种回收废旧钴酸锂电池有价金属的浸出体系和浸出方法。本发明浸出体系是包括氨、亚硫酸钠和氯化铵的混合水溶液。本发明浸出方法包括以下步骤:(1)将废旧钴酸锂电池通过放电、破碎、分离后,得到正极粉末;(2)将所述浸出体系进行加热,然后向其中加入正极粉末,搅拌条件下,进行浸出反应,反应完成后,得到含Li+、Co(NH3)n2+的浸出液。本发明浸出体系无需使用酸液,无有害气体产生,常压一步浸出,绿色环保无二次污染;本发明浸出方法安全可控,成本低,具有工业应用前景。
本发明提供了一种废弃印刷电路板的资源化回收方法,首先利用钳子将废弃印刷电路板上的元器件从基板上分离,并采用铲刀将基板上的焊点铲除干净,得到焊点粉末和元器件的混合物、基板;基板进行机械破碎和电力分选,得到铜粉和树脂粉;置入带有搅拌装置的容器中,再向容器中加入一定量的石蜡油,然后将容器加热至240‑260℃,启动搅拌装置搅拌2‑3h,焊点粉末和元器件的混合物中的焊锡熔化后在搅拌剪切力作用下,在石蜡油中均匀解离成细小的液态物质;离心分离和高温氧化后得到纳米二氧化锡、二氧化铅的复合粉末。本发明使用工艺和设备简单,安全方便,分离回收效果好,附加值高,可进一步产业化应用推广。
中冶有色为您提供最新的湖南长沙有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!