一种废旧线路板铜粉预处理分选脱除杂质金属的方法,废线路板铜粉在球磨罐中用硫酸溶液浸出,使其中的铝和铁选择性浸出;得到的浸出渣烘干后采用机械筛分的方式使铅和锡分离进入细颗粒,铜富集于粗颗粒;最后采用控电位硫酸氧化浸出的方式处理细颗粒,使其中少量的铜溶解。本发明的实质是采用化学浸出和机械处理相结合的方式选择性脱除废线路板铜粉中的杂质金属,解决了废线路板铜粉中杂质金属对火法炼铜的危害问题以及实现了金属资源的回收利用。
一种从碲渣中分离碲的方法,本发明先将碲渣磨矿后在水溶液中浸出,水浸液经过净化和中和后产出二氧化碲;水浸渣在盐酸体系中盐酸浸出,酸浸液冷却后过滤,酸浸渣返回阳极泥处理过程;酸浸液经过控电位还原产出粗碲,粗碲和中和产出的二氧化碲经过焙烧脱杂后得到纯二氧化碲;还原后液再分别用传统方法回收铜铋锡等有价金属。本发明碲总浸出率高达98%以上,产出的粗碲杂质元素含量低,返渣少,对设备的改造幅度小,处理时间短、处理成本低。
本发明公开了一种废旧锰酸锂电池的回收再利用方法,该方法是将废旧锰酸锂电池进行破碎、回收电解液及风选,轻产物经过冲洗得到干净隔膜及细粒级活性物质,重产物经过湿法剥离金属混合物和细粒级活性物质,金属混合物由色选选出金属铜和金属铝,细粒级活性物质通过反浮选工艺进行分离石墨和锰酸锂材料,锰酸锂材料经过补锂固相烧结以及包覆再生后可以形成性能良好的锰酸锂电池材料;该方法流程工艺简单、成本低廉,既可以对废旧锰酸锂电池中的有用物质进行有效回收,又可以对废旧锰酸锂电池中的污染物质进行有效处理,符合二次资源处理的三化原则。
一种从铅铜锍中分离铜和硒碲的方法,本发明是将破碎后的铅铜锍粉末、氢氧化钠、碳酸钠、水按一定的配比混合投入高压釜,往高压釜中通入氧气并控制釜内氧气的压力进行氧化反应,硒被氧化进入碱性浸出液,铜、铅和碲被氧化进入碱性浸出渣,碱性浸出渣再用硫酸溶液浸出铜和碲,铅富集在酸性浸出渣中。本发明铜的浸出率达到98%以上,碲的浸出率达到90%以上。本发明对材质要求低,碱性介质对设备的腐蚀小、操作安全,有价金属综合回收效益好,同时劳动强度低、处理时间短、操作环境好。
本发明公开了一种在碱性体系中提取镍钼矿冶炼烟尘中硒的方法,包括以下步骤:先对镍钼矿冶炼烟尘进行预处理;将预处理后的镍钼矿冶炼烟尘进行氧化浸出,氧化浸出是在碱性浸出体系中进行;在碱性条件下,以甲醛或联胺中的至少一种作为还原剂,将氧化浸出后得到的含亚硒酸根的浸出液进行硒的还原反应,使浸出液中的亚硒酸根离子与其它离子高度分离,得到高纯度的硒粉。本发明的工艺流程短、操作简单、能耗低、金属回收率高、生产成本低、且能实现低碳环保的冶金目的。
本发明公开了一种磷酸铁锂废料的资源回收方法,该方法包括以下步骤:将磷酸铁锂废料进行水热反应后,固液分离,收集固相和液相;在所述液相中添加沉淀剂,制得磷酸氢锂盐;所述水热反应的气氛为氧化性气体。采用本发明的方法对磷酸铁锂废料进行回收,提取过程中用到的试剂为氧化性气体和沉淀剂等,无酸参与直接高选择性地回收了锂元素,最终得到磷酸氢锂盐和羟基磷酸铁,实现了磷酸铁锂废料的有效利用。
一种催化氧化法选择性溶解铜钴合金的方法,先配制浓度为2.0~7.5mol/L的硫酸溶液,保持搅拌速度300~800r/min,按液固比L/Kg为3~10∶1缓慢加入磨细至100%过孔径为50~150um筛的原料粉末,控制反应温度并继续搅拌1~5h,然后在控制体系的终点电位相对甘汞电极为50~400mV的条件下加入过氧化氢,氧化剂用量为铜钴合金粉末质量的0.1~1.6倍,待电位稳定后继续搅拌1~3h,然后采用真空抽滤或板框压滤方式实现固液分离。本发明可以实现钴和铜的初步分离,也可以实现铜和钴的共同溶解,钴的一次浸出率达到99%以上;催化氧化溶解加快了固液分离速度快,实现了硅的彻底脱除;溶液后处理容易,催化剂和氧化剂耗量少、工艺过程简单。
一种处理钐钴合金的方法,先将磨细后的钐钴合金在4~6mol/L的硫酸体系下进行浸出,钴和少量钐进入溶液,实现钴与大部分钐的分离;进入溶液中的钐经调节pH沉淀与保留在浸出渣中的大部分钐混合,经碳酸钠转化后,再经盐酸溶解、草酸沉淀后直接焙烧制备氧化钐产品。本发明通过控制硫酸浓度和温度,大大降低钐的浸出率,初步实现钐与钴的分离,有利于后续的沉钐工序;含钐沉淀和含钐浸出渣经碳酸钠转化,避免了硫酸钐及其复盐的夹杂,有利于降低后续焙烧制备氧化钐的温度;氮气气氛保护可抑制反应过程中钴的氧化,从而确保合金中99.5%以上的钴不会氧化水解进入含钐沉淀中。
一种废铅酸蓄电池铅膏水热深度转化脱硫的方法,废铅膏与碱溶液混合后加入到高压反应釜中,在要求温度和氮气分压下进行反应,使硫酸铅与碱完全反应脱除硫酸根,达到反应时间后固液分离,脱硫转化液回收硫酸钠,脱硫转化渣进一步提取铅。本发明采用水热方式强化了废铅膏碱性转化脱硫过程,实现废铅膏中硫酸根的完全脱除,碱的消耗量仅为理论用量的1.0~1.05倍,脱硫率达到99.0%以上,为转化渣后续提取铅创造了有利条件。
一种从酸性复杂含锑溶液中萃取分离锑、铁的方法,包括以下步骤:(1)将酸性浸出母液与萃取剂按液液体积比为1‑3︰1混合均匀,进行萃取;(2)萃取后进行液液分离,得到萃余液和负载有机相;(3)将步骤(2)所得负载有机相与稀盐酸混合,进行反萃取及萃取剂的再生;反萃取结束后,进行分液,分离有机相和水相反萃液;锑进入水相反萃液中,铁继续留在有机相中。本发明方法工艺流程短、反应效率高、操作简单,适用于多种酸性含锑溶液的处理,特别适用于含锑、铁的酸性复杂溶液,也可以适用于含锑、铁、砷的酸性复杂溶液。
一种从铜锍中直接富集贵金属的方法,首先将焦锑酸钠和淀粉混合制粒,将铜锍高温熔化后并加入焦锑酸钠粒料,焦锑酸钠被还原为金属锑,再与铜锍中的贵金属形成富金合金,富金合金沉降于贫金铜锍底层,富金合金用于提取贵金属,贫金铜锍进一步提取铜。本发明的核心首先是利用焦锑酸钠可以被淀粉还原为金属锑的性质,其次利用贵金属易与锑结合成低熔点合金,最后利用金属锑易与铜锍分层的性质,最终实现从铜锍中直接富集贵金属的目的。本发明具有工艺流程短、贵金属回收率高、操作简单和生产成本低的优点。
本发明一种废旧金属包装容器的脱漆方法,属于金属材料循环利用技术领域。本发明对废旧金属包装容器进行真空裂解后,脱除真空裂解后残留的物质;经洗涤、干燥,得到脱漆的废旧金属;所述废旧金属包装容器表面涂覆有乙烯类树脂涂料和/或环氧树脂系涂料和/或丙烯系涂料;真空裂解时,控制真空裂解的温度为550~650℃,并通过控制冷阱温度,收集冷凝的裂解产物。通过本发明处理的废旧金属包装容器,除漆率在99%以上。与现有的除漆工艺相比,本发明具有除漆率高、时间短、能耗低、环境污染小等优点。
一种含亚铁溶液针铁矿法除铁的方法。首先以硫酸亚铁溶液为原料,采用剪切强化制备特定粒径的针铁矿晶种。之后在含亚铁离子溶液中加入该晶种并通入一定压力的氧气,在一定的温度、pH值、添加剂条件下进行诱导结晶氧化除铁。反应结束后,液固分离,滤渣洗涤、烘干,得到除铁后液及特定形貌且晶型稳定的针铁矿沉铁渣,实现对溶液的高效、稳定除铁。
一种浮选氧化锌精矿预处理浸出工艺,包括以下步骤:首先加入少量浓硫酸到浮选氧化锌精矿中拌匀;将所得的矿粉在低温下进行保温熟化以部分分解浮选氧化锌精矿表面的浮选药剂;再将所得熟料用废电解液浸出,并过滤分离;最后往过滤分离后的硫酸锌溶液中加入少量活性炭进行吸附,再进行过滤分离,得到氧化锌精矿浸出液。本发明具有工艺简单、绿色环保等优点,可优化精矿浸出条件、并解决浮选药剂等残留问题。
一种回收高炉瓦斯灰中锌的方法,本发明首先将瓦斯灰在亚氨基二乙酸‑硫酸铵‑氨水组成的浸出体系中进行配位浸出,使大部分锌进入溶液中,并抑制铁的溶解,实现瓦斯灰中锌与铁的分离;对于含锌浸出液,进行蒸氨和氨气的吸收,所得氨水返回浸出过程重复利用;蒸氨后液通过加入稀硫酸调节溶液pH,使浸出液中的亚氨基二乙酸重结晶析出,过滤所得析出后液为硫酸锌溶液,可与传统的溶剂萃取‑电积回收锌工序衔接。本发明不但避免了强酸性体系对浸出设备的腐蚀,也避免了强碱性体系中生成的锌酸钠难以回收问题。锌的浸出率为65%以上,而铁几乎没有被浸出,采用了硫酸铵作为混合配位浸出剂之一,在浸出过程中避免了瓦斯灰中铅、钙杂质元素的溶解。
一种辉钼矿的电氧化浸出方法,其特征在于,将辉钼矿精矿或中矿在含有碳酸盐酸式碳酸盐的氯化钠溶液中进行无隔膜电解,辉钼矿被选择性氧化而浸出,而铜、铋、镍等金属硫化矿物则不能氧化而留在固体渣中,过滤分离后,得到较为纯净的钼酸盐水溶液,可采用萃取、反萃、结晶等常规钼冶金工艺生产钼酸铵产品;钼精矿或钼中矿所含的铜、铋、镍等矿物则在浸出渣中加以回收。本发明由于采用碳酸盐酸式碳酸盐体系进行辉钼矿的电氧化浸出,显著提高了电氧化过程的电流效率及钼浸出率,具有电流效率高、选择性好、金属回收率高、工艺条件温和且无污染等特点。
本发明公开了一种无皂化萃取分离钴和/或镍溶液中杂质的方法,包括下述步骤:(1)调节待萃溶液pH值;(2)配制有机萃取剂;(3)对待萃溶液中杂质进行无皂化萃取,分离杂质;(4)对负载有机相进行反萃取脱杂,使有机萃取剂循环再使用。本发明具有工艺流程简单、效率高、钴镍直收率高、成本低等有益效果。
一种低成本处理红土镍矿的方法,该方法将红土镍矿在常压酸浸槽中浸出,将产品过滤后所得滤渣进行磁选,分成磁性部分和非磁性部分。非磁性部分可直接用于硅产品的深加工。磁性部分在高于大气压的压力下浸出,浸出渣可以用作炼铁工业的原料,浸出液循环至常压浸出槽,用作常压浸出所需的酸原料。常压浸出液可用溶剂萃取、离子交换、硫化沉淀等方法回收镍钴与镁。本发明适用于处理各种类型的含有铁、镁矿物的红土镍矿,实现了酸的循环利用和镍、钴、铁、硅、镁等金属的综合回收,且大大减少了高压釜的体积和结垢量,是一种低成本高效处理红土镍矿的环保工艺。
本发明涉及一种含铜钼精矿的处理方法,将含铜钼精矿磨细,获得矿粉;将矿粉与水按1:3‑5的质量比混合均匀,进行一段氧压浸出后,固液分离,获得第一浸出液和第一浸出渣;将第一浸出渣与水按1:6‑9的质量比混合均匀,进行二段氧压浸出后,固液分离,获得第二浸出液和第二浸出渣;对第二浸出渣进行碱浸处理,获得pH值为8‑10的矿浆;将第二浸出液与矿浆混合,反应,获得混合浆液;对混合浆液进行固液分离后,获得第三浸出渣和富含钼的第三浸出液。本发明的处理方法浸出率高,且酸得到有效利用。
一种控电位选择性沉淀分离钴的方法,用铜钴锰渣中和铜钴锰溶液至要求的pH值,然后同时控制溶液电位和pH值条件下加入硫化钠硫化除铜,除铜后液同时控制溶液电位和pH值条件下加入乙基黄药沉淀除钴,除钴后液同时控制溶液电位和pH值条件下加入硫化钠硫化除锌,除锌后液再加入纯碱中和产出碳酸锰。本发明的实质是同时采用控制溶液中金属离子混合电位和pH值实现溶液中铜、钴和锌的分步沉淀分离,尤其是钴沉淀产物中钴含量达到20.0%以上,这些过程紧密关联,单独过程都不能达到有价金属分步分离的预期效果。
本发明涉及一种矿浆电解法从含钒石煤矿中提钒的工艺,属于钒的湿法冶炼技术领域。本发明在电解槽内,以碱性含钒石煤矿浆为原料,按摩尔比Cl-:V3+==2-3 : 1,将水溶性氯盐加入矿浆中,搅拌、在通入含氧气体的条件下进行电解;电解时,控制槽电压为4.5-6V,电流密度为10-40A/dm2。通气电解时,阳极区产生的氯气作为浸出钒的氧化剂,阴极区不断通入空气,空气中的氧气在阴极区发生反应生成OH-离子,为钒的浸出提供碱性环境。同时,可以避免阴极区发生析氢反应,和阳极区产生的氯气发生爆炸。本发明钒的浸出率≥90%,电解电流效率≥95%。本发明具有流程短,效率高、成本低、资源利用率高、环保、安全等优势,便于产业化应用。
本发明公开了一种含油电镀污泥中金属资源综合利用的方法。该方法包括热酸浸出‑协同芬顿氧化、硫化沉铜、有机螯合盐沉镍钴、电沉积锌和还原熔炼铬铁合金等工序,该方法在高效深度降解污泥中的有机物的同时,实现了含油电镀污泥中锌、铜、镍、钴、铬、铁等资源的综合回收利用,相对现有处理含油电镀污泥的方法,具有处理原料适用性强、产品价值高、无二次危废产出、流程简单等显著优势。
金属钨湿法冶炼中季铵盐碱性萃取三相絮凝物的处理方法。本发明涉及一种对钨碱性萃取产生的三相絮凝物进行处理的方法,所述方法包括采用石灰对三相絮凝物进行混合、搅拌、加热、保温等过程,对三相絮凝物进行破乳,从而便于进行后处理,进行压滤后的滤渣经过隔膜压榨后作为添加剂加入焙烧料进行烧结回收其中的钨,水相返回生产线,有机相返回萃取线,从而实现对物料的回收。
一种利用高铁闪锌矿强化斑铜矿浸出的方法,包括以下步骤:将高铁闪锌矿和斑铜矿分别进行磨矿,得到高铁闪锌矿粉和斑铜矿粉;将9K基础培养基进行高温高压蒸汽灭菌,将所述高铁闪锌矿粉和斑铜矿粉进行间歇灭菌;将灭菌后的所述高铁闪锌矿粉和斑铜矿粉进行混合,然后加入已灭菌的所述9K基础培养基,得到矿浆,然后调节矿浆pH至1.5‑2.0;将上述矿浆进行搅拌浸出,并调控浸出溶液化学条件。本发明缩短了整个浸出周期,同时大大提高了浸出率和浸出速率,清洁环保,成本低,适合大规模推广应用。
本发明公开了一种再生修复废旧锂离子电池正极材料的方法。首先,将拆解、除去表面有机质的废旧锂离子电池正极材料分级处理,去除废旧锂离子电池材料中粉化的细碎颗粒。然后,将分级得到的废料与适当比例的锂盐球磨混或浸渍于锂盐溶液中,得到均匀混锂的废料。最后,采用微波烧结的方法,将混锂废料置于空气或氧气气氛下进行热处理,再生制备锂离子电池材料。该方法采用微波焙烧,材料升温速率快,效率高,且在整个回收过程中,无需强酸、强碱,无废渣、酸碱性废水生成,不易产生二次污染。同时,该方法流程简单,微波加热时,材料内部温度更均匀,再生产品质量稳定,性能良好。
本发明提供一种强化黄铜矿与斑铜矿生物浸出的方法。选用嗜酸氧化亚铁硫杆菌,喜温嗜酸硫杆菌和嗜铁钩端螺旋菌中的一种或几种作为浸矿微生物。控制黄铜矿与斑铜矿的配比在5:1-1:5之间。浸出过程中,控制搅拌速度为100-600rpm,控制溶液pH值为1.5-2.5,溶液电位为350-480mV(Ag/AgCl为参比电极),黄铜矿与斑铜矿可协同浸出,Cu浸出率显著增加。该方法通过黄铜矿与斑铜矿的合理配矿,控制合适的浸出工艺条件,提高黄铜矿与斑铜矿的生物浸出效率,该方法高效、简单、易操作。
本发明涉及电池回收技术领域,公开一种镍氢电池模组破碎高效分选装置及方法,包括破碎机;干燥破碎混合物料的干燥机;筛分干燥混合物料分离出正负极粉的振动筛;对筛分物行磁选分离分别得到塑料外壳、夹带少量正极片的隔膜、负极钢网、正极片的磁选机;对磁选所得物料清洗以使负极钢网上的负极粉、隔膜上吸附的正负极粉洗脱至清洗水中的清洗机;压滤清洗水以回收正负极粉的压滤机;还包括用于往破碎机内通入惰性气体的进气口和确保破碎机内为绝氧环境的抽气口,电池模组在破碎机内无需放电即可进行破碎,不会有爆炸风险,大幅提升生产效率;仅设置振动筛、磁选机、清洗机即可实现各物料分类回收,减少正负极粉流转工序,确保电池回收价值最大化。
本发明公开了一种溶液除铁方法以及铁基吸附材料的制备方法。在含亚铁离子溶液中加入具有吸附功能的载体并通入一定流量的空气/氧气,以金属氧化物MeO或金属碳酸盐MeCO3为中和剂,在一定的温度、pH值条件下进行高剪切氧化除铁反应。反应结束后,液固分离得到的沉铁产物在酸性溶液中进一步改性反应一定时间后液固分离,之后洗涤、烘干,得到性能良好的铁基吸附材料。本发明方案不仅能实现溶液高效除铁,而且可将得到的除铁产物直接制备得到性能良好的铁基吸附材料,实现铁资源的高值化利用。
一种分离铅和银的方法,本发明将铅渣用热水洗涤,洗水冷却后得到纯的氯化铅,洗水加热后再返回利用;洗涤后的残渣用氢氧化钾溶液溶解锑,溶解过程中加入过氧化氢,氧化渣中的三价锑,过滤后的渣即为富集了银的富银渣,浸出液用氢氧化钠沉淀产出锑酸钠,沉淀后母液返回溶解锑。本发明流程简单、不使用化学试剂、无环境污染;溶解锑后可以直接得到含银达70%以上的富银渣,银直收率高;锑回收过程中试剂循环利用,锑酸钠产品质量好;处理时间短、综合成本低。
一种废线路板铜粉酸碱联合分步脱除杂质的方法,废线路板铜粉在盐酸溶液中浸出,使其中的铝选择性浸出,得到的脱铝渣再采用碱性加压氧化浸出铅和锡,浸出渣采用水力旋流分选方式产出优质的火法炼铜原料。本发明的实质是采用两段浸出和水力旋流的方式处理废线路板铜粉,不仅选择性的脱除了铝、铅、锡等杂质金属,而且分离了其中的有机物和玻璃纤维组分,采用湿法浸出的方式对废线路板铜粉进行了预处理,解决了火法熔炼回收废线路板铜粉时杂质金属和有机物的危害。
中冶有色为您提供最新的湖南长沙有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!