一种含多元润滑相TiAl基自润滑复合材料及其制备方法,属于复合材料技术领域。含多元润滑相TiAl基自润滑复合材料,其化学成分的质量百分比为:TiCx:10‑30wt.%、Ti3SiC2和OLC混合物:10‑30wt.%、Cr:1‑5wt.%,其余为Ti粉和Al粉;所述TiCx中0.4≤x≤1.1;其制备方法为:把上述成分进行球混,制得混合粉末;然后进行烘干、预压成型;烧结、抛光。本发明制得的TiAl基自润滑复合材料不仅具有较低的高低温摩擦系数和磨损率,而且具有高承载、高强度等性能,适用于批量化生产自润滑轴承等材料。
一种内嵌多壳层氧化锑‑锑合金的热解碳复合材料及制备方法,属于电池负极材料技术领域;该复合材料由碳包覆的纳米级氧化锑‑锑合金颗粒和热解碳复合而成,碳包覆的纳米级氧化锑‑锑合金颗粒均匀内嵌在热解碳上;制备方法:1)将NaCl:碳源:锡源混合,用去离子水溶解,磁力搅拌且完全冻实后,进行冷冻真空干燥;2)进行一次热处理,冷却至室温;3)洗涤、过滤和烘干;4)烘干后,进行二次热处理,待冷却至室温,制得内嵌多壳层氧化锑‑锑合金的热解碳复合材料。本发明的复合材料作为电池负极在钾离子半电池测试中,在特定电流密度下,首次充电可逆容量为300~650mAh g‑1,经过25~100次循环后,容量为150~490mAh g‑1。
本发明属于复合材料技术领域,公开一种石墨烯/酚醛树脂导热复合材料的制备方法。用氧化石墨烯和水,同时加入还原剂,经过水热还原法得到石墨烯水凝胶,之后进行冷冻干燥,获得石墨烯泡沫;以苯酚、甲醛、水为原料,氢氧化钠作为碱性催化剂,制备出酚醛树脂悬浮液;将制备的酚醛树脂悬浮液真空吸入石墨烯泡沫,之后在160~200℃下固化1~2h,即得目标产物石墨烯/酚醛树脂导热复合材料。所得复合材料导热系数优良,能够克服传统导热材料密度大的弊端,也能够克服粉末状石墨烯导热的不连续性的限制,而且在不影响导热效果的前提下,具有强度高的特点。本发明的制备方法,原料廉价易得,制备工艺简单,便于工业上生产。
本发明属于复合材料技术领域,涉及一种立方氮化硼‑纳米聚晶金刚石复合材料及其制备方法,其原料包括碳纳米葱(OLC)和立方氮化硼(cBN),其中所述cBN的质量百分比为15~50wt.%,余量为OLC。制备时,将OLC和cBN两种原料按照不同质量比进行混料;将混料后的cBN和OLC混合物进行预压。然后,将预压后的样品进行高温高压烧结。烧结压力为8~25GPa,烧结温度为1600~2200℃,保温时间为5~60min,随后降温卸压,制得立方氮化硼‑纳米聚晶金刚石复合材料。本发明利用cBN与金刚石结构的相似性和对应性,降低了烧结条件,解决了采用OLC为原料制备聚晶金刚石烧结体的烧结条件高的问题,获得了高硬度的立方氮化硼‑纳米聚晶金刚石复合材料。
一种镁基储氢合金复合材料,其化学成分为Mg2Ni1-xMx+zwt%ReMg2Ni1-yNy,其中M=Cu、Al、Co中的一种或几种;N=Cu、Al、Co中的一种或几种;Re=La、Ce、Pr、Nd中的一种或几种;x=0~0.5;y=0~0.5;z=5~40wt.%;其制备方法主要是:将Mg2Ni1-xMx和ReMg2Ni1-yNy合金在大气中破碎后置于氢化装置中,抽真空,再升温后通入氢气,进行氢化反应;重复上述步骤2-3次后关闭加热装置,冷却至室温;将上述合金氢化物转移至球磨罐中抽真空,充入氢气,进行球磨处理。本发明的镁基储氢合金复合材料的储氢量比传统的AB5型或AB2型储氢合金高出2~3倍,吸放氢速率快,而且制备工艺和设备简单,能耗少,成本低。
本发明公开了一种易于散热的复合材料车轮,在复合材料车轮与刹车盘距离最近且直接接触车轮的安装面设置导热系数高的它金属嵌块,金属嵌块采用预埋的方式嵌入复合材料车轮,作为车轮的一部分与车轮成为一个整体。所述金属嵌块为铝合金、铜合金。本发明的有益效果是:复合材料车轮在使用过程中可有效散热,解决了复合材料车轮散热不良导致的热疲劳失效问题,提高了复合材料车轮的可靠性并延长了使用寿命。
本发明提供了一种磷化镍/氟化石墨烯‑聚四氟乙烯复合材料,组成上包括聚乙烯吡咯烷酮、接枝4‑氨基苯乙烯的聚四氟乙烯和表面负载有磷化镍的氟化石墨烯。所述复合材料具有优异的抗腐蚀、抗磨损、抗氧化和防水性能以及良好的机械性能;本发明还提供了所述磷化镍/氟化石墨烯‑聚四氟乙烯复合材料的制备方法,所述制备方法简便、实施过程易于控制,复合材料制备成本低廉,可适用于大批量生产。
一种偏硼酸锂掺杂氢化锂的储氢复合材料,它是由LiBO2和LiH组成,上述两种成分的摩尔比为LiBO2:LiH=0.5~2 : 1。所述偏硼酸锂掺杂氢化锂的储氢复合材料的制备方法主要是在氩气保护下,将LiH与LiBO2按照上述摩尔比混合均匀后,置于球磨罐中进行球磨处理,球磨时间为1~5h,球料比为10~40 : 1,转速为200~500r/min,球磨方式为正/反转间歇球磨,每球磨15min间歇15min,待球磨结束后自然冷却至室温,在氩气保护下取出制备的复合材料并进行密封包装,得到偏硼酸锂掺杂氢化锂的储氢复合材料。本发明制备方法简单、原料易得、成本廉价、放氢温度低、放氢速率快,有利于工业化批量生产。
一种多孔锂离子电池正极复合材料磷酸钒锂/碳的制备方法,主要以CH3COOLi·2H2O、NH4VO3、C2H2O4·2H2O、NH4H2PO4、柠檬酸为原料,采用溶胶-凝胶法制得Li3V2(PO4)3/C的蓝色前驱体凝胶,经真空干燥和研磨得粉末状蓝色前驱体,再以乙醇水的混合液作为溶剂溶解前驱体粉末得到前驱体溶液,将前驱体溶液滴加于自制的粒径约500nm的单分散聚丙烯酰胺(PAM)微球胶体晶体模板上,真空抽滤,直至模板被充分浸润,然后通过真空干燥和程序控温煅烧制备出有序多孔锂离子电池正极复合材料磷酸钒锂/碳。本发明采用的模板水溶性好,无需进行亲水处理,所制备的多孔电极材料具有优异的高倍率性能。
一种非化学计量比碳化钛与氮化铝、氮化钛复合材料,它的化学成分质量百分比为:非化学计量比碳化钛为60-85%,余量为纯度99.0%氮化铝或纯度为99.0%的氮化钛或氮化铝、氮化钛二种化合物的混合物。上述复合材料的制备方法主要是将上述原料装入球磨罐进行球磨,然后将混合好的复合粉体取出;根据混合料的理论密度计算,称取粉体装入石墨模具中置于热压烧结机加热仓,抽真空进行烧结,温度为1300-1600℃,保温30-60min,压头压力50MPa,然后泄压、停止抽真空;自然冷却至60℃以下,解除真空,取出烧结体。本发明制备的复合材料具有低温可烧结性,在不明显降低碳化钛硬度的基础上,使复合材料的断裂韧性及强度大幅度提高。
本发明提供一种Fe基宽应用温度自润滑复合材料及其制备方法,其化学成分的体积百分比为:TiCx5‑20vol.%、Ti3AlC210‑40vol.%、Cu1‑7vol.%、Ni0.1‑3vol.%、Cr0.1‑3vol.%、圆碳葱0.1‑7.5vol.%,其余为Fe粉;上述复合材料的制备方法主要是将TiCx粉(0.4≤x≤1.1)、Ti3AlC2颗粒、Fe粉和Cu粉、圆碳葱经过混料、预压烘干以及放电等离子烧结,烧结温度为850‑1250℃,烧结压力为20‑100MPa,真空度15‑40Pa,保温5‑30min,升温速率40‑100℃/min,制得以Ti3AlC2和TiCx为高温润滑相、圆葱碳为低温润滑相的Fe基自润滑复合材料。本发明操作简单,制备周期短,制得的Fe基耐高温自润滑复合材料不仅具有较低的摩擦系数和磨损率,而且具有高承载、高强度等性能,适用于批量化生产恶劣工况下自润滑轴承等减摩材料。
一种高抗裂低导热陶瓷基复合材料内衬,涂覆在钢结构风管的内壁,所述复合材料内衬由管件内壁向内依次为红外辐射涂层、低热导隔热层和抗开裂耐冲刷侵蚀隔热层,其中红外辐射涂层的厚度为0.1‑1毫米,低热导隔热层的厚度为20‑60毫米,抗开裂耐冲刷侵蚀隔热层厚度为1‑5毫米。采用本发明高抗裂低导热陶瓷基复合材料内衬可以使高炉送风装置管道系统的外壁温度由现在的220~300℃降低到150℃以下,有效寿命由现在的3~6个月提高到12~18个月,现场休风率由2.03%降低到1.8%以下。
本发明提供一种TiN‑NbC复合材料及其制备方法,包括碳化铌微粉和TiNx,其中0.3≤x≤0.9或x=1.1~1.3。碳化铌微粉的体积百分比为10~40vol.%。制备时,将碳化铌微粉和TiNx两种粉末按照不同体积比在球磨机里混料;混合均匀后装填入硬质合金模具中进行预压,预压压力为100~500MPa,预压10~30s;然后把预压后的样品装入石墨模具中进行热压烧结,烧结压力20~50MPa,烧结温度1100~2000℃,保温10~120min,制得TiN‑NbC复合材料。本发明利用TiNx中的空位能降低烧结温度,提高其硬度及断裂韧性,解决了过渡族碳化物较难烧结的问题,并通过热压烧结,获得硬度更高的TiN‑NbC复合材料。
本发明公开了一种复合材料球面衬垫连续磨损过程的模拟方法,涉及材料连续磨损领域。本发明建立了周期性光滑连续的纱线中心路径曲线方程,构造了经纱与纬纱以及经、纬纱与基质间的分界曲面,生成了球面衬垫复合材料有限元网格模型及其坐标变换公式,并利用自适应网格技术建立了可以表征衬垫连续摩擦磨损过程的细观有限元预测模型。本发明改进了模拟方法和模拟对象简化的问题,对非均质材料在综合影响下的磨损,建立了一种摩擦学、结构、强度的并行预测方法,可以分析接触表面的压力分布,不同滑动速度和不同滑动方向对复合材料衬垫磨损过程的影响,为设计出满足服役性能和使用寿命的织物自润滑关节轴承提供可靠数据参考。
本发明属于复合材料技术领域,涉及一种高熵合金‑金刚石复合材料,其包括10‑40wt.%的高熵合金结合剂和60‑90wt.%的金刚石粉末,其中,高熵合金结合剂包括以下重量份的组分:5‑25wt.%的铝粉、15‑30wt.%的镍粉、10‑35wt.%的铜粉、10‑30wt.%的铁粉、其余为铬粉。其制备方法是将上述金属粉在球磨机上球磨20‑60h,制得高熵合金结合剂,与金刚石粉末混合后装填入石墨磨具中,在2‑10MPa的压力下预压成型后进行放电等离子烧结,烧结压力20‑50MPa,烧结温度750‑1000℃,保温5‑30min,制得高熵合金‑金刚石复合材料。本发明制备的高熵合金‑金刚石复合材料在抗折强度优于现有的超硬磨具的情况下,硬度高出现有超硬磨具几个数量级,性能明显提高。
本发明涉及一种储氢合金复合材料的制备方法。储氢合金复合材料的制备方法如下:将BFe材料与柠檬酸按一定比例通过球磨进行混合均匀,在管式炉中,加热使柠檬酸氧化分解成碳,包覆BFe材料外部;将得到的BFe‑C材料和LaY2Ni9.5Mn0.5Al0.5储氢合金按1~15:100的比例进行球磨处理,得到BFe‑C/LaY2Ni9.5Mn0.5Al0.5储氢合金复合材料。本发明得到的储氢复合材料制备方法简单、放电容量好、稳定性好。
本发明提供了一种TiAl基耐高温自润滑复合材料及其制备方法,属于复合材料领域。该复合材料是通过将原料混合并烧结制备得到,原料按质量百分比计包括:TiCx 5~50%,Ti3AlC2或Ti3SiC2 5~50%,其余为TiAl混合粉末;其中,TiAl混合粉末按质量百分比计为:Al 5‑40%,Cr 1‑5%,其余为Ti;TiCx中的x为0.4≤x≤0.9或x=1.1。该复合材料不仅具有高承载、高强度、耐高温性能,且在高温下具有自润滑性能,有利于制作高温等恶劣工况下的摩擦材料。
本发明公开一种纤维复合材料层合板无孔冲压胶铆连接方法及连接装置,其包括加热棒、铆接冲头和铆接凹模,铆接凹模固定于超声波振动装置中,在铆接过程中,铆接冲头、热熔胶深坑铆钉和铆接凹模的轴线重合,铆接冲头将热熔胶深坑铆钉刺入铺放于铆接凹模之上的复合材料中,在冲压过程中,碳纤维增强树脂基复合材料和金属板在热熔胶深坑铆钉的挤压下形成的凸起,压入W型凹槽中,融化的热溶胶流入热熔胶深坑铆钉压入时产生的缝隙内,铆接冲头回程时,热熔胶深坑铆钉留在复合材料层合板中,熔融的热熔胶在板材中固化。本发明解决了无铆连接过程中的材料损伤,以及胶接中材料层间粘接不牢固和溢胶问题,连接可靠,操作简单。
本发明提供一种TiCx增强Fe基耐高温自润滑复合材料及其制备方法,其化学成分的体积百分比为:TiCx5‑20vol.%其中0.5≤x≤0.9、Ti3SiC210‑50vol.%、Cu1‑7vol.%、Ni0.1‑3vol.%、Cr0.1‑3vol.%,其余为Fe。上述复合材料的制备方法主要是将TiCx粉、Ti3SiC2颗粒、Cu粉、Ni粉、Cr粉和Fe粉经过混料、预压烘干以及真空热压烧结,烧结温度为900‑1300℃,烧结压力为20‑120MPa,升温速率10‑50℃,真空度15‑40Pa,保温20‑120min,制得以Ti3SiC2为润滑相和TiCx为润滑协同相的Fe基耐高温自润滑复合材料。本发明操作简单,制备周期短,制得的Fe基耐高温自润滑复合材料在高温(500℃)条件具有较低的摩擦系数和磨损率,而且具有高承载、高强度等性能,适用于批量化生产恶劣工况下自润滑轴承等减摩材料。
本发明公开一种金属和碳纤维增强树脂基复合材料层合板无孔铆接装置,包括铆接冲头、铆接凹模以及浅坑铆钉,铆接冲头和铆接凹模分别与气液增压系统相连,在铆接加工状态时,铆接冲头、铆接凹模和浅坑铆钉的轴线重合,铆接冲头将浅坑铆钉压入多层叠放的金属层板和碳纤维增强树脂基复合材料板的上表面,金属和碳纤维增强树脂基复合材料板在浅坑铆钉的挤压作用下形成凸起,凸起压入铆钉凹模的凹腔内,铆接冲头回程时,浅坑铆钉留在铆钉凹模的凹腔内。本发明解决了金属层板的翘曲变形等问题,也能避免钻孔过程中碳纤维增强树脂基复合材料板的分层、碳纤维丝的剥离、碳纤维丝缠绕钻头等问题。而且,在连接过程中,不会刺穿被连接板件,提高了连接强度。
本发明涉及金属防腐涂层领域,特别涉及一种防腐高强度复合材料及其制备方法,所述防腐高强度复合材料为七层结构,从上往下依次为第一耐候保护层、第一刚性保护层、第一柔性保护层、金属层、第二柔性保护层、第二刚性保护层、第二耐候保护层;所述第一耐候保护层和第二耐候保护层的厚度为0.1‑0.3mm;所述第一刚性保护层和第二刚性保护层的厚度为0.5‑3mm;所述第一柔性保护层和第二柔性保护层的厚度为0.2‑0.8mm。本发明所述防腐高强度复合材料具有优异的抗压强度、抗张强度,且加热尺寸变化率很低,符合国家或行业相关标准,提高了防腐高强度复合材料的机械性能,大大节约了加工成本。
本发明设计了一种具有高强度应力结构的真空保温隔音材料。其设计构思是:首先用刚性材料根据所需面积和形状围成环形框架2,然后用抗拉强度较高的双层线性(或面性)材料4绷紧在框架2内(类似自行车轮或羽毛球拍),再在紧靠双层线性(或面性)材料4的两个外侧,满铺具有一定厚度的刚性耐压材料3;然后用闭气的密封材料1将2、3、4的组合结构整体密封其中后抽真空;其结果是:在复合材料表面形成巨大压应力的同时,在其中间空腔内形成真空保温隔音层。当复合材料面积较大时,可在复合材料空腔内设置点支撑。在复合材料便于操作的部位上设置抽气阀门,用于材料制作和真空度降低时抽气。
本实用新型提供了一种用于将复合材料车轮固定到轴的配件,所述的配件包括法兰盘部分(1)和圆筒部分(2),其特征在于:所述的圆筒部分(2)的底边与法兰盘部分(1)的中心孔洞处相连;所述的法兰盘部分(1)包括沿着圆周排布的螺栓孔(4);所述的法兰盘部分(1)包括沿着圆周排布,从法兰盘部分(1)的中心向外辐射的U型槽(5)。本实用新型的技术方案具有以下优点:不同于直接将复合材料车轮装配到车轴上,改进的车轮零件通过粘接形式与复合材料体装配,可防止复合材料与车轴之间的电化学腐蚀;改进的车轮零件可改善车轮散热条件。通过以上两点,有效解决了复合材料车轮装配可靠性低、车轮失效问题。
本发明提供一种TiCx结合的纳米晶WC基硬质合金复合材料及其制备方法,制备复合材料的原料包括纳米级碳化钨粉和纳米级TiCx粉,其中0.4≤x≤0.9。所述纳米级碳化钨粉的体积百分比为70~95vol.%,所述纳米级TiCx粉的体积百分比为5~30vol.%。制备方法包括S1、制备纳米级TiCx粉;S2、制备纳米级碳化钨粉;S3、混料;S4、预压;S5、热压烧结制得TiCx结合的纳米晶WC基硬质合金复合材料。本发明将纳米级TiCx与纳米级碳化钨粉进行混合,采用热压烧结制备TiCx结合的纳米晶WC基硬质合金复合材料,克服陶瓷结合剂碳化钨硬质合金烧结温度高的问题,同时提高其硬度与断裂韧性。
一种多元电弧喷涂加工多层金属基复合材料的方法及装置,其方法主要是:在环形基体转动的过程中,控制各喷涂加工单元按设定的次序交替向环形基体的表面喷涂金属或合金,在环形基体表面至少形成两层组分相同或不同的喷涂层,形成所需层数的多层金属基复合材料;其装置主要是:在环形基体周围设多个喷涂加工单元,每个喷涂加工单元分别与电弧喷涂电源、储气罐、空气压缩机及金属丝材传输机构相连。本发明可以很方便地制备两种或两种以上子层交替的多层金属基复合材料,这些多层金属基复合材料的子层可以是纯金属、合金等,晶体结构也可以多种多样,具有设备简单、节约成本、高效快捷、容易控制、加工过程足够稳定等优点。
本发明涉及一种净化水体重金属的固定化杂多酸离子液体复合材料及其制备方法与应用,属于杂多酸离子液体复合材料技术领域。本发明的固定化杂多酸离子液体复合材料是以强碱性阴离子交换树脂作为有机载体骨架和有机阳离子供体,利用其自身季铵基基团与单缺位硅钨酸阴离子(SiW11O398‑)稳定结合而制得。该复合材料可对浓度为1~20mg/L的重金属离子进行有效去除。当水中存在高浓度的Na+、K+、Ca2+、Mg2+时(竞争离子浓度为目标重金属离子的0~1200倍),该材料对重金属离子仍有较强选择吸附性能。本发明提供的复合材料材料可通过一步浸渍法制得,对重金属离子具有较强选择性,环保效益优异。
本发明公开了一种氧化石墨烯/二氧化钛光催化复合材料前驱体的制备方法,包括以下步骤:S1、氧化石墨烯/钛酸四丁酯复合材料的制备;S2、氧化石墨烯/二氧化钛复合材料的制备。本发明提供的氧化石墨烯/二氧化钛光催化复合材料前驱体的制备方法,能够制备得到均匀负载二氧化钛的光催化复合材料前驱体。前驱体中TiO2和氧化石墨烯实现了有机复合,二氧化钛粒子均匀地负载在氧化石墨烯片层中,氧化石墨烯的引入起到了负载TiO2粒子和提高二氧化钛光催化活性的双重作用,有效提升光降解效率。本发明的前驱体材料还具有优异的涂覆功能。本发明方法具有步骤简单,易操作,制备条件温和易控制,效率高等特点。
一种钙钛矿纳米棒/石墨烯复合材料,其是在石墨烯膜上均匀分布棒长为140~770nm,直径为70~90nm的钙钛矿纳米棒。该复合材料的制备方法主要是以石墨纸为阳极,碳棒为阴极,浓硫酸为电解液,进行氧化剥离,制备出薄层石墨烯材料;再将其制备成石墨烯悬浮液;将硝酸盐加入到石墨烯悬浮液中,使金属硝酸盐水解,辅助水热,最后经干燥、焙烧得到钙钛矿纳米棒/石墨烯复合材料。本发明操作简单、晶化程度高,在电催化过程中,该复合材料具有较高的电导率,提供更多的活性位点,适合作为燃料电池的电催化材料使用;在光催化过程中,该复合材料可有效地阻止光生电子和空穴的复合,比单纯的钙钛矿纳米棒材料具有更高的光催化活性。
功能蛋白氧化铁复合材料在氧化破络络合态重金属中的应用,属于环境污水处理技术领域。本发明提供了功能蛋白氧化铁复合材料在氧化破络络合态重金属中的应用。还提供了其应用方法,包括:(1)制备得到功能蛋白氧化铁复合材料;(2)控制受络合态重金属污染水的温度和pH,加入H2O2和功能蛋白氧化铁复合材料。本发明对络合态重金属仍具有高效的选择去除能力,其对多种络合态重金属中的金属离子去除效率高达95%以上,有机配体矿化率可达70%以上,环保效益明显。
本发明公开了一种镁基储氢复合材料的制备方法,依次经过MgH2材料的制备、添加剂的制备、复合材料球磨制备而成,该方法通过制备固溶体Ce0.8Co0.1Zr0.1O2或Ce0.8Mn0.1Zr0.1O2样品,并将其添加至MgH2中,通过球磨制备而成镁基储氢复合材料,制备方法简单,过程易于控制,该材料相比于MgH2吸/放氢速率及储氢量有了较大的提升,具有较好的动力学性能。本发明适用于制备镁基储氢复合材料。
中冶有色为您提供最新的河北秦皇岛有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!