.本发明涉及电池负极材料技术领域,尤其涉及石墨筛上物的处理方法、人造石墨及应用。背景技术.近年来,人造石墨因其高比容量、接近金属锂的低工作电位、低成本和环保等优点而被广泛用作商用锂离子电池的负极材料。随着电动汽车和数码类锂离子电池产品的发展,人们对于快充性能要求越来越高。较小的平均粒径人造石墨,可通过缩短锂离子的扩散长度来提高充电速率,这一点在锂离子嵌入石墨的速率与在高c率下相应的脱嵌速率有明显优势。低粒度石墨成品然而低粒度石墨成品是通过筛分除磁工序获得,筛下物作为最终制得高功率锂离子电池负
.本实用新型涉及一种半导体芯片高低温测试装置,用于对半导体芯片在高低温下进行测试,实现半导体芯片在高低温下的筛选。背景技术.目前,半导体芯片在工厂进行大规模高低温量产测试时,主要是将待测芯片放置在固定金属板的socket上进行加热或降温,当待测芯片达到预定温度后,通过机械手臂将待测芯片搬运到测试部进行测试,该测试方法的弊端在于芯片在测试过程中由于没有持续对芯片进行加热和降温,导致测试过程中芯片的实际温度低于所要求的温度,造成测试结果存在偏差,特别是对测试时间较长的芯片偏差会更加明显。.工厂
.本发明涉及一种用于方形锂离子自适应高温负压化成测试设备的运动机构,属于锂电池测试设备的制造领域。背景技术.方形动力锂离子电池生产出来后,为了将注液封装后的电芯充电进行活化,就需要用到化成测试设备。传统化成测试设备,普遍不能兼容多种规格的电池,或能兼容少量不同规格的电池但调节的时候是人工手动进行的;人工手动调节时操作过程麻烦且需拆装部分零件,设备调节后的一致性和稳定性受到人为因数的影响,总体来说位置调节时操作起来不方便且耗时耗力,换型过程中人为因数对设备的性能会产生很大的影响。而随着锂电池行
.本发明属于锂离子电池技术领域,涉及一种锂离子电池自放电一致性筛选方法。背景技术.锂离子聚合物电池具有电压高、比能量高、循环使用次数多、存储时间长、尺寸同比小等优点,在便携式电子设备上如移动手机、蓝牙耳机、mp、mp、mp、数码摄像机和笔记本电脑等得到了广泛应用;近年来,随着应用市场的不断发展,客户端对锂离子电池性能的要求也在不断提升,尤其是配组类电池,要求电芯必须具有较高的一致性和稳定性,以满足各电芯在长期循环使用过程中具有高的一致性,避免因个别电池的劣化导致整组电池性能的衰减或失效
.本发明涉及一种锂离子电池自放电筛选方法,属于锂离子电池技术领域。背景技术.随着经济发展和社会进步,电池行业得到快速发展,锂离子电池由于比能量高、无记忆效应、循环寿命长等特点而大规模应用于移动设备中。自放电率是衡量锂电池性能的重要参数之一,自放电会造成电池使用时间短、电池配组后压降不一致等问题,特别是自放电大的电池在长期搁置不使用的情况下会导致电池过放,电池过放后内部结构发生变化,如果再次充电使用易发生安全事故。因此,自放电筛选是锂电池生产制造中的重要环节。.目前,常规的锂离子电池自放电筛
.本发明属于芯片性能测试技术领域,具体涉及一种射频芯片筛测方法的设计。背景技术.射频芯片在制造或加工过程中,将不可避免地受到外力作用,可能产生微裂纹。同时,芯片在封装过程中也会出现包括引线变形、翘曲、芯片破裂、分层和外来颗粒等缺陷,虽然以上缺陷都有相应的缺陷检测测试方法,但是所有缺陷检测方法都不是百分百有效,导致部分存在潜在缺陷的芯片会进入芯片量产测试流程。.存在潜在缺陷的芯片会在后续的使用过程中,或一定的环境条件下出现性能下降、间歇性失效,甚至完全失效的风险。潜在缺陷的芯片一旦出现上述故
.本发明涉及锂离子电池技术领域,特别涉及一种锂离子电池自放电筛选方法、装置及存储介质。背景技术.锂离子电池因比能量高、循环寿命长、绿色无污染等优点,广泛应用在消费类电子产品和新能源汽车上。在锂离子电池的电芯生产制造过程中,通常在分容结束后会对电芯进行自放电筛选,目的是筛选出不合格的电芯。自放电筛选时通过测试电芯的k值来完成的。k值是用于描述电芯自放电速率的物理量,k值是锂电池电芯制造企业在出货前必须测试的项目,k值的测试具有以下意义:.()筛选出微短路电芯:在电芯生产过程中可能会引入粉尘
.本实用新型涉及一种石墨负极成品连续制造设备。背景技术.现有的制备石墨负极成品的设备基本都是采用投料配比装置直接连接混合机,混合机直接连接筛分除磁装置的连接方式,先通过投料配比装置往混合机里输料,当投到混合机的物料达到一定值时,需要等混合机将物料混合好后排出到筛分除磁装置时,投料配比装置才可以继续往混合机内输料,由于物料在混合机内的加工时间比较长,导致投料配比和成品输送的停顿时间比较长,即混合机前、后工序设备处于等待状态,生产过程相当于间断式生产,效率低。实用新型内容.为了克服现有技术所指
.本实用新型涉及锂电池负极材料加工技术领域,尤其涉及一种锂电池负极原料加工设备。背景技术.锂电池在生产过程中需要使用相应的振动筛分设备,正极材料主要是采用锂铁磷酸盐,负极材料主要是多采用石墨,石墨原料在加工的过程中,需要对其进行研磨后进行筛分处理,最后得到更精细的石墨粉。.但现有的加工设备存在以下缺点:、研磨盘多固定焊接在研磨筒的内部,研磨过程中,研磨挤压力不够,易造成大颗粒负极材料顺着研磨盘掉落,造成研磨效果不佳的现象发生;、在筛分的过程中,石墨的颗粒度易团聚或吸附堵塞筛网,无法得到
.本发明涉及一种电池材料的回收工艺,具体涉及一种锂离子电池石墨负极的回收再生工艺。背景技术.随着锂离子电池的用量逐年提升,退役锂离子电池关键材料的回收利用已悄然形成一个新的行业。.对于退役锂离子电池石墨负极的回收,常规工艺路线为回收、分类、酸液除铜、干燥、热处理、筛分除磁。该工艺是一种有效却简单粗暴的回收工艺,通过液相除铜将铜箔碎屑洗去,通过热处理将sbr/cmc等有机物分解掉,热解所得残碳和极片中原本含有的炭黑可作为导电添加剂。该工艺路线的优点为工艺简单、易于操作,然不足之处在于该工艺没
.本发明属于半导体制造技术领域,涉及一种半导体塑封基板研磨用多孔陶瓷基研磨块及其制造方法。背景技术.半导体封测主要工序为晶圆减薄(waferbackgrinding)、晶圆切割(wafersaw)、晶片粘接(dieattach)、引线键合(wirebond)、塑封(compoundmolding)、塑封体研磨(compoundgrinding)、塑封切割(compoundsingulation)、打标(marking)、测试(testing)等工序。其中塑封体研磨基本方法为,将
本发明涉及锂离子电池正极材料领域,特别是一种掺铌的高压实高容量锰酸锂及其制备方法。背景技术目前工业化生产锂离子电池压实一般为2.8-3.0g/cm3,锂电池采用的正极材料主要是钴酸锂,而钴酸锂成本较高,且有毒性。而锰酸锂正极材料与钴酸锂、三元材料、磷酸亚铁锂等传统正极材料相比,具有安全性能好,循环性能、倍率性能优越,高压实高容量电池配组容易等优势。锰酸锂是较有前景的锂离子正极材料之一,相比钴酸锂等传统正极材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好等优点,是理想的动力电池正极材
本发明涉及锂电池正极材料技术领域,特别涉及一种一种硼掺杂改性的三元正极材料及其制备方法。背景技术锂离子电池是一种二次电池,依靠锂离子在正极和负极之间移动来工作,具有高能量密度、长使用寿命、高安全性、环境污染小等优点。自锂离子电池商业化以来,经过30年的发展,锂离子电池已广泛应用于3c、储能、电动车等领域。近年来,电动汽车的蓬勃发展给锂离子电池带来了前所未有发展机遇,也对锂离子电池提出更高的要求。目前,锂离子动力电池能量密度已成为其产业化的瓶颈之一。锂离子电池中由于负极能量密度远高于正极,因此锂离
本发明属于锂电池负极材料制备技术领域,具体涉及一种人造石墨二次颗粒、包覆剂、其制备方法和应用。背景技术人造石墨负极材料一直占据着负极材料市场主导地位,这得益于其成本相对较低、能量密度高、功率密度大、循环寿命很长等无可比拟的优势,在手机、笔记本电脑以及乘用车动力等领域获得广泛应用。从未来市场对锂离子电池的需求看,更高快充电性能锂离子电池将成为锂离子电池的重要方向。为了改善石墨负极材料的快充性能,负极材料应用过程中往往需要通过降低颗粒尺寸、碳表面包覆、掺杂等方式进行调控与优化。其中,现有人造石墨负极
.本发明涉及超高镍正极材料技术领域,具体而言,涉及一种超高镍正极材料及其制备方法与电池。背景技术.目前,超高镍正极材料作为热门材料在电池中得以广泛应用。.但其还存在以下缺陷中的至少一种:①、超高镍正极材料在循环性和热稳定性上的恶化问题,该问题主要是由于其深度脱锂过程中高活性ni的产生和h、h相变引起的热学稳定性改变。.②、超高镍单晶材料合成通常复杂且困难,一般采用升高的煅烧温度、多步煅烧工艺等来促进单晶颗粒的生长。然而,过高的煅烧温度可能会导致单晶颗粒团聚和li/ni阳离子混
.本发明涉及钠离子电池技术领域,尤其是涉及一种钠离子电池正极材料及其制备方法和应用。背景技术.汽车产能的爆发让锂资源价格上涨,锂电池除了锂之外,还使用另一种稀有金属-钴(co)。研究显示,利用现行技术生产辆纯电动汽车(ev),大约要使用kg的锂和大约kg的co。锂和钴这种稀缺能源不可避免的会面临资源减少和价格上涨。而钠作为仅次于锂的第轻的金属元素,丰度高达.%~.%,比锂高~个数量级,且与锂有着相似的物理化学性质,因此,钠离子电池得到广泛关注。.早在世纪七八十年
本实用新型涉及粉碎设备技术领域,具体是一种锂离子电池负极材料加工用粉碎装置。背景技术目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。石墨最常见于大理岩、片岩或片麻岩中,是有机成因的碳质物变质而成。煤层可经热变质作用部分形成石墨,少量石墨是火成岩的原生矿物,石墨也常见于陨石中,一般为团块状,以一定方位关系组成立方体外形的多晶集合体称方晶石墨,制作锂电池负极材料需要石墨,需从大理岩、片岩和麻岩中提取石墨,要对这些岩石进行破碎,
本实用新型属于废旧铅酸蓄电池处置装置技术领域,特别涉及一种废旧铅酸蓄电池破碎后隔板纸清洗的装置。背景技术目前再生铅冶炼行业,废旧铅酸蓄电池破碎分选过程中,产生的废旧pe隔板纸主要成分是sio、聚乙烯等,其总量约占电池重量的%。目前国内%以上都是通过委托有资质的生产单位进行焚烧,国外%以上均是通过填埋的方式处理。二者均是废旧铅酸蓄电池中的pe隔板纸在破碎分选后,含有部分铅泥及塑料杂质,直接焚烧,回引入污染物。目前国内再生铅企业处理废铅酸蓄电池产能超过万吨
.本发明涉及燃料电池技术领域,具体涉及一种阳极催化剂层、膜电极及其制备方法。背景技术.燃料电池是一种电化学电池,其主要原理是将燃料和氧化剂中的化学能经氧化还原反应直接转化为电能。质子交换膜燃料电池(pemfc)作为燃料电池领域的重要分支,除了拥有燃料电池一般性特点如能量转换效率高、环境友好之外,还具有室温下启动速度快、体积小、无电解液损失、容易排水、寿命长、比功率和比能量高等突出优点。它不仅适用于分散式电站的建设,而且适用于移动供电。它是一种新型的军用和民用移动电源。因此,质子交换膜燃料电池
.本申请属于材料技术领域,尤其涉及一种正极导电浆料及制备方法,以及一种正极片的制备方法,一种二次电池。背景技术.锂离子电池由于具有无记忆效应、能量密度高、自放电小、电压高、充放电速率快、循环寿命长、环境友好等优点,广泛应用于纯电动汽车、便携式电子设备等多种领域。现有的磷酸铁锂、锰酸锂、钴酸锂、三元材料等正极材料普遍存在导电性偏低的问题,导致锂离子电池大电流充放电能力不足,制约了其更好的发挥。.导电剂在正极片中为电子提供移动的通道,高性能的导电剂可以使正极材料获得较高的放电容量和较好的循环性
.本发明属于铝电解废阴极炭块破碎处理装置技术领域,具体涉及一种铝电解槽衬废阴极炭块破碎装置。背景技术.近二十年来,电解铝生产技术取得了长足进步。我国自成为世界第一产铝大国以来,近十几年来铝产量急剧膨胀,年,中国电解铝产能基本保持在万吨以上。年全年电解铝产量达到万吨。但在其生产过程中除排放出大量的温室气体外,还排放出对环境有害的固体废弃物——废槽衬。我国的电解槽寿命与国外先进水平还有一定的差距。我国电解槽寿命一般在~年,而国外可以达到~年。铝电解
.本发明涉及太阳能电池领域,具体而言,涉及一种导电浆料、太阳能电池电极及其制作方法、太阳能电池。背景技术.在太阳能电池的晶圆硅片的前受光面因为形成了导电副栅电极,导致硅片受光面积降低而影响效率,因此希望在硅片前受光面上形成更精细的电极,以增加受光面积,进而提升电池光电转换效率。现有技术中越来越倾向于采用小开口印刷网版的方式来制作电极,一方面,采用小开口印刷网版的设计可以得到细线化的栅线,其在硅片上的遮光面积相对小,从而光电流高,进而转换效率高。另一方面,小开口的设计也符合成本较低趋势,每个硅
.本发明属于锂离子电池技术领域,具体涉及一种补锂膜及其制备方法、复合补锂隔膜和锂离子电池。背景技术.锂离子电池的基本组成成分有正极极片、负极极片、隔离膜、电解液及其它组件。其中,隔离膜的主要作用是用来隔绝正极和负极,其多孔结构可以充当正负极之间锂离子传导的通道,也能够吸附电解液保证电池能够长久的循环。电池的初始循环过程由于负极表面生成的固态电解质膜消耗体系的锂离子会导致电池的首次库伦效率降低,为了补充体系中损失的锂离子,相关技术领域的人员使用补锂技术,也就是用额外的锂源补充这些锂离子并为电池
.本发明涉及硬碳材料前驱体、硬碳材料预碳化品、硬碳材料和二次电池,以及制备方法和硬碳材料的应用。背景技术.近年来随着新能源行业的崛起,锂离子电池和钠离子电池等二次电池逐渐地走进了社会的生产和生活当中。随着人们对高质量、低成本产品的需求日益增长,二次电池行业也对电池的负极材料提出了更高的要求。研究开发高容量、低成本的负极材料成为了二次电池行业关注的热点。.目前二次电池主要的商业化材料为结构稳定性高、电化学性能优异的碳材料,众多研究者围绕着碳负极材料展开了一系列的研究。石墨因其体积变化小、结构
.本发明涉及燃料电池领域,更具体地,涉及一种催化剂浆料制备方法、催化剂浆料、催化剂涂布膜及膜电极。背景技术.质子交换膜燃料电池(pemfc)在运行过程中需要水的参与,水在当中是一把“双刃剑”,一方面,水在膜电极中可促进质子传输,另一方面,过多水分积聚则会造成膜电极水淹,降低膜电极性能。在燃料电池启动阶段或者低温条件运行阶段,膜电极的温度较低,水的排除速率要远低于高温条件,此时膜电极中的水更容易积聚,导致膜电极水淹,反应气传输通道被堵塞,进而产生燃料电池启动困难或者低温运行的性能低的不良后果。
.本发明属于锂离子电池材料领域,尤其涉及锂离子电池磷酸铁锂材料制备方法。背景技术.近几年来,锂离子电池因其能量密度大,循环性能好,自放电低等优点,在市场上快速崛起。伴随着电动工具、储能以及新能源汽车的高标准要求,促进了锂离子电池技术的发展。在正极材料、电芯型号以及模组等方面都有了较大突破。锂离子电池正极材料作为锂源的原始供体起着重要作用,它直接影响到锂离子电池各方面的性能,比如能量密度、循环、倍率等,目前主流的正极材料可分为三元材料(镍钴锰酸锂、镍钴铝酸锂)、富锂材料、磷酸铁锂材料,其中磷酸
.本发明涉及碳材料领域,具体涉及一种煤基石墨负极材料及其制备方法和应用。背景技术.锂离子电池负极主要是碳材料,包括无定形碳、天然石墨和人造石墨。石墨具有规则层状结构和优异导电性,其理论比容量为ma·h/g,效率高,是目前主流的负极材料。目前开发人造石墨的原料主要有三类:同性焦、沥青胶和针状焦。同性焦基人造石墨结晶度度低,各向同性度高,容量低,功率性高。针状焦基人造石墨容量高,倍率相对差些,沥青胶一般居于二者之间。.cna公开了一种煤基负极材料。该煤基负极材料是由煤基
.本发明属于钠离子电池技术领域,具体涉及一种单晶钠离子电池正极材料及其制备方法和电池。背景技术.随着锂离子电池的白热化,加上供需关系、资源地源限制,锂盐的价格飞涨,使得具有成本优势的钠离子电池逐渐成为各大企业及高校的研究热点。钠离子电池工作原理与锂离子电池相同,但相比较而言,钠离子的离子半径更大,扩散动力学更迟缓,使得钠离子在能量密度和循环特性上具有一定的劣势。.钠离子电池经过近十年各界的大量研究,形成了主要以过渡金属氧化物、普鲁士蓝、聚阴离子磷酸盐等体系的产品,其中过渡金属氧化物因具有相
.本发明属于锂电池材料制造技术领域,具体涉及一种以黄磷副产磷铁渣为原料制备磷酸铁的生产工艺及其生产设备。背景技术.磷酸铁自从被发现是可以制备磷酸铁锂的前驱体以来,受到了国内外科学家的高度关注,它既可作为合成磷酸铁锂的前驱体,又可直接作为锂电池的正极材料,还可作为锂电池的负极材料,通过以黄磷生产的磷铁废渣为原料制备磷酸铁不仅成本低,而且因为磷铁含有的大量的铁元素和磷元素,同时还含有少量的锰、钛等金属元素可以通过调整磷铁比和掺杂离子,去改善之后制备电极材料的电化学性能,同时现行常用磷酸铁生产工艺
.本发明属于锂离子电池技术领域,具体涉及一种锂电池正极片制造工艺。背景技术.传统锂电池正极片涂布工艺制备厚极片较困难,导致锂电池的能量密度低;涂布工序使用有机溶剂导致环境污染;设备成本和电池的生产成本成本高;并且传统锂电池正极片制造工艺中采用的集流体铝箔厚度μm已经接近瓶颈;对于高镍材料、lto正极等,涂布环境控制要求较高;补锂技术也难以实施。.干法电极较湿法工艺电极节约合浆、涂布能耗、降低设备成本并且不添加nmp等有机溶剂,具有绿色环保的突出优点,制得厚电极极片压实好,有利于开发高能
中冶有色为您提供最新的有色金属新能源材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!