本发明涉及一种连续萃取精馏浓缩稀盐酸的工艺方法。该方法以浓硫酸作萃取剂,将稀盐酸和浓硫酸同时连续加入到沸腾的精馏塔釜中,利用浓硫酸的强吸水性,破坏HCl+H2O的恒沸点,增加HCl与H2O的相对挥发度,塔釜中蒸出的超过恒沸组成的HCl和H2O在精馏塔中进一步分离,塔顶馏出物经冷凝后得到浓盐酸,塔顶温度为107~108℃,浓盐酸质量分数为25~31%,塔釜中硫酸质量分数为48~58%,温度为121~138℃,稀释后的硫酸经真空浓缩后循环使用。本工艺方法流程简单,操作方便,运行成本相对较低,适用于稀废盐酸的回收利用,尤其适用于接近恒沸组成的稀盐酸浓缩制取浓盐酸。
本发明涉及一种提高金精矿焙烧铜酸浸出率的方法,包括以下步骤:1)配矿调浆,2)焙烧制酸,3)铜强化转化反应,4)酸浸过程。本发明利用混合焙烧添加剂硫酸铁和高锰酸钾,提高了金精矿中铜的焙烧转化反应效果;利用制酸系统三氧化硫与焙砂热能的协同作用,提高了焙砂中硫化铜及铁酸铜的反应与转化;利用酸浸过程混合添加剂硫酸铁和双氧水,提高了酸浸过程的温度,为铜的浸出提供了热能,有效的提高了含铜、砷、硫等难处理金精矿矿物铜酸浸出率,铜酸浸浸出率达到95%~99%。
一种环流器,包括壳体和传动装置,壳体上安装传动装置,传动装置上安装转轮,转轮外周上设置多个叶片,转轮设置在壳体内,转轮外围的壳体内壁上设置环流腔,环流腔一端设有A环流腔口,环流腔另一端设有B环流腔口,A环流腔口与B环流腔口之间的壳体内壁上设置隔离体。本环流器充分利用圆周运动和流体运动,通过流体更好的使扭力转化为压力。通过流体更好的使压力转化为扭力。利用涡流实现流体分离。本环流器可作为水泵、渣浆泵、污水泵、风机、压缩机、喷雾设备、反应器、汽轮机、真空设备、分离机、污水处理、海水淡化、海洋化工、选矿、垃圾处理、制氢、二氧化碳分解、有害气体分解、空气净化、除尘、吸尘、制冷、制氧、炼油等使用。可彻底实现蓝天碧水,可生产泡沫材料带来材料革命。
本发明涉及从含HCl和CO2等混合气体中选择性脱除HCl的装置,包括气体流量计、超重力设备、气体浓度检测装置、吸收剂储罐、液体泵及液体流量计等。本发明另一方面涉及从含HCl和CO2等混合气体中选择性脱除HCl的方法。本发明利用超重力设备强化气液传质的特征,提高了对混合气体中HCl的吸收率。同时凭借物料在超重力设备内停留时间短的特点,利用HCl和CO2的溶解度以及与碱液等吸收剂反应动力学的差异进行选择性吸收HCl,大大降低了其他不必要去除的气体的吸收率,极大地节省了吸收剂成本。而且设备的尺寸大幅减小,降低了设备的投资成本,拓展了超重力技术的应用范围。
本发明属于矿产资源选矿领域,公开了一种处理难选金矿的工艺方法,该方法包括破碎匀浆、氧化脱碳、微生物催化以及氰化提金等步骤。本发明还提供了一种处理难选金矿的微生物菌剂。利用本发明公开的方法可以有效地提高硫砷碳的脱除,同时金的浸出率大大提高,适合工业化生产。
一种用生石灰制备钙皂及产生的乳化混合物的处理方法,具体涉及一种在稀土萃取工段中使用生石灰制备钙皂的工艺方法。包括以下步骤:蒸氨-吸氨:将生石灰或石灰乳与氯化铵溶液按摩尔比nCa+∶n氯化铵=1∶1.5~2.2混合加热蒸氨,将蒸出的氨气用空白萃取剂吸收形成铵皂;反应后的溶液经过滤或澄清后,得到高浓度氨氮氯化钙溶液;转相:将铵皂和蒸氨-吸氨中制得的高浓度氨氮氯化钙溶液混合搅拌5-15min,其中铵进入水相形成氯化铵溶液,钙进入有机相中形成钙皂。本方法使用生石灰,经济效益高,无三废排放,不存在环保问题,同时可减少萃取剂的消耗2/3以上,提高稀土收率。
本发明公开了一种具有单价选择分离功能的阳离子交换膜制备方法,该方法首先通过内嵌式浸涂将壳聚糖和/或其叠氮化衍生物溶液附着于经粗糙化处理后的常规阳离子交换膜表面;避光沥干后,壳聚糖叠氮化衍生物还需要经紫外光辐照引发氮烯的键插入反应,完成壳聚糖在基膜表面的共价键固定;最后,以交联处理和/或胺化处理来实现对功能层基体致密度、荷电密度及其在基膜表面固着作用等的调节,从而在常规阳离子交换膜表面形成以共价键固定的致密而均匀的荷正电薄层。系列电渗析实验表明,分离过程中借助功能层的孔径筛分作用及其与不同价态阳离子之间的静电作用差异而有效地实现了对一、多价阳离子的选择性分离。
本发明提供一种从废旧钴酸锂电池中回收锂钴的浸出体系及其方法和应用,属于废弃资源回收利用技术领域。与传统的采用酸液浸出锂的方法不同,本申请采用钴酸锂‑聚氯乙烯‑水浸出体系,一步将钴酸锂电池正极材料中的锂钴浸出,且不需要使用酸液,相比于其他浸出锂的方法,本发明所使用的材料为废弃的聚氯乙烯以及水,原料成本低,且锂钴浸出效率较高,同时可实现废旧锂电池正极材料及废弃聚氯乙烯的协同处置,因此经济和环保效益好,具有良好的实际应用之价值。
本发明涉及一种新型的铜离子萃取剂与其制备方法,该萃取剂具有很强的结合铜离子的能力,可用于水中微量或者痕量铜离子富集和回收;命名为二?N?(N?甲基?N?烷基乙酰基)?乙二胺二乙酸,此萃取剂由EDTA(乙二胺四乙酸)与N?甲基?N?烷基胺经酰胺化反应而成。其特点是制备简便,价格低廉,可广泛用于工业废水或者污水中铜离子的去除与富集,从弱酸性及中性水体中萃取微量铜的萃取率单次可高达97%以上,萃取容量高,萃取过程损失小,稳定性好,在较稀的溶液中对微量的铜离子具有很好的萃取性能。此萃取剂能够容易的在酸性条件下进行反萃,萃取剂可以循环重复利用。式中R表示烷基链。
本发明提出了一种钴镍冶金废水渣资源化处理方法,属于废弃物资源化利用领域。它是将钴镍冶金废水渣经过还原酸溶,将其中的有价金属浸出,再利用锰粉来置换铜用以回收铜,再采用硫化锰来沉淀锌用以回收锌,除锌后液经过氟化物除钙镁后,经过P204萃取剂深度除杂并富集钴镍锰,得到的钴镍锰富集液再经过硫化锰深度除杂后可用于制备NCM三元前驱体。此工艺能够将镍钴锰锌铜等金属完全回收,同时得到的钴镍锰溶液可作为制备NCM三元前驱体的原料,避免了钴镍锰的分离,工艺更加简单,且金属回收率大大提高,成本低,对环境无害,有产业化的前景。
一种金属硝酸盐热解制取NO2气体氧化剂的方法,空压机(2)、金属硝酸盐储存仓(1)连接硝酸盐料仓(3),空压机(2)通过输送空气,将硝酸盐粉末输送至硝酸盐料仓(3),硝酸盐料仓(3)通过锁气阀(4)连接输送机(5),输送机(5)的出口再连接下边的锁气阀(4),该锁气阀(4)连接溜管(B),将硝酸盐粉末输送至管式微波热解器(6)中。管式微波热解器(6)的出料罩(C)的上端与气体输送管(A)和螺旋真空泵(7)连接,将O2、NO2输送至NO2储罐(8),用于生产高纯NO2或者是硝酸,出料罩(C)的下端连接锁气阀(4)及输送机(5),将金属氧化物粉末输送至金属氧化物储仓(9)回收利用。
本发明涉及一种生产电积钴的方法,属于电积钴的生产方法技术领 域。非盐酸电解质生产电积钴的方法,特征:制取CoCl2溶液-萃取转型 -脱氯-物理方法去除有机物-钴电解液制备-电积钴生产。本发明在电 解液中加入酸雾抑制剂,使电解液表面胀力降低,阳极析出氧气顺利穿过 液面,避免了将酸带入生产现场。有效的改善了工作环境及防止对周边环 境的污染。本发明非盐酸电解质生产电积钴的方法,由于采用溶液转型、 洗氯工艺,电解液中(Cl-)低于0.1g·l-1,在电积过程中,基本达到无 氯气析出要求。
本发明目的是提供一种成本低,耗能少,环境友好,对有价金属回收效率高的选择性回收废旧磷酸铁锂电池有价金属的方法。本发明的选择性回收废旧磷酸铁锂电池有价金属的方法,其将废旧磷酸铁锂正极片进行煅烧,去除铝箔及其中的有机杂质,获得正极粉末材料;向获得的粉末材料中加入一定量的具有螯合功能的有机酸盐或有机酸作为研磨助剂,将粉末材料和研磨助剂一同加入球磨机,对粉末材料和具有螯合功能的有机酸盐或有机酸进行研磨活化,同时实现对粉末材料中有价金属的选择性浸提。
本发明属于火法冶金技术领域,具体涉及一种基于高S高Fe金矿与含铜废料直接熔炼回收金和铜的方法。所述方法是将高S高Fe金矿、助熔剂混合研磨得到含有S、Fe、Si、Au的混合料,再将混合料与含铜废料以层结构的形式间隔平铺于坩埚中,最底层为混合料;将坩埚中的物料进行熔炼,熔炼后,冷却降温,取出坩埚,放入冰水中水淬,得到含金铁锍和熔炼渣。本发明直接将高S高Fe金矿配入含铜废料进行直接熔炼,金富集在铁锍相中,再从铁锍中回收金和铜,从而实现对金的富集。该方法兼具传统火法熔炼金回收率高的优点,同时经济成本低、污染少,且铁锍和熔炼渣分离效果好。
本发明属于火法冶金技术领域,具体涉及一种高S高Fe含Pb金矿两步法熔炼回收金和铅的方法。所述方法是将高S高Fe含Pb金矿、助熔剂混合均匀,放入坩埚中,在压缩空气条件下熔炼,熔炼后,冷却降温,取出坩埚,放入冰水中冷淬,得到铅‑铁混合熔融体和熔渣,然后分离;将分离后得到的铅‑铁混合熔融体、炭混合均匀后,进行熔炼,熔炼后,冷却降温,得到富集金的粗铅铁合金。本发明同时回收金和铅,金的回收率大于90%,铅的回收率大于92%。
本发明涉及一种羧甲基壳聚糖硫脲树脂,其制备方法与应用,属吸附树脂技术领域。使用高分子量的壳聚糖与氯乙酸反应合成羧甲基壳聚糖,然后通过对羧甲基壳聚糖进行一系列的交联和化学修饰,生成羧甲基壳聚糖硫脲树脂。本发明涉及到羧甲基壳聚糖硫脲树脂的设计、合成方法及其吸附性能,通过设计制备出的树脂不仅机械性能良好,而且引入的功能基团对重金属有良好吸附性,对汞、银、铅等多种重金属离子都具有非常优异的吸附性能和吸附选择性,合成方法简单,反应条件也比较温和。此羧甲基壳聚糖螯合树脂的结构式如下:其中n>1450。
本发明提供一种利用表面活性剂促进红土镍矿浸出镍和钴的方法,该方法包括步骤:将硫酸水溶液、红土镍矿和表面活性剂混合均匀,在50~120℃下浸取4~12h,然后经固液分离,得含镍、钴、铁的浸出液。本发明方法步骤简单,操作温度低,操作条件温和、易于实现;能够在常压条件下选择性高效的同时浸出镍和钴,并降低铁的浸出率,且浸出速率较快,较现有单纯硫酸酸浸红土镍矿工艺,镍、钴浸出率更高,铁的浸出率更低。
本发明涉及电池回收领域,具体而言,涉及一种镍钴锰酸锂三元电池正极材料的回收方法,包括以下步骤:第一步:将报废的锂离子电池进行拆解,获得分离掉集流体的锂电池正极回收材料;第二步:将锂电池正极回收材料放在锂离子溶液中通过水热法进行补锂;第三步:将补锂后的材料固液分离并干燥;第四步:将第三步的产物破碎并筛选;第五步:将筛选后的产物通过直接烧结法进行烧结来提高材料的结晶性。本发明通过补锂和水热烧结再生处理对锂电池正极回收材料进行处理,材料不仅保持了原有的形貌和颗粒尺寸,循环过程中流失的锂也得到了补充,循环过程中形成的尖晶石和岩盐结构可以转变回层状结构。
本发明公开了一种碱沉高铝稀土溶液中氯根及铝离子的去除方法,包括加碱、搅拌反应、陈化反应、离心甩干和灼烧;所述搅拌反应,温度控制为58‑60℃,加入碳酸钠溶液,直至pH值为6‑6.2、上清液中稀土氧化物浓度为0.4‑0.43g/L;所述陈化反应,陈化时间为80‑120min,得到稀土沉淀,所得到的稀土沉淀,粒径为18‑20μm;所述离心甩干,将稀土沉淀转入离心机,然后甩干,并洗涤10‑30min,得前驱体,所述前驱体的收率>99.2%;本发明的去除方法,提高了碱沉工序对氯化稀土料液的适应性,能够减轻上游萃取工序的生产压力,大大降低生产成本。
本发明涉及一种提高难处理矿物中铜浸出率的方法,包括:对矿物配矿,使矿物中含有20-25%的硫、6-10%的砷,加水和添加剂,调整矿浆浓度为65-70%;将矿浆放入焙烧炉中,排出的含尘烟气经过布袋收砷装置回收三氧化二砷,再经湿法收尘产出浓度为5-15%的稀硫酸,其余含尘烟气进入制酸系统产出98%的硫酸;矿浆焙烧后产生的焙砂与湿法收尘产出的5-15%的稀硫酸混合,添加二氧化锰和高锰酸钾,经酸浸工艺浸出回收其中的铜。本发明方法克服现有方法铜回收率低的缺陷,通过生产实践,提高了含铜、砷、硫等复杂矿物中铜的回收率,达到了显著的经济效益。
本发明涉及一种金泥中酸碱去杂提取金银工艺,主要包括分银、沉铅转化和除铅、沉银置换、浸金、还原金和置换金工序。具有金回收率高,金成色稳定,冶炼周期大大缩短,技术操作条件幅度宽,易掌握,降低了对环境污染,加工成本低,引用了钛金材料设备,分银过程用稀硝酸比用稀硫酸具有省略工序,缩短生产周期,降低成本的优点。
本发明涉及一种高磷高铁的难选锰矿脱磷脱铁生产富锰渣的方法,包括将原矿破碎、筛分出5~20mm的颗粒后,按其重量比配加20~30%、细度低于3mm的还原剂,然后将锰矿中的氧化铁深度还原,将还原后的物料在煤粉覆盖或惰性气体保护下冷却,采用筛分或磁选的方法将还原后的物料与残留的煤粉分离;将铁还原后的亚锰矿送到熔分炉,不添加任何还原剂和造渣熔剂,经过1700~1850℃高温下熔分,使绝大部分P被气化和进入铁水中(P≥0.6%),实现锰与铁、锰与磷彻底的分离,排放出来的液态“渣”主要指标为:Fe≤3.0%、Mn≥60%、P≤0.08%、Mn/Fe20~22,就是超高品质氧化亚锰渣产品。
本发明公开了一种锂电池生产废弃物的处理方法,首先通过碱溶法实现锂离子电池正极材料活性物质与集流体铝箔的分离,实现废旧锂离子电池中正极片活性物质的回收利用,然后通过补加一定量的锰源、锂源或磷源以制得磷酸锰锂正极材料,然后进一步进行碳包覆和氧化石墨烯/离子液体修饰以制得磷酸锰锂/碳/氧化石墨烯/离子液体复合正极材料。通过三者的协同作用可显著提高锂离子电池正极材料的电化学性能。且本发明方法简单,不仅能够减轻废旧锂离子电池对环境的影响,同时还能带来较高的经济效益,从而实现废旧磷酸锰锂锂电池的高效循环使用,以实现工业固体废弃物的减量化、资源化和无害化,充分实现了废弃物的可持续利用。
本发明属于氰化银泥的冶炼领域,尤其是一种从氰化银泥中湿法提银的方法。本发明利用中高电位湿法处理氰化银泥,氯化所得固体经过焙烧、加热、冷却、还原等一系列步骤,得到单质银,其中利用多羟基醛还原时可以快速有效的将银还原成固体,得到纯度较高的单质银,本发明具有工艺条件易于控制、设备简单且成本低、产品附加值高、直收率高、安全性高、环境污染小、经济效益高的优点。
本发明公开了一种基于纳米复合载体阻滞法的废酸资源化处理工艺。其采用如下步骤:一级过滤:将废酸液过滤初步分离出废酸中的悬浮物、油脂、胶体物质;二级过滤:用精密过滤器进一步去除一级过滤穿透液中的残留颗粒物;酸阻滞分离:将过滤后的废酸液经酸阻滞分离装置进行处理,酸阻滞分离装置中装有酸阻滞载体SEW‑501,该载体负载有磺酸根和季氨基,废酸液在经过酸阻滞分离装置时废酸液中的酸分子被阻滞在酸阻滞载体上,废酸液中的其他杂质穿过酸阻滞载体以穿透液形式流出酸阻滞分离装置,从而将废酸液中的酸分子阻滞在酸阻滞分离装置中;当酸阻滞载体饱和后,将解析水泵入酸阻滞分离装置内将阻滞在酸阻滞载体上的酸分子解析出,最终产出纯净酸。
本发明公开了一种萃取分离镍和锂的微乳液体系及方法,特点在于该微乳液体系包括表面活性剂皂化P204、助表面活性剂正己醇、有机相正庚烷,用NaOH按步骤皂化P204,与其他成分制备成微乳液体系,微乳液与含镍离子和锂离子的外水相按体积比为1:6~10混合,混合均匀后,置于水浴恒温振荡器中,振荡频率为150rpm,在室温下震荡8分钟,取出后,静置4小时,取水相,用原子吸收测定吸光度,计算萃取率。该微乳液体系利用皂化P204作为表面活性剂、正己醇做助表面活性剂、正庚烷做有机相构建稳定的微乳体系进行镍和锂的分离,该方法P204和有机相用量少、不需要外加盐析剂,操作更加简单,分离速度加快、分离效率大大提高,反萃步骤简单,反萃后的有机相可循环使用。
本发明提供了一种含锑废水的处理方法,包括以下步骤:S1、将含锑废水在氯化钠存在下用硫酸调节pH值不超过0.3,反应,得到第一混合溶液;所述含锑废水包含砷、锑和铋;S2、将所述第一混合溶液固液分离,取液相用氢氧化钠调节pH值为0.8~1.5,反应,得到第二混合溶液;S3、将所述第二混合溶液固液分离,得到氯化锑固体产品。本发明含锑废水中锑的回收率可达95%,回收率较高;其还可制备以锑为主的络合沉淀剂,其纯度高;此络合沉淀剂净化电解液砷、铋效果显著。本发明处理方法工艺简单、成本低、稳定性高,易于工业化推广应用。
中冶有色为您提供最新的山东有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!