本发明一种环冷机烧结矿余热的利用方法,包括以下步骤:a、将因水分大、粘性大而结块无法筛分的富矿粉或块矿直接加入环冷机中,利用环冷机烧结矿显热及烧结矿床层中流动的热废气直接烘干富矿粉或块矿;b、将烘干后的富矿粉或块矿与烧结矿混合后进行筛分,筛分分级后粒度10~18mm的烧结矿与块矿作为烧结铺底料,粒度>5mm的烧结矿与块矿作为高炉入炉矿,粒度<5mm的烧结矿与富矿粉作为烧结返矿参与配料与烧结。本发明以经济与灵活的方式充分利用了烧结余热资源,将烧结矿显热与冷却废气热量直接对因水分重粘性大而结集成块的富矿粉或块进行烘干处理,保证转运、筛分、配料等作业环节顺畅与生产稳定,解决了长期困扰冶金企业而又难以根治的问题。
本发明涉及钒冶金技术领域,公开了一种以红钒为原料负压蒸馏制备五氧化二钒的方法。该方法包括以下步骤:(1)将红钒在250~400℃下反应30~120min进行脱水;(2)将步骤(1)得到的物料在800~1300℃下熔化形成液态熔池,并维持液态熔池温度,将液态物料中的五氧化二钒转变为五氧化二钒蒸气;(3)在压力为15~45kPa条件下将五氧化二钒蒸气从液态熔池导出,并将五氧化二钒蒸气冷却降温至150~350℃,得到纯度大于99.90%的五氧化二钒。该方法无化学药剂消耗、无污染、成本低、工艺简单,制备的五氧化二钒纯度高。
本发明属于冶金技术领域,具体公开了一种能够较为准确合理地评价钒钛矿经济品位的方法。该方法是在钒钛矿烧结、高炉元素平衡的基础上,输入不同钒钛矿品位(按基准价格计),在相同钒钛矿烧结、高炉冶炼边界条件下,比如:入炉品位、炉渣碱度、炉渣TiO2含量、球团比例等条件下,计算得到钒钛矿品位对应于以第一个品位为基准的生铁成本持平时的涨价幅度,整个过程充分考虑冶炼边界条件影响,基本采用实际生产数据进行建模计算,因此能够较为准确合理地评价钒钛矿经济品位。
本发明属于冶金技术领域,具体涉及一种电炉用勾缝料及其制备和使用方法。针对电炉镁碳砖容易氧化,使用寿命低的问题,本发明提供了一种电炉用勾缝料,组成包括:按重量份数计,废旧高铝砖28~35份,磁选富集污泥65~72份,变性淀粉1.5~1.8份、聚丙烯酰胺0.13~0.2份。本发明还提供了上述勾缝料的制备和使用方法,在电炉水冷壁之间的缝隙中填充该勾缝料,能够降低电炉镁碳砖氧化,电炉尾部镁碳砖的C含量能够保持在10.0%~11.7%,提高镁碳砖使用寿命,降低电炉冶炼成本。本发明为提高电炉的使用寿命提供了一种全新的方式,具有很好的实用价值。
本发明涉及含V、Nb、Ti非调质预硬型塑料模具钢及其制备方法,属于钢铁冶金领域。所要解决的技术问题是预硬型塑料模具钢生产成本高以及调质型塑料模具钢生产周期长,技术方案是提供了含V、Nb、Ti非调质预硬型塑料模具钢,其化学成分为:按重量百分比计,C 0.45%~0.52%、Si 0.30%~0.60%、Mn 1.20%~1.50%、P≤0.030%、S≤0.030%、Cr 0.20%~0.40%、V 0.10%~0.15%、Nb 0.010%~0.020%、Ti 0.010%~0.030%、Als 0.015%~0.050%,Mo≤0.03%、Ni≤0.30%、Cu≤0.25%,余量为Fe。
一种含钒钢渣中钒的回收工艺,属于冶金及固废综合利用技术领域。回收工艺包括:将回收原料进行预还原处理,得到预还原物料,回收原料包括含钒钢渣、铁质原料、改质剂以及第一碳源还原剂;将预还原物料与第二碳源还原剂进行熔炼,将熔渣和含钒铁水分离;将含钒铁水进行吹氧提钒,得到钒渣与提钒铁水。采用预还原工序对回收原料进行预还原处理后进行熔炼,可选的铁质原料采用钒钛磁铁矿精矿粉提高含钒量,可选的预还原工序之前进行球磨造球提供反应动力学条件,解决了含钒钢渣在火法回收工艺中回收成本高、收率低的技术问题,回收成本低、收率高。
本发明涉及含Nb、Ni的铁路货车组合式制动梁用钢及其制造方法,属于钢铁冶金领域。本发明提供了含Nb、Ni的铁路货车组合式制动梁用钢,其化学成分按重量百分比计为:C:0.14%~0.18%、Si:0.25%~0.40%、Mn:1.35%~1.55%、Cr:0.20%~0.30%、V≤0.005%、Nb:0.035%~0.055%、Ni:0.20%~0.25%、N:0.0090%~0.0110%、P≤0.015%、S≤0.015%,其余为Fe和不可避免的杂质。上述钢材经920℃正火+480℃回火后,其屈服强度≥460MPa、Akv(‑40℃)≥27J,疲劳性能检验100万次无裂纹。
本发明属于钢铁冶金领域,具体涉及一种含Ti微合金建筑钢棒材及其LF炉生产方法。针对现有制备含氮合金钢所选用氮化钒合金氮含量低、种类少等问题,本发明提供了一种含Ti微合金建筑钢棒材及其LF炉生产方法。该棒材的组成成分为:按重量百分比计,C:0.15%~0.30%、Si:0.30%~1.00%、Mn:0.60%~1.30%、N:0.0060%~0.0180%、P≤0.040%、S≤0.040%、Ti:0.010%~0.050%,余量为Fe和不可避免的杂质。其制备方法的关键在于LF炉精炼后喂入含N包芯线,调整N到适宜的水平。本发明方法操作简单,氮收得率高且稳定,还能有效的降低生产成本,值得推广使用。
本发明属于钢铁冶金领域,具体涉及一种含V、Nb、Ti、Cr微合金建筑钢盘条及其生产方法。针对现有制备含氮合金钢所选用氮化钒合金氮含量低、种类少等问题,本发明提供了一种含V、Nb、Ti、Cr微合金建筑钢盘条及其生产方法。该盘条的组成成分为:按重量百分比计,C:0.15~0.30%、Si:0.30~1.00%、Mn:0.60~1.30%、N:0.0060~0.0180%、P≤0.040%、S≤0.040%、V:0.010~0.080%、Nb:0.010~0.030%、Ti:0.010~0.030%、Cr:0.10%~0.60%,余量为Fe和不可避免的杂质。其制备方法的关键在于在炉后小平台喂入含N包芯线,调整N到适宜的水平。本发明方法操作简单,氮收得率高且稳定,还能有效的降低生产成本,值得推广使用。
本发明公开了一种580MPa级经济型高表面质量高扩孔钢及其制备方法,属于钢铁冶金和压延技术领域。一种580MPa级经济型高表面质量高扩孔钢,按重量百分比计,其化学成分为[C]:0.055%~0.095%,[Si]:0.85%~1.50%,[Mn]:0.60%~1.20%,[P]:0.010%~0.020%,[S]:≤0.003%,[Alt]:0.010%~0.050%,[Ca]:0.0010%~0.0050%,[N]:≤0.0050%,[O]:≤0.0040%,其余为Fe及不可避免的杂质,且[C]×[Mn]×104≤0.15,{[P]+10×[S]}×102≤0.04,[Ca]/[S]≥0.3。其制备方法包括以下步骤:冶炼工序→连铸工序→加热工序→粗轧工序→热卷箱工序→精轧工序→层流冷却工艺→卷取→缓慢冷却→酸洗工序→卷取包装。本发明通过对高扩孔钢化学成分及制备方法的控制,使高扩孔钢具有高表面质量、成本低、性能优异的特点,能够满足汽车底盘及复杂冲压件用钢的需求。
本发明属于化工和冶金领域,具体涉及一种钒铬渣焙烧酸浸提钒制备钒铬合金的方法。针对现有钒铬渣分离提取钒、铬中存在的流程长、成本高、三废中六价铬处理困难等问题,本发明提供了一种钒铬渣焙烧酸浸提钒制备钒铬合金的方法,将钒铬渣以碱土金属氧化物或盐为添加剂焙烧酸浸选择性提钒,尾渣经低pH浸出脱磷、并与碳酸盐反应脱硫,脱除磷硫后的含铬尾渣经还原熔炼得到含铬生铁,再进一步添加合金元素冶炼得到钒铬合金产品,全流程钒收率92.5%,铬收率85.6%。本发明可实现钒铬高效分步提取,废水系统内循环,废渣资源化利用,经济和环保效益显著,易于工业化实施。
本发明提出一种用于伺服液压系统故障振动分析诊断的方法,属于冶金行业热轧带钢生产领域。为解决目前伺服液压系统在故障诊断时存在缺陷的问题,本发明包括:建立伺服液压系统故障模型;选择振动检测设备、检测点及检测时间,所述振动检测设备至少包括振动检测元件;在监测点布置振动检测设备,并在检测时间采集振动数据后传入所述伺服液压系统故障模型;所述伺服液压系统故障模型根据所述振动数据判定电控或伺服液压控制故障;结合IBA分析工具反推故障振源的故障机理;分析电控及伺服液压控制故障产生原因及处理措施。本发明通过伺服液压系统振动加速度检测反推伺服液压系统运行状态,能够实现故障分析自动化。
本发明公开了一种含钛钨原料酸解提钛提钨及含钛原料酸解提钛的方法,属于冶金技术领域。本发明要解决的技术问题是提供一种能高效酸解含钛钨原料提钛提钨或含钛原料提钛的方法:将物料A、物料B和硫酸混合均匀进行反应,得反应物料C;将反应物料C与浸出剂混合,进行浸出,浸出完毕,固液分离即可。本发明显著提高了酸解率,缩短了酸解反应时间、浸出时间、钛液与尾渣分离时间,使废脱硝催化剂等难酸解的含钛钨原料也能实现经济可行的回收利用;并且可通过控制钒在偏钛酸与钛白废酸中的比例,生产钛钨复合产品、钒产品、钛钨钒复合产品等多种产品,应用范围广。
本发明公开了一种利用钒铬溶液制备低铬钒酸钙的方法,属于冶金技术领域。本发明要解决的技术问题是提供一种利用高铬高钒浓度的钒铬溶液制备低铬钒酸钙的方法。利用钒铬溶液制备低铬钒酸钙的方法,包括以下步骤:A、向铬溶液中加入氧化钙,加热反应后,固液分离,得低铬钒酸钙和低钒铬溶液;B、向步骤A所得低钒铬溶液中加入氧化钙,加热反应后,固液分离,得高铬钒酸钙和铬溶液;C、将步骤B所得高铬钒酸钙与含钒溶液混合,加入氧化钙,加热反应后,固液分离,获得低铬钒酸钙和低钒铬溶液。本发明方法可经济、高效、环保的分离钒铬溶液中的钒与铬,以高收率制得低铬钒酸钙和低钒铬溶液。
本发明属于冶金化工技术领域,具体涉及一种碳化渣流化氯化方法。针对现有的碳化渣氯化工艺氯化率低,还容易造成氯化炉黏结失流的技术问题,本发明提供一种碳化渣流化氯化方法,包括以下步骤:a、将碳化渣颗粒放入流化床中,通入氯气进行氯化反应,氯化反应温度为400~650℃,氯化反应时间为1~10min;b、将步骤a所得的混合物经四氯化钛淋洗系统淋洗并冷却后,分离得到氯气和液态的四氯化钛。本发明通过采用快速流化床对碳化渣进行氯化,传热传质快,氯化速度快,可有效避免流化床的黏结失流问题,同时还能回收利用氯气和碳化渣,节约生产成本。
本发明属于钢铁冶金领域,具体涉及一种含V、Ti微合金建筑钢盘条及其生产方法。针对现有制备含氮合金钢所选用氮化钒合金氮含量低、种类少等问题,本发明提供了一种含V、Ti微合金建筑钢盘条及其生产方法。该盘条的组成成分为:按重量百分比计,C:0.15~0.30%、Si:0.30~1.00%、Mn:0.60~1.30%、N:0.0060~0.0180%、P≤0.040%、S≤0.040%、V:0.010~0.100%、Ti:0.010%~0.030%,余量为Fe和不可避免的杂质。其制备方法的关键在于在炉后小平台喂入含N包芯线,调整N到适宜的水平。本发明方法操作简单,氮收得率高且稳定,还能有效的降低生产成本,值得推广使用。
本发明属于钢铁冶金领域,具体涉及一种含V、Nb、Ti、Cr微合金建筑钢棒材及其生产方法。针对现有制备含氮合金钢所选用氮化钒合金氮含量低、种类少等问题,本发明提供了一种含V、Nb、Ti、Cr微合金建筑钢棒材及其生产方法。该棒材的组成成分为:按重量百分比计,C:0.15%~0.30%、Si:0.30%~1.00%、Mn:0.60%~1.30%、N:0.0060%~0.0180%、P≤0.040%、S≤0.040%、V:0.010%~0.080%、Nb:0.010%~0.030%、Ti:0.010%~0.030%、Cr:0.10%~0.60%,余量为Fe和不可避免的杂质。其制备方法的关键在于在炉后小平台喂入含N包芯线,调整N到适宜的水平。本发明方法操作简单,氮收得率高且稳定,还能有效的降低生产成本,值得推广使用。
本发明涉及超低硫IF钢的生产方法,属于钢铁冶金技术领域。本发明解决的技术问题是提供超低硫IF钢的生产方法。本发明方法通过采用铁水预处理脱硫、转炉脱硫与LF精炼、RH精炼脱硫相结合的工艺,使铁水预处理开始至LF结束脱硫率达到93%以上,并通过转炉终点碳、温度、氧活度控制以及LF、RH过程参数控制等工艺技术措施,实现了超低碳、超低硫IF钢的生产。通过本发明方法的综合应用,实现了成品[C]≤0.002%、[S]≤0.004%的超低硫IF钢生产。本方法简单、易操作,生产成本低,适宜于大生产。
本发明涉及一种钒铝合金氧含量测定试样的制备方法,属于冶金检测技术领域领域。本发明的钒铝合金氧含量测定试样的制备方法包括如下步骤:(1)粗破:将钒铝合金粗破至5mm~20mm后,选取四周均为新鲜断面、表面无氧化层块样80g~100g;(2)粉碎:粉碎5~10s;(3)过筛:用20目和80目的样筛重叠过筛,弃去20目样筛上和80目样筛下的试样,取0.180mm~0.900mm中间的样品作为分析样品。本发明的方法即避免了试样氧化,又保证了分析试样均匀性,所制备试样具有代表性、制取方便,氧氮分析精度高、重现性及再现性好的特点,完全满足脉冲‑惰气熔融法测定钒铝合金分析的要求。
本发明涉及降低半钢冶炼终点钢水氧活度的方法,属于冶金技术领域。本发明解决的技术问题是提供降低半钢冶炼终点钢水氧活度的方法。该方法通过对供氧制度、氧枪枪位制度及底吹供气制度的合理选择,从而实现降低终点钢水氧活度的目标。该方法操作简单,无需加入额外的物料,可行性强,能有效减少出钢脱氧合金用量,提高钢水质量,同时能降低高氧化性炉渣对炉衬的侵蚀。通过本发明方法,能显著降低转炉终点钢水氧活度,使转炉终点碳氧反应更趋于平衡,碳氧浓度积低于0.0023。
本发明公开了一种电点火头,尤其是公开了一种用于铝热反应的电点火头,属于冶金生产设备核心零部件设计制造技术领域。提供一种结构简单,操作安全、方便,点火效果好的用于铝热反应的电点火头。所述的电点火头包括具有一个放电点火端的点火电极,所述点火电极的放电点火端在外部输入的点火电流的作用下产生点火电弧。
本发明根据托煤底板的安装基座和运行轨道,利用经纬仪、游标卡尺、塞尺等简单测量工具对拆除前、拆除后的关键数据进行测量、留点,用记录好的数据来指导新托煤底板的快速定位安装,最终达到新托煤底板安装就位的目的。本发明可以在冶金行业及其它行业的同类型设备的安装中推广应用,特别适用于精确定位安装的设备。本发明不依赖于高精尖的测量仪器或设备,步骤简洁明了,施工过程操作简单且容易掌握,比常规的施工方法大幅度地降低了施工成本,提高了效率。
本发明公开了一种铁水脱硫渣预处理及渣、铁分离方法和副产物的应用,属于冶金领域。本发明所解决的第一个技术问题是提供一种抑尘、环保的铁水脱硫渣预处理方法;本发明所解决的第二个技术问题是提供一种经本发明预处理方法预处理后的铁水脱硫渣的渣、铁分离方法和应用。本发明采用的技术方案是对脱硫渣进行带罐打水、热闷、打砸、筛分、磨矿、磁选分离回收铁水脱硫渣中的铁;在回收铁水脱硫渣中金属铁的同时,将尾渣中MFe降至1%以下,可应用于水泥生产中。
本发明公开了一种废旧炉门刀边的维修改造方法,属于冶金生产设备维修维护技术领域。提供一种能快速、简单的对废旧炉门刀边进行修护再用的废旧炉门刀边的维修改造方法。所述维修改造方法,包括以下步骤,a、清理废旧炉门刀边,打磨清理所述的废旧炉门刀边,确定出现损坏的部位和形状;b、制备修补材料,根据步骤a确定的废旧炉门刀边的损坏部位和形状,采用2㎜的不锈钢板制备与所述废旧炉门刀边的被损坏部位的形状相适配的修补材料;c、装配,将步骤b制备的修补材料装配到所述废旧炉门刀边的被损坏部位,并点焊牢固;d、焊接,采用电弧焊将所述的修补材料与所述废旧炉门刀边的被损坏部位焊接,这样完成了一次对所述废旧炉门刀边的维修改造。
本发明涉及从钒钛磁铁矿中分离铁和钒钛的方法,属于冶金技术领域。本发明所解决的技术问题是提供了一种从钒钛磁铁矿中分离铁和钒钛的方法,该方法的铁回收率较高。本发明从钒钛磁铁矿中分离铁和钒钛的方法包括如下步骤:a、配料:按重量配比将钒钛磁铁矿100份,与添加剂15~20份和碳质还原剂15~25份混匀,其中,所述的添加剂为氯化钠、硫酸钠、碳酸钠中至少一种;b、装料、还原:a步骤中混匀后的混合物进行装料,然后于隧道窑中加热温度至920~980℃并保温5~60h,得到还原锭;c、分离:还原锭破碎、磁选分离,得到还原铁粉和富钒钛料。
本发明属于冶金领域,具体涉及一种细粒级钛精矿预还原工艺。本发明所述的细粒级钛精矿预还原工艺包括如下步骤:预处理,配料,预热,焙烧还原及冷却。本发明工艺所制得的钛精矿预还原锭,金属化率在60%以上。将此锭投入到电炉中进行深度还原与熔分,冶炼时间较传统工艺短,大大降低了能耗,同时,解决了细粒级钛精矿在电炉冶炼中原料损失及炉尘排量大的问题。冶炼所得酸熔性钛渣和块铁中TiO2和Fe的收率高,完全符合后续冶炼及高效利用的要求。
本发明涉及冶金化工领域,公开了一种从四氯化钛精制尾渣中分离钒钛的方法。该方法包括:(1)将四氯化钛精制尾渣在100‑300℃下焙烧5‑30min,得到焙烧渣;(2)向步骤(1)中得到的焙烧渣中加水进行搅拌浸出,然后进行固液分离,得到含钒浸出液和浸出残渣;(3)向步骤(2)中得到的含钒浸出液中加入TiO2晶种,进行静置,然后过滤得到含钒净化液和滤渣,其中,所述TiO2晶种与所述含钒浸出液中的钛元素的重量比为(0.001‑0.05):1。本发明所述的方法实现了四氯化钛精制尾渣中钒钛的选择性分离。
本发明公开的是冶金技术领域的一种从极低金属铁含量的钢渣中回收金属铁的方法,包括以下步骤:a、利用破碎机对钢渣进行细破,使金属铁粒解离;b、对细破后的物料经干式筛分筛除粒径大于2mm的难磨料,筛上料返回细碎机继续进行破碎;c、将筛下料经弱磁选获得精矿粉,磁选尾料为细粒级钢渣粉,用于掺合料原料使用。本发明的有益效果是:首先利用破碎机对钢渣进行细坡,筛选去除大于2mm的难磨相,然后利用磁选分离出精矿粉和和细粒级钢渣粉,一方面节约了成本,另一方面可以实现钢渣粉的简单解离,回收铁资源的同时,刨除难磨颗粒料,提高了钢渣粉产品用于掺合料的活性。
本发明涉及化工冶金技术领域,公开了一种含钒精制尾渣预氧化提钒的方法。该方法包括以下步骤:(1)将含钒精制尾渣、五氧化二钒和三氧化二钒按照100:(20~30):(20~30)的质量比进行混合;(2)将混合料置于坩埚中,并在氧气气氛下进行预氧化焙烧,焙烧温度为400~600℃,焙烧时间为1~4h,焙烧尾气通入碱性溶液中进行吸收;(3)对焙烧物料进行研磨,并将研磨后的物料加入碱性溶液中搅拌浸出,其中,浸出温度为80~90℃,浸出时间为0.5~2h,浸出液固质量比为(5~10):1;(4)过滤浸出浆液,得到浸出液和浸出残渣。该方法操作简便、氧化脱氯效率高、脱氯尾气中的氯能循环回用,同时钒收率较高。
中冶有色为您提供最新的四川攀枝花有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!