本发明采用纳米氧化硅与可释放负离子的系列超细粉体,通过掺杂共混的方法创制了ANION系列负离子添加剂,加入到聚氨酯纤维、塑料、橡胶、涂料、粘合剂等高分子材料中,成功的生产了具有释放负离子功能的改性聚氨酯复合材料。可应用于化学化工、纺织、服装、制鞋、汽车内饰、健康、环保等领域。纳米氧化硅和可释放负离子的超细微粉在复合材料中具有非常好的分散性,在加工过程中不存在任何工艺缺陷。
一种分级结构ZnO/Cu3(PO4)2可控浸润性复合材料,它是一种具有磷酸铜花状和线状纳米氧化锌的多级结构;其制备方法主要是将紫铜网在过硫酸盐和磷酸一氢盐溶液中反应后焙烧,得到花状Cu3(PO4)2的铜网;将铜网浸入Zn(CH3COO)2·2H2O与无水乙醇溶液中,真空干燥后在250~350℃退火8~20min,制作ZnO晶种;将加入锌源和有机胺的溶液及ZnO晶种包覆的铜网转移至反应釜中,加热到60~100℃,保温5~15h后从反应釜中取出铜网,漂洗后干燥,得到ZnO/Cu3(PO4)2复合物,将其在黑暗处放置5~15天后在紫外条件下照射1~3h,得到分级结构ZnO/Cu3(PO4)2可控浸润性复合材料。本发明组成和结构可控,内部结构有序且表面粗糙度大,化学性能稳定。
一种碳化硼/硼玻璃复合材料的制备方法,其主要是将碳化硼微粉、钛粉和铝粉按1:0.1~1.2:0.1~1的比例混合并装入耐腐蚀的不锈钢容器,在真空反应炉内真空加热后,将碳化硼与剩余金属粉分离;再将硼玻璃和上述碳化硼按质量比1:0.3~4的比例混合均匀后装入钢制球磨罐,放入磨球密封后抽真空,置于球磨机上,球磨5~30min后,取出上述混合物,添加水混合后加入到石墨模具中,置于热压烧结机上,冷压成型,在马弗炉中650-800℃烧结,保温10~150分钟,待冷却后将碳化硼/硼玻璃复合材料取出。本发明操作简易、设备简单,能抑制硼玻璃对碳化硼的腐蚀,具有烧结温度低,抗折强度高等优良的性能。
一种陶瓷‑金属型材复合材料及其制造方法和应用,其特征是:用陶瓷可塑成型法或陶瓷注浆成型法在金属型材表面包裹并烧结有一层具有自身刚性的板状陶瓷材料,构成陶瓷‑金属型材复合材料。将金属型材与具有一定厚度和刚度的陶瓷材料相结合,克服了二者的缺点并充分发挥了二者的优势,不用附着在框架或地板或墙板上,可将其直接用于制作具有表层瓷砖的建筑的梁、柱、楼板、墙板、楼梯或家具时,可极大地简化工艺、降低成本、减轻重量并提高效率和质量,从而达到节能、节材、节时的目的。
PVC/六环石复合材料的蘸塑制品及其制备技术,其特征是由下述配方组成:PVC糊树脂:100质量份;Anion系列负离子添加剂:0.5~12质量份;主增塑剂:26~40质量份;副增塑剂:20~36质量份;热稳定剂:1~4质量份;膨胀剂:0~10质量份;填充剂:0~40质量份;润滑剂:1~2质量份。Anion系列负离子添加剂是六环石等天然矿物制备成纳米级的超细微粉。制备工艺是混合,经搅拌器充分搅拌60min,静止放置10h,制备出混合均匀的PVC/六环石复合糊。将制件进行表面净化处理,将烘箱升温至180-190℃,然后把制件加热,时间约为10-15min。将加热的制件从烘箱中取出,并插入PVC/六环石复合糊中停留1-10s取出,制件包裹一层PVC/六环石复合糊,并凝胶,再将其放入烘箱加热塑化5-15min。按上述工艺可制备释放负离子数为1000个/cm3以上的PVC/六环石复合材料的蘸塑制品,达到了维持健康的基本需要。
一种高熵合金结合金刚石超硬复合材料及其制备方法,其化学成分包括高熵合金结合剂和金刚石微粉;高熵合金结合剂的化学成分质量百分比为铝粉5‑25wt.%、锌粉15‑30wt.%、铜粉10‑35wt.%、铁粉10‑30wt.%、余量为钛粉,金刚石微粉的含量为高熵合金结合剂和金刚石微粉总量的10‑40wt.%;其制备方法是将上述金属粉在球磨机上球磨20‑60h,制得高熵合金结合剂,和金刚石微粉混合后装填入石墨磨具中,在2‑10MPa的压力下预压成型后进行放电等离子烧结,烧结压力20‑50MPa,烧结温度750‑1000℃,保温5‑30min,制得高熵合金结合金刚石超硬复合材料。本发明制备的高熵合金结合剂及其与金刚石复合烧结的烧结体具有更好的硬度和抗折强度。
本发明公开了一种阻燃保温复合材料的制备方法,首先将多晶莫来石纤维平铺在洁净的玻璃板上,然后将二氧化硅-聚醚醚酮-三苯基磷酸酯混合溶液均匀浸涂在多晶莫来石纤维上,并用玻璃棒轻轻推移上述混合溶液使陶瓷纤维被混合溶液充分浸渍,然后将被二氧化硅-聚醚醚酮-三苯基磷酸酯混合溶液浸渍处理的多晶莫来石纤维浸泡在无水乙醇溶剂中,30~60s后将其从无水乙醇溶剂取出并用干燥的滤纸去除残留的乙醇溶剂,最后将其置于烘箱中干燥,烘箱干燥温度为100~105℃,10h后将其从烘箱中取出并自然冷却至室温,即得到该阻燃保温复合材料。本发明价格低,防火等级高,不易吸潮、吸湿和吸水,变形系数小,并且韧性大、耐化学试剂腐蚀性、稳定性、耐高温性能、防火性、生态环保性强。
一种非化学计量比氮化钛与氮化铝复合材料的制备方法,其主要是以氮化铝粉末为原料,按照非化学计量比氮化钛70~85%(质量比),余量为氮化铝的比例,于高能球磨机均匀混合30-70小时后,取出装入石墨模具中,置于等离子放电烧结机的烧结室中的Z轴压头之间,在真空条件下以压力15~60MPa、温度1400~1700℃、保温10~40min进行烧结,真空度为6~9×10-3Pa。制备的纳米复合材料硬度、强度和断裂韧性分别达到16.5~20.4GPa、309.8~681.0MPa和9.33~12.57MPam1/2。本发明制备方法简便,成本低廉,在不明显降低氮化钛硬度的基础上,使断裂韧性及强度大幅度提高。
PBT/GF/竹炭释放负离子复合材料,其特征是由下述配方组成:树脂:50-80%;Anion1050系列负离子添加剂:0.1-12%;增强纤维:15-35%;偶联剂1-7%;助剂:1.5-25%。Anion1050系列负离子添加剂是竹炭制备成纳米级的超细微粉。制备工艺是用偶联剂与负离子添加剂混合,控制温度在90℃左右,反应3-4小时,对负离子添加剂进行表面改性;将功能纤维、助剂和树脂按一定比例混合均匀,再加入经表面改性的负离子添加剂,用同旋向双螺杆机挤出造粒。共混粒料在120℃下鼓风烘箱中干燥(料层厚度小于2.5cm)后,注塑成标准试样,注塑温度230~250℃。按上述工艺可制备释放负离子数为1500个/cm3以上的PBT/GF/竹炭复合材料,达到了材料性能和维持健康的基本需要。
本实用新型属于机械加工的锻造拔长领域,具体涉及一种增材制造金属基纳米复合材料成形件的锻拔装置,可使增材制造的金属基纳米复合材料零件产生塑性变形,减少内部气孔、疏松等缺陷的产生,而且可以细化晶粒,得到组织性能更忧的增材制造成形件。该装置使用灵活,包括压头和支撑平台,所述的压头包括中轴、接触头、压头安装板,且压头安装板上开有两个对称的螺纹通孔;所述的支撑平台包括突台、固定板,且固定板上开有两个对称的沉头螺纹通孔。
一种高熵合金结合立方氮化硼超硬复合材料及其制备方法,其化学成分包括高熵合金结合剂和立方氮化硼;高熵合金结合剂的化学成分质量百分比为:铝粉10‑25、锌粉25‑30、铜粉20‑30、钛粉15‑25、余量为铁粉;立方氮化硼微粉的含量为高熵合金结合剂与立方氮化硼总量的10‑30wt.%;其制备方法主要是将上述金属粉末球磨30‑60h,制得高熵合金结合剂粉末,与立方氮化硼微粉混合装填入石墨磨具中,在3‑10MPa的压力下预压成型后进行放电等离子烧结,烧结压力20‑50MPa,烧结温度800‑1000℃,保温10‑30min,制得高熵合金结合立方氮化硼超硬复合材料。本发明制备方法简单,高熵合金作为立方氮化硼磨具结合剂,具有更好的硬度和抗折强度。
本发明涉及一种低温制备TiN-AlN-TiB2陶瓷复合材料的方法,其主要是以Ti2AlN和cBN粉末为原料,这两种成分的体积百分比为:cBN?10-30%,Ti2AlN90-70%;将这两种粉末放入玛瑙研钵中,加入无水乙醇溶液作为分散介质进行人工手混后自然干燥;再将得到的混合粉体放入高强石墨模具,预压成型后放入放电等离子烧结系统进行烧结,烧结过程处于氩气保护气氛,施加的压力为30-50MPa,烧结温度为1200-1300℃,保温10min;烧结结束后随炉冷却,制备出TiN-AlN-TiB2陶瓷复合材料。本发明具有制备时间短、能耗低、工艺简单、重复性好、适宜规模化生产的优点。
一种制备颗粒强化金属基纳米复合材料的方法,主要是将尺寸为50-1000nm的金属/合金粉末于室温下将其暴露在空气中或在50至300℃温度下置于含氧量体积分数为1至10%的混合气体中使粉末表面生成一层氧化膜;采用放电等离子高温烧结对预氧化的粉末进行固结,然后采用轧制、锻造和挤压进行变形,获得颗粒强化金属基纳米复合材料。本发明氧化物强化相分布均匀、生产周期短、生产效率高、容易实现大规模工业化生产。
本发明公开了一种新型结构的铁碳复合材料及其制备方法,是以微米级炭微球(GAC)作为复合材料的载体,基于柯肯达尔效应,在空气燃烧的驱动力下促使纳米级单质铁扩散到炭微球表面。其中,炭微球是经过悬浮聚合法制备得到,GAC‑GAC‑nZVI的制备是通过还原剂还原硫酸亚铁和包覆酚醛树脂‑碳化‑空烧,依据柯肯达尔效应制得。本发明提供的这种制备GAC‑GAC‑nZVI的方法不仅实现了对活性炭孔结构进行优化,并同时保证了纳米级单质铁的均匀分散,GAC‑GAC‑nZVI的吸附降解性能大大提高。
本发明公开了一种Cu表面激光增材制造梯度复合材料的方法,包括以下步骤:制备用于激光增材制造梯度材料的粉末原料;Cu基体的表面预处理;利用激光增材制造设备,通过调控粉末成分和工艺参数逐层沉积,获得梯度复合材料;本发明所获得的梯度材料中主要元素Cu、V、Ni沿构建方向呈梯度分布,梯度层之间结合良好,随着增强相含量的增加,梯度材料的硬度值逐渐提高。
PBT/GF/无机矿石释放负离子复合材料,其特征是由下述配方组成:树脂:50-80%;负离子添加剂:0.1-12%;增强纤维:15-35%;偶联剂1-7%;助剂:1.5-25%。Anion系列负离子添加剂是无机矿石等天然矿物制备成纳米级的超细微粉。制备工艺是用偶联剂与负离子添加剂混合,控制温度在90℃左右,反应3-4小时,对负离子添加剂进行表面改性;将功能纤维、助剂和树脂按一定比例混合均匀,再加入经表面改性的负离子添加剂,用同旋向双螺杆机挤出造粒。共混粒料在120℃下鼓风烘箱中干燥(料层厚度小于2.5cm)后,注塑成标准试样,注塑温度230~250℃。按上述工艺可制备释放负离子数为1500个/cm3以上的PBT/GF/无机矿石复合材料,达到了维持健康的基本需要。
本发明公开了一种Fe3O4@CuOx复合材料,属于纳米酶技术领域,包括Fe3O4和CuOx混合物,所述Fe3O4和CuOx混合物的质量比为1:10,其中,CuOx混合物为CuO与CuO2的混合物,所述CuO与CuO2的质量比为2:23。本发明采用水热法制备Fe3O4@CuOx复合材料,制备的Fe3O4@CuOx材料具有过氧化物酶活性。不同于单独的Fe3O4和CuO2,Fe3O4@CuOx中CuOx为混合物,大幅度提高Fe3O4的过氧化物酶活性,材料性质稳定,很容易被外磁体分离。同时Fe3O4@CuOx复合材料对大肠杆菌和金黄色葡萄球菌有良好抗菌活性。
本发明提供了一种C/C复合材料及其表面抗氧化复合涂层的制备方法。C/C复合材料表面抗氧化复合涂层的制备方法,包括下列步骤:在C/C复合材料表面先平铺内层抗氧化粉末,再平铺外层抗氧化粉末,得到毛坯;将所述毛坯放入放电等离子体烧结炉中,于1200~1400℃、无氧环境下保温烧结30s~1min,出炉,得到产品;其中,所述内层抗氧化粉末主要由以下成分组成:按重量计,60~70份单质Si、20~30份单质C;所述外层抗氧化粉末主要为SiC粉末。本发明制备工艺内外涂层无需分步进行,制备温度低,制备时间短,制得的抗氧化涂层均匀致密、与基体结合良好、抗氧化温度高。
本发明属于离子电池技术领域,具体涉及一种Co‑LDH/MXene复合材料及其制备方法和应用。本发明提供的Co‑LDH/MXene复合材料,包括MXene和生长在所述MXene表面的钴层状双氢氧化物。所述钴层状双氢氧化物提高了MXene的层间距,能够避免MXene发生堆叠,提高了复合材料的比表面积,从而提高了储锂性能,进而提高了锂离子电池的比容量和循环性能。
本发明公开了一种高温隔热石墨稀基复合材料薄膜的制备方法,所述高温隔热石墨稀基复合材料薄膜包括重量份为29‑46的水,重量份为0.25‑0.5的稳定剂,重量份为0.25‑0.5的分散剂,其制备方法包括下步骤,将重量份为30‑46的水置于容器中,加入重量份为0.25‑0.6的稳定剂、重量份为0.25‑0.5的分散剂、重量份为0.25‑0.5的消泡剂和重量份为25‑36的水玻璃,搅拌混合均匀。本发明可适用于钛合金,不锈钢,高温合金,复合材料等,可耐150℃‑500℃高温,耐高温腐蚀,耐磨损,不脱落,使用寿命长,可更好地满足各种飞行器热部件保护及设备减重、盐雾腐蚀等技术要求。
本发明提供了一种Ti3AlC2‑Fe合金基耐高温自润滑复合材料及其制备方法,属于润滑材料领域。该复合材料是通过将原料混料后烧结制得,其中原料按质量百分比计为:Ti3AlC25‑50%,其余为Fe合金;该Fe合金按质量百分比计为:Cu粉1‑15%、Ni粉0.1‑5%%、Cr粉0.5‑5%,其余为Fe粉。这种Ti3AlC2‑Fe合金基耐高温自润滑复合材料,不但具有耐疲劳、耐冲击、耐高温、承载能力强等优点,而且能够实现自润滑性能,降低摩擦系数,高温状况下自润滑性能更为优异,适用于制作恶劣工况下的自润滑材料。
一种纳米氢氧化镧复合材料的制备方法,其主要是将大孔离子交换树脂置于Tris‑HCl缓冲溶液中,反应后获得表面涂覆聚多巴胺的大孔聚苯乙烯母体材料,过滤并将其置于La(III)盐溶液中,将镧盐扩散至球体外表面,通过氨水原位沉淀制得纳米氢氧化镧复合材料,其担载量为5.9%‑35.2%;使用上述复合材料去除废水中微量磷的方法是将上述复合树脂装填在吸附柱内,再将微量磷酸盐污染水,自上而下顺流通过装有吸附剂的过滤柱,当出水中磷酸盐浓度高于0.5mg/L时,需用NaOH与NaCl的混合液脱附高效再生。本发明处理效率高,处理能力大,环保效益明显,受磷酸盐污染废水出水中磷酸盐含量可以降至50ppb以下。
一种氧化石墨烯/苝酰亚胺给受体复合材料,其制备方法,主要是采用3,4,9,10-苝四羧酸二酐为原料,通过溴化反应、酰胺化反应、亲核取代反应合成了具有低LOMO能级、光电性能优异的苝酰亚胺类衍生物;然后基于亲核取代反应合成了氧化石墨烯/苝酰亚胺、有机无机杂化给-受体复合材料。本发明的复合材料所用的原料易得,价格便宜,反应产率高。氧化石墨烯大的比表面积及含氧官能团能与金属离子产生强烈的作用,对环境中的铜二价金属离子具有高度的敏感性和选择识别性,对pH具有敏感性。
本发明公开了一种低温‑55℃耐冲击、高温70℃抗变形聚丙烯复合材料及其制备方法,该材料是一种长玻璃纤维掺混短切芳纶纤维的聚丙烯复合材料,包括如下质量百分比的组分:聚丙烯50~90%、玻璃纤维0~30%、短切芳纶纤维0~20%、相容剂2~10%、特种增韧剂5~30%、润滑剂0.2~1%、其他助剂0.1~2%。本发明的优势在于结合了长玻纤增强聚丙烯材料耐热变形和短切芳纶纤维增韧聚丙烯耐低温冲击的特点,同时加入特种增韧剂,改进注塑时纤维取向性能。将上述两种纤维与聚丙烯材料共混改性制备聚丙烯复合材料,并直接注塑成型。用该材料制备的军用弹药包装箱,同时满足高温70℃密封性能和低温‑55℃跌落无破坏的性能要求,该材料在军事、航空等领域具有广阔的应用前景。
本发明公开了一种Mo2C结合的TiNx复合材料及其制备方法,材料的化学成分的体积百分比为:10~40%的Mo2C粉,其余为TiNx,0.3≤x≤0.9或x=1.1~1.3。其制备方法包括如下步骤:S1:制备150nm以细的TiNx;S2:制备150nm以细的Mo2C;S3:混料、预压、放电等离子烧结制得制得Mo2C结合的TiNx复合材料。本发明利用TiNx中的空位能降低烧结温度,提高其硬度及断裂韧性,解决了过渡族碳化物较难烧结的问题,并通过SPS烧结,获得硬度更高的TiN‑Mo2C复合材料。
本发明公开了属于润滑脂添加剂领域的一种润滑脂用石墨烯基碳酸钙纳米复合材料及制备方法。所述石墨烯基碳酸钙纳米复合材料为氧化石墨烯纳米碳酸钙、氮掺杂氧化石墨烯纳米碳酸钙、氟掺杂氧化石墨烯纳米碳酸钙,是通过将石墨烯基分散液加入到纳米碳酸钙分散液中,于常温下360w超声0.5h,然后高速离心分离,将产品于60℃干燥18h得到的。所述石墨烯基碳酸钙纳米复合材料可以有效降低摩擦系数,尤其是跑合阶段的摩擦系数,提高润滑脂的减摩性能,且制备方法简单易行,反应条件温和,成本低。
一种深度净化水中微量氟的复合材料,其是以纳米磷酸钛为无机功能吸附剂,常规强碱性阴离子交换树脂为担体的树脂基纳米磷酸钛复合材料,其纳米磷酸钛的担载量为3.3%-24.1%。该复合材料的制备方法主要是:将钛酸丁酯溶解于水中,控制其质量分数含量为3%-35%,同时加入强碱性阴离子交换树脂,在温度40-60℃,反应4-6h;过滤并将固体物质置于质量分数为10%~40%的磷酸溶液中常温下进行原位沉淀反应8-10小时,而后过滤,将固体物质再于50-70℃下热处理5-8h。当受氟离子污染水中含有大量的NO3-、SO42-、Cl-等常规阴离子竞争时,经本发明吸附材料处理后,出水重氟离子仍能降低到GB5749-2006生活饮用水控制标准以下,且效果显著。
聚烯烃/和田玉复合材料的特征在于如下配方:PP树脂90-95份;负离子添加剂4-5份;玉粉1.5-2.1份;抗老化剂0-0.5份;抗紫外线剂0-0.5份。该复合材料中添加了负离子添加剂,可以释放负离子、缓解疲劳、使心情舒畅、驱除各种异味、净化空气。此外,玉粉的加入对该复合材料的性能也有了进一步的提高。
一种纳米钙钛矿/石墨烯复合材料,主要是一种具有多孔结构,其孔径约为0.5μm~1.5μm,纳米钙钛矿粒子在石墨烯膜上分布较均匀,平均晶粒尺寸约为10~20nm的复合材料。其制备方法主要是以石墨纸为阳极,碳棒为阴极,浓硫酸为电解液,进行氧化剥离,制备出薄层石墨烯材料,再将其制备成石墨烯悬浮液;将硝酸盐和柠檬酸加入到石墨烯悬浮液中,使金属硝酸盐水解形成溶胶,再聚合生成凝胶,最后经干燥、焙烧得到。本发明工艺简单、成本低,化学均匀性好,反应过程易于控制,纳米钙钛矿粒子在石墨烯膜上分布较均匀,且粒子尺寸较小,本发明获得的复合材料具有良好的电催化性能,适合作为燃料电池的电催化材料使用。
本发明提供了一种碳复合的硫族化合物复合材料及其制备方法和应用,属于二次离子电池技术领域。本发明提供的碳复合的硫族化合物复合材料包括硫族化合物纳米晶和乱层石墨碳,所述硫族化合物纳米晶位于乱层石墨碳的网络化框架结构中,所述硫族化合物纳米晶的材质包括金属硫族化合物、二硫化硅和二硒化硅中的至少一种。本发明所提供的碳复合的硫族化合物复合材料在循环充放电100次以上时,仍然能够保持较高的质量比容量和99%以上的库伦效率,具有优异的循环稳定性和倍率性能。
中冶有色为您提供最新的河北秦皇岛有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!