本发明涉及一种从铀矿地浸液中回收低浓度铼的方法。针对含铼铀矿地浸液中铼浓度低,富集回收困难的问题,选用具有双功能基团的阴离子交换树脂,利用其特有的强碱性和弱碱性交换基团,在提铀过程中实现对低浓度铼的高效吸附。负载树脂先解吸铀,而铼不解吸,然后载铼树脂返回循环吸附,提高树脂中铼容量,从而实现对地浸液中低浓度铼的高效富集。采用该法,针对ρ(Re)<1.0mg/L的铀矿地浸液,在铀回收率98%的同时,可回收90%的铼,所得铀合格液中ρ(Re)<1mg/L,铼合格液中ρ(Re)可达1g/L,铼富集达2000倍以上,ρ(U)<5mg/L。该方法铼回收率高,分离效果好,工艺简单,可在不大幅变动现有铀回收工艺的条件下实现铼的高效回收,具有较好的工业应用价值。
本发明提供了一种液液固三相反萃系统及其处理方法和用途,所述液液固三相反萃系统包括反萃罐、油水分离器和固液分离装置,其中反萃罐包括油水相出口和液固混合相出口,所述油水相出口位于反萃罐的中部以下位置,油水相出口与油水分离器的物料入口相连,所述液固混合相出口位于反萃罐的底部,液固混合相出口与固液分离装置的物料入口相连;所述反萃罐内设搅拌装置,反萃罐的底部壳体为不规则形状。本发明通过对反萃罐结构进行改进,可以简便分离液液固三相反应体系,并能保证固体顺利排出且萃取有机相出口不会残留固体物料,进而保证了萃取法制备钒产品的纯度。
本发明涉及一种从混合稀土中分离铈与非铈稀土,并副产铈基抛光粉的技术。本发明采用高温氟化的方法,向含铈的混合稀土中加入氟,氟加入比例为CeO2重量比的1-50wt%,200-800℃下高温氟化0.5-8hr,氟优先与铈反应形成不溶于酸的铈氟化合物,加酸溶解后,可溶于酸的非铈稀土溶解在溶液中,铈留在渣中,可轻易实现铈与非铈分离的目的。优溶渣中为铈和氟,与铈基抛光粉的主成分相同,经过洗涤灼烧后可得到粒度均匀的颗粒,D50~2~5μm,符合抛光粉应用的标准。整个流程减少固液分离步骤,降低辅料消耗,设备单产提高,稀土收率提高,生产过程污染小,没有含F废水的排放,且将价值较低的优溶渣产品做成了高附加值的抛光粉,极大的提高了生产效益。
本发明公开了一种低酸浸出电子废物中铜的工艺,包括:电子废弃物物理拆解‑破碎‑筛分‑硫酸铁浸出‑置换或萃取‑电积。该工艺在低酸条件下,使用硫酸铁作为浸出剂,在常温常压下浸出反应,对电子废物中金属铜具有非常好的浸出效果。可利用硫酸铁的水解反应产生的酸平衡电子废物的耗酸反应,可利用在酸性条件下硫酸铁具有的强氧化性使电子废物中微细粒铜得到氧化溶解,并通过置换或萃取‑电积回收铜。整个反应过程较为温和。此工艺具有流程短、铜浸出率高、酸耗低等特点,具有良好的经济效益和社会环保效益。
本发明提供一种高钴硫酸锌溶液净化除钴的方法,所述方法包括:在外场强化条件下,进行多次锌粉置换磁化分离除钴,所述锌粉置换磁化分离除钴过程中,加入锌粉和软磁体,第一次所述锌粉置换磁化分离除钴过程中加入的软磁体为ZnFe3O4和/或整个净化除钴过程中回收的再生软磁体;其中,所述高钴硫酸锌溶液中钴的浓度大于50mg/L。本发明的方法具有全过程无有毒有害气体产生,生产安全;不需要外加热源、能耗低;反应时间短,锌粉消耗少,软磁体可循环使用,成本低;无二次污染、环境友好等多项优势,实现了高钴硫酸锌溶液中钴的高效净化,净化后钴离子的浓度不超过1.0mg/L,完全符合大极板电解锌生产对新液的要求。
一种提高城市生活垃圾焚烧飞灰生物淋滤效果的方法,涉及一种生物脱硅与生物淋滤联合浸出垃圾焚烧飞灰中重金属的方法。具体步骤是:利用硅酸盐细菌对飞灰进行生物脱硅处理,破坏飞灰中的矿物晶格释放出更多的金属氧化物;利用黑曲霉对脱硅处理后的飞灰进行生物淋滤,由于有更多的重金属氧化物能够与黑曲霉菌体产出的有机酸充分接触反应,从而显著提高了生物淋滤过程中的重金属溶出效果。该方法操作简便,效率高,经济可行,安全,是一种环境友好的去除垃圾焚烧飞灰中重金属的有效方法,并且浸出毒性远远低于危险废物鉴别标准,飞灰可进入填埋场或进一步资源化利用。
本发明公开了一种低锂用量下失效磷酸铁锂正极材料补锂修复方法,属于废旧锂离子电池的回收、电极材料的循环再利用领域。该方法首先将失效磷酸铁锂正极材料与含锂水溶液、还原剂混合于反应容器中,在低液固比、高锂浓度的反应体系中对缺锂态的磷酸铁锂进行一次补锂修复,然后不进行液固分离直接蒸干水分,再通过煅烧进行二次补锂,最终获得组成、结构和电化学性能均得到有效恢复的磷酸铁锂粉末。该方法在低温(<100℃)、常压(1atm)实现失效LFP正极材料液相补锂,规避了使用高温、高压的液相反应条件,全过程锂用量仅为理论用量的1.1~1.2倍,具有较好的经济和环境效益。
本发明涉及一种用三烷基胺萃取回收萘系染料 中间体废母液中有机质的新工艺。萘系染料中间体废母液中带 有磺酸特征基因,本工艺用经煤油稀释后的三烷基胺作为萃取 剂,对废母液在20-50℃下萃取5-10分钟,然后将其分离。 对分离出的有机相,用NaOH溶液对其在15-50℃下反萃取 5-10分钟,然后将反萃取体系分离,分离后的水相即为本发明 产品,用于染料中间体的生产过程,或用于生产新的染料中间 体。
本发明提供了一种超微氧化钪的制备方法。该方法包括:采用羧酸萃取剂‑有机溶剂混合溶液对含钪离子溶液进行萃取处理,得到钪负载有机相,其中羧酸萃取剂‑有机溶剂混合溶液中的羧酸萃取剂相对于含钪离子溶液中的钪离子过量添加;将钪负载有机相与氨水混合并进行皂化反应,形成水‑油乳液;加热干燥水‑油乳液并其发生热水解反应,得到钪沉淀;煅烧钪沉淀,得到超微氧化钪。上述制备方法中,利用羧酸萃取剂的萃取,微反应器对于钪沉淀形状、尺寸的控制,结合氨水的酸碱调节能力和羧酸萃取剂在热水解反应过程中的包覆能力,有效制备了尺寸在超微级别的氧化钪产品。除此以外,本发明提供的制备方法还具有简单高效的特点,更利于应用于工业化生产。
本发明针对目前我国废旧电子电器产品中贵金属难以有效回收的现状,提供一种废弃线路板中钯的有效富集方法。其特征是:首先采用预处理方式将去除电子元器件后的线路板脆化,破碎后采用两级筛分法配合风选使线路板分为金属大颗粒、非金属大颗粒、金属小颗粒和非金属小颗粒,接近100%的钯富集在金属大颗粒和金属小颗粒中。该方法操作简便、效率高、金属与非金属分离彻底,同时还可以实现其它贵金属的有效富集,具有良好的产业化应用前景。
一种CdTe太阳能电池组件的回收方法,其特征在于:将去除了EVA封装胶的CdTe太阳能电池玻璃组件浸没于硫酸/双氧水溶液中充分酸蚀后,采用磁性聚合物微球直接、快速地从CdTe的酸蚀溶液中富集Cd和Te元素,获得的高浓度Cd和Te酸蚀溶液可进一步用于电解过程。此回收过程具有富集分离效率高、工艺过程简单和易于实现放大等特点,磁性聚合物微球可再生利用。
本发明涉及一种工业酸性废水的处理方法,属于废水处理,该方法包括以下步骤:将工业废钡渣进行预处理;分析测定工业酸性废水的pH值、重金属等阳离子与硫酸根等阴离子的含量;确定工业酸性废水、钡渣及传统中和剂的配比与用量,充分搅拌,静置;进行固液分离,详细方法步骤见说明书。本发明中和了工业酸性废水,治理了工业酸性废水中含有的铅、锌、镉和砷等有害物质。本方法的优点是:简单易行、反应速度快、成本低、以废治废、综合利用、固液分离容易等,同时各项治理功能均能得到高效实现,能够为利用钡渣治理工业酸性废水这项技术,在实际生产过程中得到大规模应用与推广奠定良好的基础。
本发明提供一种从矿石中综合回收铀铌钽的方法,该方法包括步骤:(1)将含铀铌钽矿石磨细、过筛;(2)将磨细后矿粉通过调节加入水量控制浸出液固比为1.0~3.0,浸出温度为75~100℃,先加入浓硫酸反应0.5~1h,再加入氢氟酸继续浸出2~4h;(3)对浸出矿浆进行过滤、洗涤,浸出液进行铀、铌钽分离回收;(4)采用P204、TBP以及磺化煤油组成的混合有机相直接对浸出液中的铀进行分离;(5)用HF和H2SO4对溶液中酸度进行调整,得到铌钽萃取原液。本发明采用低浓度氢氟酸?硫酸体系同步浸出铀、铌钽,通过控制浸出液硫酸和氢氟酸浓度实现铀的高效萃取分离,避免从铌钽渣中提铀过程繁琐的除氟工艺,简化处理工艺,节约试剂消耗,减少废物产生量。
本发明涉及一种铜和锰的分离方法及其应用,所述方法包括如下步骤:(1)对铜锰料液进行第一萃取,得到第一有机相和第一水相;其中,所述第一萃取中使用的萃取剂A包括羧酸类萃取剂中的1种或至少2种的组合;(2)将步骤(1)得到的第一有机相依次进行洗涤和反萃,得到含铜溶液;(3)将步骤(1)得到的第一水相进行第二萃取,得到第二有机相和第二水相;所述第二有机相经依次进行的洗涤和反萃得到富锰溶液。通过本发明提供的方法,将铜和锰两种有价金属有效分离提取,操作简单,同时,羧酸类萃取剂对Cu和Mn提取率均大于99.5%,硫酸反萃率大于99.5%。
本发明涉及一种从钒铬还原废渣中分离回收钒和铬的方法。本方法的主要步骤为:经浆化洗涤脱除水溶性盐后,剩余的钒铬还原废渣在碱性溶液中氧化提钒,同时实现钒铬分离,浸出液经冷却结晶可得到正钒酸钠产品;将提钒后的钒铬还原废渣酸性浸出,经除杂及蒸发结晶后制备碱式硫酸铬产品。根据本方法制备的正钒酸钠产品纯度在93%以上,碱式硫酸铬中Cr2O3含量可达到24%,Fe含量小于0.1%,符合HG/T?2678-2007中对于碱式硫酸铬I类产品的要求。
本申请提供一种高铜含量钼矿除杂的方法和高铜含量钼矿除杂与溶液闭路循环的方法,涉及冶金领域。高铜含量钼矿除杂的方法:将高铜含量钼矿在助浸剂辅助下进行有氧浸出,固液分离得到含铜浸出液和含钼浸出渣,含钼浸出渣经洗涤后得到高纯度钼精矿。高铜含量钼矿除杂与溶液闭路循环的方法:将高铜含量钼矿在助浸剂辅助下进行有氧浸出得到含铜浸出液和含钼浸出渣;含钼浸出渣经洗涤后得到高纯度钼精矿;含铜浸出液使用萃取剂进行萃取回收铜,萃余液用于进行有氧浸出。本申请提供的方法,通过控制工艺条件,在不破坏辉钼矿矿相结构的条件下,氧化浸出黄铜矿,能够有效将铜和钼分离,提升钼精矿品质并回收铜等有价金属的双重目标,具有良好的经济效益。
本发明公开了一种铁矾渣钙化氯化挥发综合资源化利用的方法,属于有色金属工业固体废渣处理领域,处理方法包括:将铁矾渣破碎与煤粉、氯化剂一同混合,利用制粒机制出3‑7mm球团颗粒料,将球团颗粒干燥得到干燥球团物料;将干燥的球团物料置于温度1000‑1250℃中进行焙烧,得到氯化挥发烟尘和烧渣,完成铁矾渣钙化氯化处理。此发明能够回收多种有价金属,实现铁矾渣资源化和无害化处理。
本发明涉及一种低转速自吸式萃取设备,所述萃取设备的萃取罐内安装轴壁上带有进料口的空心转轴及固定于空心转轴上的液相分散器,转轴与马达相连,该液相分散器由两个以上单通道简单液相分散器串联组成,各个简单分散器均有进料口,空心转轴和空心转鼓,并且相通。但各个简单分散器之间不通过空心转轴相通,在上N-1级简单液相分散器的通道出口处设有方向朝下的外罩。该萃取装置特别适用于大相比,易乳化体系。将至少两个自吸式相分散搅拌器串成一体,将轻相均匀地分散在重相的过程中,可在两相界面清晰的情况下连续操作,避免了乳化现象,设备投资小,易操作,电机转速要求低,动力消耗低,对溶液的剪切力小,有利于保持生物大分子的活性。
一种三硫化二铋纳米结构的合成方法,涉及一种具有储氢功能的半导体纳米材料的制 备工艺。该方法是以三氯化铋(BiCl3)、谷胱甘肽(glutathione,Glu-Cys-Gly,GSH)为原料, 在室温下,配置包括三氯化铋和谷胱甘肽的乙二醇溶液,作为反应起始液。将该反应起始液 放置一个聚四氟乙烯内衬的不锈钢反应釜内,在120~270℃温度范围加热8~48小时,即可得 到棒状及由棒状作为二级结构组成的复杂的刺球状结构的三硫化二铋。纳米材料的性质与尺 寸、形状以及反应体系是有很大关系的,我们合成出的一种三硫化二铋纳米结构是利用生物 分子——谷胱甘肽为原料之一参与反应,这为研究三硫化二铋性质和实际用途提供了新的合 成方法和新材料。无论在学术研究还是在应用方面,均具有重要的意义。
本发明适用于从大量有价金属料液中除铁,如铜、钴、镍、铝、锌等浸出液中萃取除铁,而反萃条件不苛刻,仅需用0.3~3N的硫酸即能反萃,比一般方法所需硫酸少5-7倍,具有广泛的实用意义。
本发明提供了一种锰湿法冶炼方法和锰湿法冶炼系统。冶炼方法包括对锰矿依次进行硫酸浸出和除杂,得到含硫酸镁、硫酸锰和硫酸铵的混合溶液;将混合溶液分成第一部分和第二部分,对第一部分的混合溶液依次通过电积处理和电解处理,得到有价金属锰;对第二部分的混合溶液依次进行锰沉淀处理和镁沉淀处理,得到锰沉淀物和镁沉淀物;将锰沉淀物返回硫酸浸出的步骤。通过对除杂后的混合溶液中的一部分抽出,并对锰和镁分别进行沉淀,锰返回浸出步骤继续完成锰的冶炼过程,而镁盐则以沉淀物的形式被排出。该方法使得锰冶炼过程中镁以沉淀渣的形式被排出反应体系外,一定程度上减少了镁的结晶,进而减低了堵塞管道的风险,提高了生产的稳定性。
本发明公开了一种用于金属电积的阴极板,包括:板体,所述板体的前表面和后表面上的预定区域内分别一体地形成有绝缘层,所述板体的前表面上的绝缘层与所述板体的后表面上的绝缘层在所述板体的厚度方向上至少部分重叠,其中在所述板体插入电解液时所述绝缘层的上沿高于所述电解液液面且所述绝缘层的下沿低于所述电解液液面;和导电梁,所述导电梁设在所述板体的上端。根据本发明实施例的用于金属电积的阴极板,金属电积效果好,生产加工简单,使用寿命长,维护成本低,实用性好。
本发明涉及固废协同处置再利用技术,特别涉及废石膏、铅玻璃与铅膏协同处置制备铅精矿的方法,属于环境保护及资源再利用领域。该方法采用废石膏、铅玻璃和铅膏为主要原料,添加煤粉和粘接剂,通过混合球磨、压块、烘干和转化等工序得到人造铅精。制备得到的人造铅精矿满足四级及以上铅精矿标准(YST?319-2007)。本方法旨在实现废石膏、铅玻璃危险废物的再利用,制备得到的人造铅精矿满足现有铅冶炼生产要求,达到废物再利用及协同处置的目的。同时,制备的人造铅精矿含有冶炼所需造渣剂的CaO、SiO2成分,可节约部分造渣剂。本方法变废为宝,工艺简单,成本低廉,解决了废石膏和铅玻璃等大宗危险废物的堆存问题。
本发明提供了一种强化废旧锂离子电池金属回收的方法,该方法先将废旧锂离子电池焙烧、破碎、分选得到正极粉料,再将正极粉料用于湿法浸出,浸出过程中通过高能球磨实现机械化学活化,浸出的同时执行机械活化,所得到的浸出液可进一步的用于有价金属元素的回收;本发明流程简单、可操作性强,在机械力与化学活化协同作用下,可大幅度缩短正极粉料的浸出时间,提高金属元素的浸出率,降低成本,具有良好的市场前景。
本发明涉及一种烷基膦酸的制备方法,包括:将由通式(I)所示的烷基膦酸作为催化剂加入作为原料的由通式(II)所示的烷基膦酸酯中,催化剂的加入量为原料的重量的1wt%~15wt%;在150℃~200℃,缓慢且持续地加入蒸馏水,进行自催化水解反应;产生的低级醇和被汽化的水经由冷凝器冷却后收集;实时监测作为原料的烷基膦酸酯的特征峰,来判断水解反应进行的程度;待烷基膦酸酯的特征峰消失,停止加入蒸馏水;真空脱除反应混合物中残留的水分和低级醇,得到由通式(I)所示的烷基膦酸。本发明的制备方法仅以少量目标烷基膦酸为催化剂,制备工艺简单,对设备要求低,不产生酸性废弃物,具有显著的环保特征,且水解反应彻底,所得烷基膦酸产物纯度高。
本发明公开了属于制备纳米金属材料领域的一种纳米级铂铑合金粉末及其制备方法。所述的铂?铑合金粉末为球形粉末,粒度分布为50~100nm,平均粒径为65nm,松装密度为1.2~1.6g/cm3,振实密度为1.8~2.0g/cm3。使用水热法制备铂铑合金粉末,将氯铂酸和三氯化铑混合溶液与有机还原剂、分散剂一起放置到聚四氟乙烯为内衬的不锈钢反应釜,加热反应一段时间制备得到纳米级铂铑合金粉末。该方法制备得到的合金粉末颗粒细小,粒径分布集中,可用作NOx传感器的催化电极的制备,制备方法简单易行,有利于工业化生产。
本发明公开一种处理废旧的电子产品的系统和方法。该系统包括:预处理单元、混合单元、热解单元、分离单元、油气分离净化单元和电石生产单元。利用该系统处理废旧电子产品的方法包括以下步骤:(1)预处理:废旧电子产品拆解和破碎;(2)混合:预处理产物与钙基原料混合;(3)热解:混合后产物热解生成高温油气和固体含碳物,收集高温油气,固体含碳物出料;(4)分离:固体含碳物经过细破碎、分选分离,获得热解炭;(5)油气分离净化:高温油气分离得到不凝气,不凝气经处理得热解气;(6)电石生产:热解炭在电石炉反应得到电石。本发明将废旧电子产品的回收和电石生产耦合,实现废旧电子产品的资源化回收利用且降低了电石生产成本。
本发明提供了一种从硫酸镁溶液中回收镁元素和钙元素的方法。该方法包括:将硫酸镁溶液与氯化钙进行中和反应,得到氯化镁溶液和石膏,硫酸镁溶液中包含钙离子;使氯化镁溶液与氢氧化钙进行复分解反应,得到氯化钙溶液和氢氧化镁粗产品;将氢氧化镁粗产品与二氧化碳进行碳化反应,得到碳酸氢镁溶液;及碳酸氢镁溶液进行热分解反应,得到碱式碳酸镁。通过本申请提供的回收方法,不但能够回收硫酸镁溶液中的钙元素,而且还能够回收其中的镁元素,而且上述两种元素均具有较高的纯度。
本发明提出了处理金属合金的方法及其系统,金属合金含有多种金属,具体方法包括:利用硫化剂对金属合金进行硫化处理,以便获得金属硫化物;利用一氧化碳对金属硫化物进行处理,以便使得金属硫化物发生羰化反应,以便获得复合金属羰化物以及羰化后渣,其中,羰化后渣含有贵金属,复合金属羰化物包含多种金属中至少一种的金属羰化物;将复合金属羰化物进行蒸压雾化,以便获得雾化产物;以及将雾化产物进行分馏,以便对雾化产物中所包含的各种金属羰化物进行分离。利用该方法可以显著提高金属合金中的金属分离提取率。
中冶有色为您提供最新的北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!