.本发明属于锂电池负极材料制备技术领域,更具体地说,涉及一种负极材料碳化用系统及碳化工艺。背景技术.随着新能源汽车的兴起,动力电池负极材料需求量日益增加,而人造石墨在负极材料中占比近%。人造石墨负极材料生产一般包含四大工序,包括破碎、造粒、石墨化和筛分,四大工序又细分成十几道工序,流程基本一致。四大工序中,石墨化的生产成本占负极材料成本超过%,如何降低石墨化成本成为各个企业最关注的问题。人造石墨负极材料原料一般使用石油系或者煤系针状焦,不同原料的针状焦原料含有%甚至更多%的挥
.本发明涉及电池检测技术领域,具体为一种方壳电池氦检系统。背景技术.目前市场上一次氦检工位均是采用两个平行放置模组来实现上下料,检测机构垂直于模组放置在两模组之间,氦检设备总体在来料线体流向上较窄,垂直于线体上较长,呈长方体型,模组的运输距离较长,且一次氦检与激光打标相互独立,是两个独立的设备。在工件流转上,两者之间要用线体过渡且每个设备均需一套上料机械手和下料机械手。发明内容.本发明的目的在于提供一种方壳电池氦检系统,以解决上述背景技术中提出的问题。.为了实现上述目的,本发明一方面提供
本发明涉及化工涂料物质制备技术领域,具体涉及一种光伏电池板用粉末涂料、其制备方法及使用方法。背景技术传统的光伏组件使用玻璃封装,每平方米组件超过10kg,并且安装支撑结构,光伏组件的重量达到每方米12kg。当在建筑物顶部或者墙壁使用时,由于极高的重量导致人工难以施工,安装强度大,实施困难,有些地方甚至难以承重导致无法安装光伏组件。因此需要寻求用于光伏模块的新封装材料替代玻璃,以处理现有光伏模块封装结构重量过重问题。这种新型封装材料应具有重量轻,易弯曲,不易折断,耐紫外老化优异,抗冲击,防火,透明
.本实用新型涉及电池模组拆解技术领域,具体涉及一种锂电池模组智能高效拆解装置。背景技术.当前,我国新能源汽车产业呈现持续快速发展态势,随之而来的废旧动力蓄电池若不能被妥善回收利用,会给社会带来较大的安全环保风险,然而退役的锂电池不是所有的电芯都失去了使用价值,绝大多数的电芯还可以运用至低层级的场景中,但是有些场景不能直接使用退役下来的电池模组,需重新分容再组,这个过程就需要拆解现有退役模组成单体电芯。.目前,电池模组的拆解方式主要由人工完成,然而,由于拆解过程难免会造成电池短路出现闪弧现象
本发明主要涉及软包电池热管理的技术领域,具体涉及一种软包电池热管理系统及其操作方法。背景技术软包电池一般是在液态锂离子电池套上一层聚合物外壳,在结构上采用铝塑膜包装,在发生安全隐患的情况下软包电池最多只会鼓气裂开,软包电池的优点一般表现在安全性能好、重量轻、容量大、内阻小和设计灵活。电池在使用过程中,由于自身充放电时容易在瞬时间释放出大量的热量,如果不能及时地对其进行降温处理,不仅会降低电池的使用寿命与效率,还可能严重安全事故,相反,如果外界气温较低影响到了电池包,同样会降低电池的使用寿命与效率
.本发明属于新能源电池包技术领域,具体地说,本发明涉及一种新能源电池包密封性自检系统及自检方法。背景技术.新能源电动汽车中,电池包是其核心部件,电池包的密封性直接影响到电池系统工作的安全性,因此也影响到整车的使用安全。为了提高电池包的密封防水性能,需要对电池箱体密封结构进行合理的设计,对密封条的结构和材料进行研究,使电池箱体和密封条结构完美结合,对保证电池包的安全性、提高使用寿命。电动汽车主要储能元件的电池包,装载着电池组,是新能源电动汽车的核心部件,能够直接对新能源电动汽车的性能产生重要影
.本实用新型涉及换电重卡领域,特别涉及一种换电重卡的电池冷却系统。背景技术.随着国家对新能源汽车的扶持与推进,纯电动重卡越来越受到青睐。纯电动重卡又分充电型和换电型,换电重卡具备充电时间短、充电效率高、耗能少等优势,更受关注。换电重卡的换电系统以换电框架为载体,承载动力电池组、接线盒、控制盒和电池冷却系统。.为提高续航里程,需通过动力电池组的数量来增大电量,动力电池组一般布置在电池框架内,也布置在车架两侧。电池冷却系统用于对动力电池组降温,避免动力电池组温度过高。然而,受现有技术限制,电池
.本发明涉及干燥装置技术领域,特别是一种三元前驱体回转窑干燥装置。背景技术.三元前驱体材料是烧结三元材料的原材料,是一种镍钴锰的复合物。三元前驱体的干燥是前驱体生产过程中的重要一环,需要将压滤离心后前驱体的含水量从%附近降低至.%以下,以满足前驱体产品的要求。前驱体的干燥目前普遍采用的设备是盘式蒸汽干燥机、热风干燥机等。热风干燥机效能较低。盘式干燥机是在间歇搅拌传导干燥器的基础上,综合了一系列先进技术,经过不断改进而研制开发的一种多层固定空心加热圆形载料盘、转耙搅拌、立式连续的以热传导
.本发明涉及锂电池生产领域,具体涉及一种锂电池高效拔钉设备。背景技术.锂电池,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。电池在注液后化成前需进行高温静置,在此过程中需对注液口插入临时胶钉处理,主要原因为:.因电池在此过程中注液口一直处于开口状态,电池在转运过程中为防止异物、金属粉尘等进入电池内部,造成电池短路等其他不良;.因静置环境为高温,防止电解液挥发;.电解液挥发后对车间环境造成污染,需对静置车间进行排风处理,因整个车间属于高温环境,排风造成对车间温度及露点造成影
.本发明涉及锂离子电池材料技术领域,尤其涉及一种具有特殊形貌锂离子电池正极材料,具体为一种窄粒径分布、高比表面积、高孔隙率、高球形度、中空型正极材料,及其制备方法与应用。背景技术.近年来能源危机和环境污染问题日益严重,为了减少全球碳排放,各国政府开始加大对新能源汽车产业的投入,混合动力汽车(hevs)、插电式混合动力汽车(phevs)和纯电动汽车(evs)等装载了锂离子电池的电驱动装置开始逐步取代纯燃油车。目前锂离子电池凭借比容量高、循环寿命长、自放电率低、无记忆效应、环境友好等优势,占据了
.本发明涉及锂回收提纯技术领域,具体涉及一种电解废渣制备工业级碳酸锂的提纯方法。背景技术.铝在电解生产中,除了向电解质中添加冰晶石外,还添加某种氟化物或氯化物等盐类,籍以改善电解质的性质,达到提高电流效率和降低能耗的目的,常用的添加剂之一就是氟化锂。含锂无水氟化铝、含锂冰晶石目前在电解铝企业使用效果良好,可有效降低电解质初始温度,减少氟排放,对电解铝企业节能降耗起到促进作用。大量的锂在电解铝废渣中富集,通常在电解铝废渣中锂含量能够达到%-%(以li计)。.现有技术,公开号为cn
.本发明属于锂电池材料检测技术领域,具体涉及一种检测磷酸铁锂粉末中磁性金属异物及磷化铁含量的方法。背景技术.磷酸铁锂电池凭借着良好的安全性能、超长的循环寿命、较好的高温性能、低廉的材料价格,使其受到行业内广泛的关注。磷酸铁锂电池使用的正极材料为磷酸铁锂粉末,磷酸铁锂粉末中经常含有金属异物,.其中磁性金属异物含量是监控该材料质量的重要指标之一。.锂离子电池充放电过程中,磁性金属异物会先在正极氧化、溶解,再到负极还原、析出枝晶状金属,且在氧化还原过程中一直持续增长至正极无金属异物;同时电解液
.本发明涉及磁性吸波材料技术领域,具体涉及一种稀土磁性吸波材料及其制备方法。背景技术.吸波材料是指能引导从外部入射到其表面的电磁波最大限度地进入其中,并能将电磁波能量转变成其它形式的能量,以耗散、衰减或吸收电磁波能量,从而达到减少或消除电磁波反射目的的一类功能材料。.研究发现稀土吸波材料多为磁性材料,由于磁性粒子在畴转过程中主要克服的是由磁晶各向异性、磁应力各向异性及磁形状各向异性所形成的阻力,提高了吸波性能。目前应用最多的软磁合金微粉主要是fe、co、ni及其合金微粉等,由于fe的资源比
一种沸石中掺杂金属阳离子的方法一、技术领域.本发明涉及新材料领域,涉及一种沸石中掺杂金属阳离子的方法,具体地说是通过湿法共球磨工艺提升大原子序数金属离子与沸石汇总元素交换效率的方法。二、背景技术.沸石由于具有均匀性的多孔材料通道和空腔、高比表面积、良好的热稳定性、强离子交换性能等特性,在工业生产和环保产业中广泛用于各种多相催化过程和吸附过程。通过金属元素改性可使分子筛催化剂产生多功能性,金属改性沸石在吸附过程和催化反应中表现出优异的催化活性与选择性。这些优异性能归因于分子筛上b酸位(酸性质子
.本发明涉及热电池技术领域,具体涉及一种热电池陶瓷隔膜及其制备方法。背景技术.热电池是一种依靠其本身加热系统将不导电的固体状态盐类电解质加热熔融呈离子型导体而进入工作状态的热激活贮备电池。热电池具有任意角度激活、激活速度快、贮存时间长、承受环境力学条件能力强等特点,已广泛运用于武器系统等,此外,热电池在民用领域中应用也得到重视,已有关于其作为飞机应急电源、火警电源、地下高温探矿电源的研究报道。.随着军事装备的不断发展和更新,对热电池性能的要求越来越高,对其输出功率、高比特性要求越来越大。热
本发明属于新材料制备技术领域,具体涉及一种氧化石墨烯的制备方法。背景技术石墨烯是一层以六角形蜂巢结构周期性紧密堆积的碳原子构成的二维碳材料,是目前已知的密度最小、比表面积最大、载流子迁移率最大、杨氏模量最大、透光性最好、导电性能最好的材料,在储能领域、电子领域、环保领域、复合材料领域、生物医药领域等方面拥有巨大的应用前景。但在实际应用中,也正是因为这些无与伦比的性能,石墨烯材料面临着易团聚导致分散性差、界面相容性差、与其他材料难以融合的困扰。氧化石墨烯作为一种表面功能化的石墨烯衍生物,由于其表面
本发明涉及一种回收并修复正极材料的方法、修复的正极材料及锂离子电池。背景技术随着新能源汽车行业的快速发展,锂离子电池的用量也随着攀升,随之而来的是出现大量的报废电池。相关数据显示,预计到2018年,国内累计废旧锂电池超过12GWH,报废量超过17万吨。如果对废旧锂电池处理不当,锂离子电池正极材料中的金属元素如镍、钴将对环境造成污染,另外正极材料中的锂、镍、钴等金属元素在自然界中储量并不丰富且价格昂贵,因此对正极材料的回收利用必不可少。目前,锂离子电池正极材料回收的方式主要分为火法冶金回收和湿法回
.本发明属于人造石墨负极材料技术领域,具体涉及了一种人造石墨二次颗粒的制备方法。背景技术.在人造石墨负极材料制造领域,二次颗粒的生产是重要的组成部分。大颗粒的优点在于压实密度高、容量高,而小颗粒的比表面积大,锂离子迁移的通道更多,路径更短,倍率性能更好。因此将大颗粒和小颗粒复合的二次颗粒兼顾两者的优点,可以降低负极嵌锂之后的膨胀,提升负极材料的保液性能,而且可以降低极片负极材料的取向度,降低极化带来的阻抗。.目前二次颗粒的主要加工工艺是将粉碎到一定粒度分布的焦的一次颗粒—通常d在μm
本发明属于电池材料技术领域,具体涉及一种磷酸铁锂材料及其制备方法。背景技术磷酸铁锂离子电池(lifepo4)具有能量高、循环寿命常、安全性能好等优点,在便携式设备、动力电池和电化学储能等领域得到了广泛的应用,然而日益增长的市场需求与产能不足的矛盾,以及磷酸铁锂生产过程中的三废排放问题,都需要新的技术路线予以解决。目前主流的磷酸铁锂材料的制备工艺主要包括以下步骤:将磷酸铁、碳酸锂与碳源在纯水中混合后通过砂磨机进行纳米化过程,纳米化过程完成后对所得浆料进行喷雾造粒,得到前驱体,前驱体经煅烧粉碎得到最
本发明涉及锰酸锂制备技术领域,尤其涉及一种四氧化三锰混合二氧化锰生产高性价比锰酸锂的方法。背景技术随着我国经济的快速发展,对电池新材料需求的不断增加,新能源汽车的大规模商业化对动力电池的需求量也不断攀升。由于动力电池占新能源整车制造成本大约30-40%,要使新能源汽车更具价格优势,形成足够的市场竞争力,必须降低动力电池成本。在动力电池的构成成本当中,正极材料的成本超过40%且直接决定了电池的能量密度及安全性,因此未来正极材料市场的“抢夺大戏”才刚刚拉开帷幕。现在国内市场内主要以有钴酸锂,锰酸锂,
.本发明属于电池领域,具体涉及一种钴酸锂正极材料及其制备方法、锂离子电池。背景技术.自从年以来锂离子电池成功实现商业化,由于其具有高能量密度、生产便利、循环利用次数高、工作温度范围较广、无记忆效应以及污染小等特点,在手机、笔记本电脑等c数码市场、无人机市场、电动工具等市场具有广泛的运用。随着时代和技术的发展,消费者对c数码等设备的小型化、续航能力、便携性和安全性等性能提出了更高的要求,锂离子电池的能量密度、容量及循环性能面临更严峻的挑战。.锂离子电池在恒流放电过程一般会经历三个
.本发明涉及碳酸锂生产领域,具体涉及一种锂云母焙烧熟料磨粉浸出的方法。背景技术.近十年以来钴酸锂、锰酸锂、镍酸锂一直作为锂离子蓄电池正极材料的首选,虽然性能优良,但价格昂贵,随着移动通讯电子设备和电动汽车的飞速发展,对锂离子蓄电池在高循环性能、高比能量方面提出了新的要求,因此以新能源和新材料技术为背景的锂离子蓄电池正极材料的研究也在不断开拓新的方向,寻求能够降低钴酸锂、锰酸锂、镍酸锂低成本的方法,由于碳酸锂作为生产钴酸锂、锰酸锂、镍酸锂的主要原料,降低碳酸锂的生产成本即在一定程度上降低钴酸锂
.本发明属于锂电池材料技术领域,具体涉及一种硅基预锂化材料及其制备方法和应用。背景技术.锂离子电池由于电压高、容量大、能量密度高、无记忆效应、循环寿命长等优点,已经作为一种重要的储能设备广泛应用于消费电子产品、储能电网以及电动汽车等领域中,当前市场需求也要求锂离子电池具备更高的容量和能量密度。但是在目前锂离子电池中,以石墨作为负极材料,首次充放电的过程中,有机电解液会在石墨表面还原分解形成固态电解质膜(sei膜),永久消耗大量来自正极的活性锂,电池中可逆活性锂的减少,造成首次库仑效率低,降低
.本发明涉及一种锂离子导电材料、优选为锂离子导电玻璃陶瓷,所述材料包括石榴石型晶相成分和非晶相成分。.本发明进一步涉及一种用于提供锂离子导电材料的方法。.本发明更进一步涉及一种包括锂离子导电材料的部件。.本发明更进一步涉及一种包括部件的电池、优选全固态电池。背景技术.尽管适用于任何种类的锂离子导电材料,但是本发明将针对锂离子导电玻璃陶瓷进行描述。.锂离子电池已成为尤其是在便携式设备中、例如在智能手机、笔记本电脑等中的重要能源。然而,锂离子电池的缺点是所使用的有机电解质是液体,其可能会
.本发明涉及锂电池技术领域,尤其涉及一种锂电池无机固态电解质层、锂电池用复合负极片及其制备方法和应用。背景技术.锂离子电池具有能量密度高、循环性能好、使用寿命长、低自放电、无记忆效应等优点,在储能、动力电池和c电子等方面逐渐占据更大的应用市场,具有广阔的应用前景。.负极材料作为锂离子电池中的重要组成部分,是限制电池能量密度、倍率等性能的主要短板之一。目前主要的负极材料包括钛酸锂负极材料、石墨负极材料、硬碳、软碳负极材料,硅碳、硅氧、硅氧碳复合负极材料、纯硅负极材料、氧化锡等金属氧化物负极
本发明属于新型无机纳米多孔材料领域,具体涉及一种大尺寸sic纳米线气凝胶的低成本制备方法。背景技术气凝胶是一种密度低、比表面积大、气孔率高、导热系数低的纳米级介孔复合材料,在高温隔热系统、催化剂载体、过滤器、电子、光学等领域有着巨大的应用潜力。然而,传统的陶瓷气凝胶通常由纳米粒子组成,强度低,脆性大,难以制成大尺寸制品,且在高温下会发生体积收缩。因此,其实际应用一直受到限制。sic纳米线气凝胶是一种新型的气凝胶材料,它不仅具有气凝胶的超轻、绝热、高比表面积和强吸附等特性,而且还具有sic纳米线耐
本发明涉及一种具有耐硫、抗积碳能力的固体氧化物燃料电池阳极材料,属于固体氧化物燃料电池阳极材料技术领域。背景技术近年来,能源和环境问题越来越受到人们的关注。对新型清洁、高效、可持续能源利用技术的需求日益迫切,也是当前科学研究的热点。固体氧化物燃料电池(Solidoxidefuelcell,简称SOFC)能够将燃料中的化学能直接转化为电能,不受卡诺循环的限制,并且其尾气不会被N2稀释,使得CO2更易于分离,从而能够降低温室气体的排放。固体氧化物燃料电池是一种全固态的燃料电池,采用固态氧离子导
本发明属于纳米材料的球磨制备方法,具体涉及一种纳米硅粉的球磨制备方法。背景技术近年来,硅基低维纳米材料在光电子器件应用领域取得了突飞猛进地发展,目前已经应用的领域有电子发光材料、催化剂载体、药物载体和锂离子电池负极材料等。特别地,硅作为锂离子电池负极材料,具有4200mAh/g的理论放电容量,大约是目前市场上碳负极材料理论容量的10倍。所以,硅作为电池负极材料有望解决目前电动汽车和电子产品移动电源需要频繁充电问题,展现出十分可观的潜力。纳米硅粉,作为新一代光电半导体和高功率光源材料的主要原料,具
.本发明涉及三元正极材料技术领域,具体涉及一种三元正极材料及其制备方法和应用。背景技术.三元锂离子电池作为具有能量密度高、循环寿命长、无记忆效应、安全性能好和环境友好等优势,被广泛用用到新能源汽车等交通工具。目前前单晶三元正极材料的制备通常是将前驱体与氢氧化锂等锂源混合,经过多次烧结制备而成。前驱体作为正极材料的主要原料其成本及性能直接影响正极材料的价格和使用性能。.当前三元正极材料前驱体的制备方法基本采用共沉淀法,以naoh为沉淀剂,以氨水为络合剂,同镍钴锰盐一同泵入反应釜中,通过调节搅
一种fes复合正极及全固态电池器件技术领域.本发明涉及电池材料技术领域,具体涉及一种具有补锂和吸湿作用的硫化物固态电解质,及其与fes制成的复合正极和全固态电池器件。背景技术.锂离子电池作为高效率的储能器件,已经在消费电子产品和电动交通工具领域实现了商业化应用。但锂离子电池在能量密度提升方面已经达到瓶颈,其安全性问题也令人担忧。而使用固态电解质和金属锂负极的全固态电池,是一种实现高安全性和高能量密度电池的关键技术,引起了学术界和产业界的广泛关注。全固态电池使用高热稳定性、致密度和机械强度
中冶有色为您提供最新的安徽有色金属新能源材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!