本发明提供了一种太阳能集热器系统,包括太阳能集热器和热利用装置,所述热利用装置为热水输出设备,所述热水输出设备包括换热器,所述换热器连接自来水,来自太阳能集热器的热水进入换热器中,与自来水进行换热,所述热水输出设备还包括电加热棒,电加热棒根据热水输出设备自动控制启动。本发明提供一种自动启动电加热棒的太阳能集热器系统,具有节约能源的效果。
一种集管流通面积逐步变化的换热器,本发明提供了一种翅片管换热器,换热器包括上集管、下集管和连接上集管和下集管的翅片管,上集管的内部设置导流板,所述导流板呈倾斜状态,从上集管的上部一直延伸到上集管的下部,使得上集管的流体流通面积从换热器入口管开始逐渐减少。本发明对换热器结构进行优化,使其达到换热效率最大化,以节约能源,达到环保节能的目的。
本发明提供了一种热电联产系统,在抽乏汽的管道上设置乏汽调节阀,乏汽调节阀与可编程控制器进行数据连接,同时在汽水换热器入口的蒸汽管道上设置温度传感器,温度传感器与可编程控制器进行数据连接,用来测量进入汽水换热器的蒸汽的温度,可编程控制器通过汽水换热器的入口蒸汽温度来调节乏汽调节阀的开度。本发明将根据混合的温度对乏汽和蒸汽的抽汽量进行自动控制,以节约能源,达到环保节能的目的。
本发明提供了一种散热器及其热电联产系统,所述散热器包括基管和外部翅片,所述外部翅片为封闭式的外部翅片,所述封闭式的外部翅片包括翅片以及封闭翅片的封闭片,从基管下部到基管的上部,封闭翅片距离基管的距离越来越近。本发明将散热器的结构进行优化,使其达到换热效率最大化,以节约能源,达到环保节能的目的。
本发明提供了一种热电联产系统,所述系统在热水供水管上设置第一调节阀,?以调节进入热交换器中的热水;在散热器的进水管路上设置第二调节阀,可编程控制器与第一调节阀和第二调节阀进行数据连接,第二调节阀开度变化时,第一调节阀的开度相应的变化,从而使输入热交换器的热水相应的变化。本发明通过调节阀的相适应的变化,使其达到换热效率最大化,以节约能源,达到环保节能的目的。
本发明提供了一种热电联产系统,所述系统在热用户给水管上设置热用户给水温度传感器,用于检测热用户给水温度,给水温度传感器与可编程控制器进行数据连接;当可编程控制器控制调节阀进行关闭时,循环水泵继续运行,当给水温度传感器检测的给水温度达到一定限度而无法使用时,可编程控制器逐步调慢循环输泵并最终停止循环水泵的运行。本发明停止供暖后,水泵维持原有状态继续运行,由可编程控制器检测热用户的给水温度,在给水温度降低到一定限度而无法使用时,可编程控制器触发停机命令,逐减调慢循环泵并最终停机,充分利用系统管道内的余热使其达到热利用效率最大化,以节约能源,达到环保节能的目的。
本发明提供了一种散热器,散热器包括上集管、下集管和连接上集管和下集管的翅片管,所述散热器中设置超导液体,利用超导液体的雾化进行散热。本发明利用超导液体进行散热,以节约能源,达到环保节能的目的。
本发明提供了一种太阳能集热器系统,包括太阳能集热器和热利用装置,所述集热系统包括辅助加热设备,所述辅助加热设备设置在与太阳能集热器系统的管路并联设置,其中与太阳能集热器系统的管路连通的辅助加热设备的进水管路和出水管路上都设置阀门,位于进水管路和出水管路之间的与辅助加热设备并联的太阳能集热器系统的管路上设置阀门。本发明提供一种自动控制阀门以调节流量的太阳能集热器系统,具有节约能源的效果。
本发明提供了一种太阳能集热器系统,包括太阳能集热器和热利用装置,所述热利用装置为换热器,所述换热器设置控制系统,所述控制系统根据室内温度控制进入换热器中水的流速。本发明提供一种自动控制流量的太阳能集热器系统,具有节约能源的效果。
本发明耐热烧结钕铁硼永磁材料;是钕铁硼粉末:Nd18.6~23.1%、B0.73~0.81%、Cu0.44~0.53%、Co0.95~1.03%、Ga0.41~0.46%、Nb0.67~0.73%、Dy2.6~3.1%、Al0.23~0.29%、余量为Fe;添加纳米铁粉、纳米钛酸锶、纳米氮化钒混合均匀后烧结而成。本发明耐热烧结钕铁硼永磁材料;采用优化的成分配方,添加合适的纳米元素,通过特殊的混合制造工艺,制出具有较高性能、高热稳定性的钕铁硼磁体;该钕铁硼磁体不仅晶界角偶尺寸小,而且形状变得更加规则,晶粒均匀化、细化、规则化,从而使磁体具有更高的耐腐蚀性和耐热性。
本发明属于机械零件加工技术领域,具体涉及一种氧化石墨烯强韧化陶瓷结合剂CBN砂轮及其制备方法。本发明的一种氧化石墨烯强韧化陶瓷结合剂CBN砂轮陶瓷砂轮结合剂、CBN磨料和临时粘结剂按照下述重量份组成:陶瓷砂轮结合剂30份、CBN磨料68份、临时粘结剂2份;本发明氧化石墨烯强韧化陶瓷结合剂CBN砂轮,以溶胶凝胶法为陶瓷砂轮结合剂的制备方法,方法简单,使结合剂粒径更加细小,易于磨粒结合减少了纳米结合剂的团聚,烧结温度低,降低能耗,同时加入了氧化石墨烯提高了砂轮的寿命和韧性。具有广泛的市场前景,可以应用于航空航天、精密机械和仪器、电子信息、尖端武器等高科技领域。
本发明以纳米ZrO2为基体,Y2O3为稳定剂,通过加入5wt%~15wt%的添加相纳米Al2O3和5wt%~15wt%的添加相纳米Cu,在6.6×10-3Pa真空度、25~150MPa烧结压力和1000~1300℃烧结温度下,真空热压烧结2.5~5h,使基体和添加相有机结合,烧结体的相对密度达99.17%,断裂强度达904MPa,电导率达5.32S/m。
本发明涉及一种镍基块体非晶合金的制备方法,是针对块体非晶合金制备难的情况,以镍基非晶薄带为材料,经制备模具、装模、真空热压烧结,制成镍基块体非晶合金,制备材料强度好,密度高,达99.8%,此制备方法工艺先进,数据精确翔实,是先进的制备镍基块体非金合金的方法。
本发明属于磁性材料技术领域,具体为一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法,解决了背景技术中的技术问题,该制备方法为将Nd‑Fe‑B磁粉混入质量百分比K wt%的REαM(1‑α)‑H(x)改性磁粉,进行加热混料,混合好的粉末制得毛坯;将第三步中得到的毛坯进行烧结和热处理,即制得烧结钕铁硼磁体。通过本方法能够降低超细改性磁粉的吸附能,使得烧结钕铁硼磁体显微结构中能够形成良好的晶界富稀土相包覆主相的壳核结构,通过机械混粉加热阶段,减弱改性磁粉之间的范德华力,从而使得改性磁粉间的吸附力降低,有利于改性磁粉均匀分散。
本发明属于永磁材料技术领域,具体涉及一种烧结稀土永磁体的制备方法及旋转式HDDR炉,该方法熔炼稀土永磁合金薄带,进行HDDR处理。之后进行气流磨粉碎、磁场成型、烧结;由于HDDR后的主相内部分裂出许多细小的主相,副相均匀的包覆的主相外面,烧结后并保持这一状态。因此可以较低成本得到高剩磁、高矫顽力的双高产品。或用廉价的Ce、La替代Pr、Nd,得到中等性能,但价格低廉的磁体。
本发明涉及一种检测低浓度丙酮气体的锡基纳米复合材料的制备方法,是针对丙酮气体检测气敏材料存在低浓度气体无灵敏度、高浓度气体灵敏度低、响应速度慢、选择稳定性差的情况,以氯化亚锡、氢氧化钠、柠檬酸钠、硝酸镨为原料,经反应釜水热合成、微波加热高温热处理、研磨过筛,得到锡基纳米复合材料,此制备方法工艺先进,数据精确翔实,产物形貌好,为片形花状分层结构,片厚度≤30nm,产物纯度好,达99%,材料对100ppm丙酮气敏灵敏度达27,响应时间为2s,恢复时间为36s,对1ppm丙酮气体灵敏度可达1.86,灵敏度高,响应速度快,适宜低浓度丙酮检测,可在检测丙酮气体传感器中应用,是先进的锡基纳米复合材料的制备方法。
一种用球墨铸铁制备碳微球的方法,它是以球墨铸铁块为原料,以不锈钢球为球磨体,以无水乙醇为球磨介质,以稀盐酸为除铁剂,以去离子水为清洗剂、洗涤剂,以氩气为真空热处理球化处理保护气体,通过材料的刨切、球磨机球磨、稀盐酸除铁、去离子水洗涤、过滤、干燥、研磨、过筛、真空热处理球化处理,最终制成黑色、圆球形、颗粒状碳微球粉体,此制备方法工艺流程短,使用设备少,不污染环境,产物纯度高,可达95%,产物平均粒径1ΜM,产物物理化学性能稳定,可与多种化学物质匹配制成高附加值产品,是十分理想的用球墨铸铁提取碳微球的方法。
本发明公开了一种硬质合金材料的加工工艺,包括以下步骤:S1、混合料制备,称取所需的各组份原料及少量添加剂,其中原料包括WC、TiC,添加剂为Co粘合剂,将这些原料和添加剂装入滚动球磨机中,利用球磨机中合金球研磨体的冲击、研磨作用,使混合物在己烷研磨介质中得到细化和均匀分布,接着加入一定量液态石蜡,卸料后经喷雾机构喷雾干燥、振动机构振动过筛,制成有一定成分和粒度要求的蜡混合料。本发明,通过喷雾机构之间的配合工作,这样从出雾管上的第一出雾导管和传动管中的第二出雾导管对加工箱内部的物料进行内外喷雾,使物料的各个位置均可受到喷雾的效果,使对物料的喷雾更加彻底。
本发明高矫顽力钕铁硼永磁材料;由以下组分及质量百分比的合金粉末:Nd 16~24%、B 0.95~1.12%、Cu 0.12~0.19%、Co 0.21~0.32%、Ga 0.05~0.13%、Nb 0.28~0.40%、Pr 2.1~3.1%、Tb 0.12~0.25%、余量为 Fe;添加纳米钯黑、纳米钛粉、纳米氮化钛粉烧结而成。本发明由不同粒径的磁粉,添加多种活性纳米粉末,混合均匀通过特殊烧结工艺烧结而成,通过该工艺形成晶粒细小、晶界相均匀分布与晶粒取向完整的钕铁硼磁体,该钕铁硼磁体具有更高的矫顽力,而且有效保证了其高的磁能积,获得高矫顽力与高磁能积的均衡。
本发明高磁能积烧结钕铁硼永磁材料;是由钕铁硼粉末、纳米铋粉、纳米锶铁氧体、纳米二硫化钼烧结而成;所述钕铁硼粉末的组分及质量百分比为:Nd?25.6~27.1%、B?0.76~0.89%、Cu?0.45~0.53%、Co?0.25~0.32%、Ga?0.35~0.43%、Nb?1.04~1.16%、Pr?3.9~4.6%、Al?0.34~0.41%、余量为Fe。本发明高磁能积烧结钕铁硼永磁材料;由纳米混合粉均匀分散包裹主相晶粒表面层,经过两次烧结,两次回火制成。该高磁能积烧结钕铁硼永磁材料;具有高的剩磁和最大磁能积,剩磁达到1.46T,最大磁能积达到438kJ/m3;同时其矫顽力也得到提高。
本发明涉及一种屏蔽中子、γ射线的层状复合板的制备方法,是针对高含量钨和稀土氧化物铝合金基复合材料塑性变形难的弊端,采用铝合金板为外层及中间层材料,在铝合金板之间加入铝粉、钨粉、氧化铕粉、钛粉的混合粉,采用真空热压烧结技术制备层状复合板坯料,经热轧制,成层状复合板,此制备方法工艺先进,数据精确翔实,制备的层状复合板抗拉强度达240MPa,伸长率达6.3%,抗腐蚀性能可提高70%,核防护屏蔽中子性能达96%,对γ射线屏蔽率达92%,可做核防护的中子吸收材料使用,是先进的制备辐射屏蔽层状复合板的方法。
本发明涉及一种中子吸收复合材料的制备方法,是针对核防护材料中子吸收功能差、强度低、硬度低、防腐蚀性能差的情况,以碳化硼粉、钛粉、二硼化钛粉、钐粉为原料,钛镍丝为增韧材料,经配料、球磨、装模、等离子放电加热、真空热压烧结,制成中子吸收复合材料块体,此制备方法工艺先进、配比合理、数据精确翔实,中子吸收复合材料块体金相组织致密性好,钛镍丝盘旋热压在金相体内,增强了抗拉强度,硬度达400HV,中子吸收率为95%,核防护性能比现有材料提高97%,是先进的制备中子吸收复合材料的方法。
高强韧烧结钕铁硼磁体,由钕铁硼粉末、粒径为40~50nm纳米氟化镧、90~100nm纳米碳化铪按照重量份数比100:2.1:0.8混合后,压制成型烧结制成;所述钕铁硼粉末包括重量份数比为6:2.5:1.5的A粉末、B粉末、C粉末。本发明高强韧烧结钕铁硼磁体;采用优化的成分配方,通过三种钕铁硼粉末混合纳米添加剂通过特殊的工艺制成,从而细化主相晶粒、增加晶界细小颗粒状富Nd相数量,通过晶界相成分的重构,得到具高强韧性的钕铁硼磁体。采用SHIMADZU(日本岛津)电子拉伸机测定材料的抗弯强度和断裂韧性。断裂韧性达到了5.16Mpam2。
中冶有色为您提供最新的山西太原有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!