一种用于钎焊的氧化铝陶瓷金属化方法,步骤为:(1)将氧化铝陶瓷进行清洗,然后在1000~1200℃保温烧结50~70min;(2)采用真空磁控溅射、真空蒸镀或离子镀的方法在氧化铝陶瓷未覆盖铝箔部位的表面依次沉积Ti、Zr或Hf金属层,Mo或Cr金属层,Ni或Cu金属层;(3)将沉积了金属层的氧化铝陶瓷置于真空烧结炉中并对真空烧结炉抽真空,当炉内真空度达到4×10-3Pa时开始加热,将炉内温度升至430~480℃并在该温度保温20~40min,然后再升温至900~1200℃保温20~60min,保温结束后随炉冷却至室温即完成氧化铝陶瓷的金属化,在上述升温和保温过程中保持炉内真空度高于6×10-3Pa。本发明能简化工艺,降低金属化成本,并提高高纯氧化铝陶瓷的金属化效果。
本发明提供一种超低损耗的钇铝石榴石微波介质陶瓷材料,材料化学通式为Y3‑xAl5‑yRzO12,R为Mg2+,Ga3+,Si4+,Ti4+或Nb5+多种异价离子中的一种或多种;0≤x≤0.15,0≤y≤0.8且0.03≤z≤1.5;本发明还提供一种具有超低损耗钇铝石榴石微波介质陶瓷材料的制备方法,包括步骤:配料、球磨、烘干过筛、预烧、干压、冷等静压成型、真空烧结、气氛控制退火。本发明制得的材料为典型的超低损耗石榴石型铝基微波介电陶瓷,Q×f在180000GHz~220000GHz之间,相对介电常数εr在8~12之间,频率温度系数τf在‑33ppm/℃~‑22ppm/℃之间。配方中不含Pb,Cd等挥发性有毒金属,性能稳定,原材料在国内供应充足,使高性能微波陶瓷的低成本化成为可能。
本发明公开了一种铝合金加工用硬质合金刀具材料及其制备方法,其中,所述材料由一种组合物制成,所述组合物包括Co、WC和ZrO2,还包括Al2O3,其中,ZrO2的粒径为5~50nm,Al2O3的粒径为5~55nm,且在所述组合物中,ZrO2的重量百分配比为0.2~1.5%,Al2O3的重量百分配比为0.1~1%;所述方法如下进行:(1)将ZrO2和Al2O3进行混合预处理,(2)混料制备与成型,(3)真空烧结,(4)低压烧结,得到所述硬质合金刀具材料。本发明采用纳米氧化锆和纳米氧化铝为晶粒抑制剂,降低WC硬质相晶粒尺寸,提高材料硬度,改善刀片切削耐磨性,且由于氧化锆与氧化铝的价格相对较低,显著降低了生产成本。
本发明公开了一种含金属间化合物粘结相的金属陶瓷材料的制备方法,其特征是先制备Ni(OH)2包覆Al的复合粘结相,和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Ni(OH)2转化成Ni,在高温下真空烧结Ni与Al发生反应形成Ni3Al,最终制成含金属间化合物粘结相的金属陶瓷材料。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明公开了一种Ti(C,N)/TiB2/Sn/Cu电接触材料及其制备方法和用途,属于合金领域。上述Ti(C,N)/TiB2/Sn/Cu电接触材料由下述重量配比的原料制备而成:碳氮化钛20~38份,硼化钛13~20份,锡3~17份,铜18~45份,润滑剂和/或粘接剂1~2份。电接触材料是将原料混匀后于15~20MPa的压力下压制成型,然后在真空烧结炉中烧结1~2小时得到的。本发明Ti(C,N)/TiB2/Sn/Cu电接触材料的抗弯强度明显提高,同时能够保持高致密度。并且本发明材料的制备工艺简单,烧结温度低,对设备的要求低,消耗的能量低,降低了制备成本,适合工业化大规模生产。
本发明公开了一种NI粘结WC基硬质合金的制备方法,其特征是先将WC和NI的混合粉末在无水乙醇中进行湿磨、干燥、压制后在1440~1480℃进行真空烧结;烧结完成的同时往炉中通入氮气进行真空淬火,氮气压力为0.1~0.4MPA,淬火时间为5~10分钟;然后出炉在液氮中进行深冷处理,处理温度为150-196℃,保温时间为:硬质合金的重量×重量系数+硬质合金的重量的NI百分含量×成分系数,其中重量系数为5~25MIN/G,成分系数为10~20MIN;并在真空炉中在120~200℃进行回火处理,保温时间为1~3H。采用本发明的NI粘结WC基硬质合金制备方法,使WC接触率得到控制,WC在NI中的溶解度提高,且处理后合金表面应力状态为压应力,使合金抗冲击能力提高,因此可实现NI对CO的取代,获得与WC-CO系硬质合金相当的性能。
本发明所述亚氧化钛?金属复合导电材料,由亚氧化钛和金属M组成,化学式为TinO2n?1?M,该化学式中,n=1、3、4、5、6、7、8或9,M为Co、Ni、Al、Cu、Pb、Ti、Fe、Zr、Mg、Ag、Zn、Cr、Mo、V、Mn、Nb、Ta中的至少一种,或M为Cu、Pb、Zr、Ag、Mo、Mn、Nb、Ta中的至少一种,所述亚氧化钛的质量百分数为40%~99.5%,金属M的质量百分数为0.5%~60%。所述亚氧化钛?金属复合导电材料的第一种方法采用放电等离子烧结或热压烧结,第二种方法采用真空烧结或低压烧结。本发明能改善所制备的导电材料的韧性和后期加工性,并保持导电材料优良的电导率和致密度。
本发明公开了一种原位生成含Ni3Al的粘结相的金属陶瓷的制备方法,其特征是先制备Al部分取代Ni的Al?Ni(OH)2粘结相和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Al?Ni(OH)2粘结相转化为Al?Ni, 包覆层Ni(OH)2转化为Ni;在高温下真空烧结使Al?Ni与Ni发生反应而原位生成含Ni3Al的粘结相的金属陶瓷。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明公开了一种抗高温软化的硬质合金的制备方法,其特征是先制备Al部分取代Ni的Al?Ni(OH)2粘结相和Ni(OH)2包覆WC的复合硬质相,二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Al?Ni(OH)2粘结相转化为Al?Ni, 包覆层Ni(OH)2转化为Ni;在高温下真空烧结使Al?Ni与Ni发生反应而原位生成含Ni3Al,获得抗高温软化的硬质合金。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的硬质合金可用于切削刀具与抗氧化的零部件制造。
本发明为遁构机掘进刀盘硬质合金组件,解决已有组件耐磨性差,焊接性能不良的问题。其化学成份重量百分比为:WC84—86、Co13.78—15.67、TaC0.1—0.15、NbC0.12—0.180。
本发明所述锆及锆合金氢化工艺优化的方法,工艺步骤依次如下:(1)真空活化,将锆或锆合金置于真空烧结炉中,控制炉内真空度≤1.0×10‑2Pa后升温,当炉内温度升至150~350℃时保温30~90min,升温和保温过程中均保持炉内真空度≤1.0×10‑2Pa;(2)氢化,真空活化后,向真空烧结炉内通入高纯氢气进行氢化处理,所述氢气的纯度≥99.999%。该方法中的真空活化步骤不仅可破坏锆或锆合金表面的致密氧化膜,使氢化过程中氢气的渗透阻力降低,吸氢点提前,从而降低锆或锆合金的氢化温度,缩短氢化保温时间,使氢化锆的氢含量大幅提高并接近理论值,而且使氧含量得到有效控制。
本发明公开了一种粘结相中Ni3Al原位生成的金属陶瓷材料的制备方法,其特征是先制备Ni(OH)2包覆AlN的复合粘结相,和Ni(OH)2包覆(Ti0.5, Mox, W0.5?x)(C, N)颗粒(其中x=0~0.5)的复合硬质相, 二者混合后经过球磨、过滤、干燥等工序后压制成型,最后进行两段气氛烧结,即在低温下Ar/H2气氛中Ni(OH)2转化成Ni,在高温下真空烧结Ni与AlN发生反应形成Ni3Al,最终制成粘结相中Ni3Al原位生成的金属陶瓷材料。本发明克服了现有的技术中Al易氧化,破碎和均匀分散困难、易挥发损失和烧结迁移易形成孔隙的问题,在烧结过程中原位形成Ni3Al相,且实现在硬质相周围的均匀分布,制备出的金属陶瓷材料可用于切削刀具与抗氧化的零部件制造。
本发明提供了一种硬质合金包覆金刚石颗粒及其制备方法,包括:S01、硬质合金混合料采用WC、Co的粉末物料混合制备,在硬质合金混合料中加入酒精溶剂及石蜡,搅拌混合后得到第一浆料,将金刚石颗粒加入第一浆料中搅拌混合,获得含有金刚石颗粒的第二浆料;S02、将第二浆料加入喷雾干燥设备,经过处理后获得硬质合金混料包裹金刚石的球形或类球形的第一颗粒;S03、将第一颗粒置于真空烧结炉中烧结,以金刚石颗粒的表面形成硬质合金包覆层;S04、将真空烧结炉烧结后获得的烧结块放入破碎筛,得到分散的硬质合金包覆金刚石颗粒。在金刚石颗粒的外层包裹硬质合金层,增加颗粒的整体密度,有利于该类颗粒在堆焊、喷焊工作情况下的使用。
本发明公开了一种利用不锈钢氧化铁皮生产镍铬锰铁合金的方法,所述的镍铬锰铁合金由下述重量比的成分组成:Ni:6%~7.5%,Cr:13%~15%,Mn:13%~16%,Si<0.55%,O<1.0%,C<0.1%,S<0.04%,P<0.04%,余量为Fe。所述的镍铬锰铁合金采用不锈钢氧化皮与废碳素电极混合后在真空电阻炉中进行固态真空还原生产而得。本发明利用碳素电极中的碳还原不锈钢氧化皮中的氧,将废弃的不锈钢氧化皮和碳素电极再次利用回收贵金属生产镍铬锰铁合金,使废弃资源得到充分利用;采用真空还原可以在较低的温度下开始脱氧还原氧化,节约能耗。
本发明涉及航空发动机维修技术领域,具体涉及一种发动机热端部件三维尺寸钎焊修复材料及制备方法,根据母合金选择与母合金相容、性能匹配的两种合金粉,粉末混合均匀并压制成胚料并烘干,放入专用真空烧结的工装中,然后进行真空烧结,真空烧结后根据不同三维尺寸修复要求进行加工成相应的钎料,制备的钎料可实现不同尺寸钎焊修复的需求。本发明的修复材料制备方法简单,制备成本低,制得的修复材料满足航空发动机热端部件三维尺寸的修复,同时满足裂纹宽度超过1mm的裂纹修复,弥补了现有技术中三维尺寸钎焊修复的空白,对促进航空发动机热端部件三维尺寸钎焊修复的应用和发展具有重要意义。
磁性纳米颗粒/磷酸钙陶瓷复合多孔材料,以磷酸钙陶瓷为基体,所述磷酸钙陶瓷基体为多孔结构,其上均匀分布着超顺磁性Fe3O4磁性纳米颗粒。超顺磁性Fe3O4磁性纳米颗粒为疏水性Fe3O4或亲水性Fe3O4,其平均粒径为4nm~20nm,其含量为磷酸钙陶瓷基体质量的1%~10%。上述材料的制备方法:(1)Fe3O4磁流体的制备;(2)复合粉体的制备;(3)坯体的制备;(4)真空烧结,将压制成型的坯体用真空烧结炉在300℃~400℃煅烧20分钟~40分钟,然后升温至1000℃~1200℃煅烧1小时~2小时,继后随炉冷却至室温即得到磁性纳米颗粒/磷酸钙陶瓷复合多孔材料。
本实用新型涉及钕铁硼加工技术领域,目的在于提供一种既能有效的保证产品质量安全,又能实现快速降温的钕铁硼的烧结系统。包括真空烧结炉和用于对真空烧结炉进行降温的冷却装置,冷却装置包括气瓶、冷却水箱和冷凝罐。冷却水箱内设置换热机构,换热机构包括两个相互平行的中空的圆盘,两个圆盘的内腔通过若干根毛细铜管相互连通。真空烧结炉上设置进气口和出气口,进气口和出气口处均设置有阀门。气瓶通过管路与进气口连接,出气口通过管路与气泵连接。气泵通过管路与一个圆盘连接,另一个圆盘通过管路与气瓶连接。本实用新型无需打开真空烧结炉炉门就能实现真空烧结炉的快速冷却,既能有效的保证产品质量安全,又能提高产品出炉的效率。
一种高比重合金的烧结方法,涉及一种粉末冶金过程烧结高比重量合金的方法。其过程采用真空烧结炉进行烧结;其特征在于烧结过程是将真空烧结炉在持续抽真空的情况下,同时通入保护性载气的条件下,进行烧结的。本发明的方法,能够避免真空烧结过程中高比重合金与钼舟或石墨舟之间的打火现象;能够促进烧结过程,缩短烧结时间,提高生产效率,实现清洁烧结,确保安全生产,由于充入保护性载气的烧结方法保留了真空烧结的全部特点,能够得到比真空烧结更加优异的高比重合金。
本实用新型公开了一种超粗晶粒硬质合金混合装置,包括真空烧结炉、支撑架、搅拌装置、抽气装置以及冷却装置,所述真空烧结炉外表面安装有支撑架,所述真空烧结炉内部设有搅拌装置,所述真空烧结炉顶部安装有抽气装置,所述真空烧结炉底部安装有冷却装置,所述真空烧结炉包括进料口以及出料口,所述真空烧结炉顶内设有保温层,所述真空烧结炉顶部开设有进料口。该超粗晶粒硬质合金混合装置可对真空烧结炉内的材料进行搅拌,能够帮助超粗晶粒进行充分的加热燃烧,大大提高燃烧效果,并且抽气装置使真空烧结炉内为真空状态,易于控制合金的含碳量,冷却装置的设置,能够将真空烧结炉的温度进行快速降温,使超粗晶粒纯度达到最高。
一种氧化铝空心微球制备方法,涉及材料技术。本发明包括下述步骤:a)将分析纯硫酸铝铵[(NH4)2Al2(SO4)4·24H2O]置于磨粉机中磨细,并过800目筛子备用;b)真空烧结炉预热;c)将磨细后的硫酸铝铵粉末装入喷雾器中,将其雾化;d)采用压缩空气将雾化后的硫酸铝铵粉末吹入真空烧结炉中;e)维持真空烧结炉内的温度在1000摄氏度以上,保持真空烧结炉内气压低于大气压;硫酸铝铵粉末剧烈分解形成多孔氧化铝粉末,在重力作用下下落,排出的气体经排气泵排出;排气泵进气管前端装12500目滤网防止固体粉末吸入;f)真空烧结炉内温度在1000摄氏度保温1小时,以使多孔粉末烧成陶瓷空心微球,然后停止加热,向真空烧结炉内注入空气,待温度降至室温时即获得氧化铝空心微球。本发明工艺简单可靠,成本低廉,且成品率高。
本发明属于一种大尺寸弧形状银铜板的锻造加工方法,包括如下步骤:将原料银铜铸锭进行真空熔铸;制得的铸锭进行热锻开坯;进行锻坯车削清理;制得的铸锭进行加热保温并参照图纸尺寸要求进行热环扎处理;进行环轧件表面处理,先进行车削内外表面及端面至无缺陷,将环件从中间切断,均分成两个半圆;将制得的半圆铸件放在压力机上进行冷锻,按10%~40%纵向冷变形量,使环件高度减小,外径增大;将所得的锻件,进行下料压弧并整形,按照零件重量下料,弯曲部分采用不均匀变形,按样板整形,将所获得的大尺寸弧形状银铜板进行去应力退火。本发明能有效细化异形板材的晶粒组织,提高板材的硬度和力学性能,同时减少了加工余量和制造加工成本。
本发明属于一种用于常规磁体托卡马克装置板式环向场线圈所需的铬锆铜异型铜板的锻造方法。包括以下步骤,将铬锆铜铜锭加热进行墩拔、冲孔制成铜套粗坯;将制得的铜套粗坯进行高温热环轧,使其直径扩大,壁厚减小,同时利用环轧余热进行固溶热处理;将制得的铜套形状坯料从一侧锯开一个开口,用油压机经过锻压将环状铜套展开成平板;将制得的铜板用油压机进行不均匀变形,使铜板产生弯曲,得到最终锻件。其优点是,相比现有技术的轧制或者锻造方法,能大幅减少轧制或者锻造过程预留的机加工余量,提高了产品的材料利用率,生产成本大幅减少;同时能够使铜板获得十分细小的晶粒组织,满足装置对铜板的各项性能要求。
本发明涉及真空热处理设备领域。真空脱脂烧结炉,包括炉座及固定在其上的烧结炉,还包括与烧结炉相连的充气装置、水冷装置、抽真空装置和脱脂装置。该真空脱脂烧结炉的优点是结构新颖,保温性能好,一次脱脂率高。
本实用新型提供了一种含油污水真空分离净化装置,包括:真空波纹管1与油水提升泵4连通,真空波纹管1的另一端设有弹簧式安全阀5,加热器7的顶部设置有油位电极6,电动排油泵3与加热器7连通,电控箱10设置在高分子吸附器2的外侧,油份浓度检测仪9设在高分子吸附器2的底部,差压控制器8与高分子吸附器2连接。本实用新型采用了真空薄膜技术,使其部份已乳化的油在真空状态下加以破除,同时加速了油污水中的油液集合,使之与水分离。该装置结构紧凑、占地面积小,使用、生产成本低。
本实用新型提供了一种含油污水真空分离净化机,包括:真空室(1)、高分子吸附室(2)、电气控制箱(3)、电动柱塞泵(4)、螺杆泵(5)和电加热器(6);其中,所述电气控制箱(3)设置在所述真空室(1)底部,螺杆泵(5)与电气控制箱(3)连接,电加热器(6)设置在所述真空室(1)顶部,电动柱塞泵(4)与所述电加热器(6)固定连接,高分子吸附室(2)与所述真空室(1)固定连接。本实用新型排放量达标、处理效率高、结构紧凑、使用可靠、操作方便等特点,是广泛适用于内河、沿海的港口、码头以及石油、化工、运输、发电等工矿企业的各种含油污水处理更新换代的节能环保产品。
本实用新型公开了一种真空分离槽,包括真空泵、推动机构、用于硝酸钾溶液结晶的分离槽和用于将板结的硝酸钾结晶固体破碎的旋耕机构,所述分离槽内设置有过滤网,所述过滤网将所述分离槽的腔室分成用于容纳硝酸钾溶液的第一腔室和用于容纳硝酸钾溶液过滤后的滤液的第二腔室;所述推动机构包括置于所述分离槽外的液压顶机和用于推动结晶于所述过滤网的硝酸钾固体的推动铲,所述推动铲置于所述第一腔室内且与所述过滤网接触。本实用新型的真空分离槽,通过旋耕机构将结块的硝酸钾固体破碎成小块或者粉末,再通过推动铲将过滤网上的硝酸钾固体推到过滤网的一端,方便快速将硝酸钾固体铲出分离槽,提高了生产的效率。
本实用新型公开了一种用于真空烧结炉隔热屏维修的端面修边刀,包括裁剪导向件、划刀以及横截面为“L”形的固定刀架;所述固定刀架“L”形的一边内设有插槽,另一边通过一“C”形夹与隔热屏鼠笼框架端面的环形龙骨装配固定;所述裁剪导向件一侧插入至该插槽中,并通过设置在固定刀架上、且依次排列的三个定位螺孔将该裁剪导向件定位;同时,所述裁剪导向件另一侧设有划刀槽,而所述划刀则用于与划刀槽配合对隔热屏进行裁剪。本实用新型结构合理、使用方便,很好地解决隔热屏前后端面与碳毡门之间的相对密封性的问题,从而保证了炉体运行时的温度均匀性。
本实用新型公开了一种硬质合金异形管材真空烧结装舟装置,包括安装舟板以及数个用于夹持异型管的限位环,所述安装舟板底部四角均安装有支撑柱,安装舟板上开有数个用于安装异形管的安装孔,所述限位环由数块限位块围合成,限位环外套有收紧环。本实用新型装夹稳定、避免变形并且能够提升产品质量。
中冶有色为您提供最新的四川有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!