本发明公开了一种用于废水中重金属深度去除的复合药剂及其制备方法,按重量份计,由以下原料制成:成分A:改性凹凸棒土粉末20-30份;改性天然高分子聚合物30-50份;表面活性剂0-3份;成分B:无机絮凝剂,所述成分A与成分B的重量比为2.5-8.3:1。本发明对水中重金属离子具有很强的吸附、螯合和絮凝性能,同时可以辅助降低COD、脱色、除磷等多种功效,且处理效果好,制备方法简单易。
本发明公开了一种利用沉淀微量重金属产生的废磷酸盐合成磷酸铁的方法。本发明利用废磷酸盐作为磷源溶解后与含铁溶液并加,或者与亚铁溶液以及双氧水三者并加,在低温条件下合成磷酸铁,过滤得到滤液和滤渣;滤液可回收其中其他有价金属,滤渣经洗涤浆化后加入磷酸在90℃条件下转化,保温后抽滤,将抽滤物料烘干游离水后得到二水磷酸铁,经过煅烧后制备成无水磷酸铁产品。本发明的一种利用沉淀微量重金属产生的废磷酸盐合成磷酸铁的方法,操作简单,制备的磷酸铁产品可达到电池级标准要求,实现了从废磷酸盐中回收磷的目的,可明显降低磷酸铁合成成本;同时使废渣资源化,增加其附加值,也解决了废磷酸盐对环境造成污染的问题。
本发明公开了一种从钴液中脱除微量钛的方法。本发明采用的技术方案为:将钴液与萃取剂在萃取箱内经过多级逆流混合搅拌一段时间,静置分相后,钴液中的钛被萃取至有机相中,合格萃余液送下步工艺作为工艺反萃段做反萃液使用,含钛负载有机相用纯净水在萃取箱内经多级逆流混合搅拌一段时间洗掉夹带水相,静置分相后,水相进水处理中和达标后排放,负载有机相用硫酸和双氧水在萃取箱内经多级逆流混合搅拌一段时间,静置分相后,水相进水处理系统,空白有机相经工业用水逆流洗涤后返回至萃取段循环萃取钴液中钛杂质。本发明具有工艺流程简单,所需设备少、生产成本低、绿色环保、杂质钛除去率高等特点,因此具有一定的工业应用前景。
本发明提供了一种利用导电高分子纳米纤维从电子废弃物中回收金属的方法。该方法采用导电高分子,该导电高分子是聚苯胺、聚吡咯、聚噻吩以及它们的环取代衍生物、杂原子取代衍生物中的一种;将该导电高分子制成纤维状后置于含有金属成分的电子废弃物酸浸取液中,金属离子被吸附在纤维材料表面并被还原,过滤后即可实现溶液中金属成分的提取分离。与现有技术相比,本发明成本低,能够高效、环保地富集并回收电子废弃物中的金属成分,并且无任何副产物产生,具有良好的应用前景。
本发明提供了一种利用导电高分子纳米纺丝从电子废弃物中回收金属的方法。该方法采用导电高分子材料,该导电高分子材料是聚苯胺、聚吡咯、聚噻吩以及它们的环取代衍生物、杂原子取代衍生物中的一种,将该导电高分子材料与纺丝材料作为原料,通过静电纺丝法制备成导电高分子纳米纺丝材料。将该导电高分子纳米纺丝材料置于含有金属成分的电子废弃物浸取液中,即可自发地在该导电高分子纺丝材料表面富集并还原金属离子,过滤之后即可实现溶液中金属成分的提取分离。与现有技术相比,本发明成本低,能够高效、环保地富集并回收电子废弃物中的金属成分,并且无任何副产物产生,具有良好的应用前景。
本发明公开了一种从电池料萃余液中回收制备粗制碳酸锂的方法。本发明使用锆基除氟剂去除电池回收过程中带进萃余液中的氟,通过蒸发分离得到硫酸钠产品,蒸发循环母液加入碳酸盐沉锂,沉锂过程采用沉锂前液多点散射的加入方式降低了碳酸锂产品中钠含量。本发明具有工艺流程短,产品杂质低,实现沉锂母液内部循环利用,生产成本低等特点。本发明制备的碳酸锂钠含量低于0.1%,碳酸锂主含量高于98.50%,氟含量低于0.020%,各项指标满足工业级碳酸锂水平要求。
本发明提供了一种碳分子筛的清洗装置,其特包括圆柱状主体,所述圆柱状主体包括圆柱形内壁和圆柱形外壁,在所述圆柱形内壁上设置有多个水流喷射孔;所述圆柱形内壁和所述圆柱形外壁之间形成一容纳空间,在所述容纳空间中设置有高压气射流管;在所述高压气射流管上设置有高压气喷射孔;所述圆柱状主体上还设置有与所述容纳空间相通的高压水进水口。本发明的碳分子筛的清洗装置对中毒碳分子筛能够进行有效的清洗,尤其是能够对碳分子筛的孔隙内部的沉积物进行有效的清洗,从而避免了采用盐酸等清洗剂对碳分子筛的影响,保证了更好的碳分子筛的再生效果。
本发明公开了一种用于冶金工业钨酸盐溶液除锡装置及其使用方法,包括机体,其特征在于:所述机体中设置有动力空间,所述动力空间中设有动力机构,所述动力机构用于给装置提供动力与氧气的传输,所述动力空间下侧设置有搅拌空间,所述搅拌空间中设有搅拌机构,所述搅拌机构用于氢氧化铁与空气的混合搅拌,防止氢氧化亚铁进入到钨酸盐溶液总,所述搅拌空间下侧设置有去除空间,本发明可以有效的去除钨酸盐溶液中的锡,本发明在深度去除锡的同时还能吸附一些其它杂质,在全面与溶液的接触下,不仅大大提高了吸附效率,同时加快了溶液的除渣效率,操作简单,工艺流程短,能很好保证工人的身体健康。
本发明公开了一种冶金物料搅拌装置,其结构包括固定套件、辅料料筒、辅料漏斗、原料漏斗、原料料筒、搅拌池上盖、搅拌池、配动块、搅拌器、固定底座。本实用的有益效果:本实用设有的传动杆通过搅拌叶旋转时的触碰进行前摆,而后通过摆动杆将配动杆向上位移,从而带动伸缩挡板套入滑槽内,实现了筒体内的自动放料,当搅拌叶片脱离传动杆时,则回力弹簧将摆动杆快速拉回原位,并将伸缩挡板弹出,并对放料口进行密封,有效的实现了自动定量添加功能,避免了人工操作带来的不均匀性,有效提高了搅拌质量。
本发明公开一种硫化铅镉渣的处理方法。高压下二氧化硫的浸出反应,回收了硫化物以及浸出了硫化物,采用四氯化碳来溶解萃取产生得到的硫,由于硫溶解到四氯化碳,从而实现硫的萃取,再经过减压蒸馏回收四氯化碳和硫;再经过冷却,从而析出了氯化铅和氯化亚铜,再加入氨水,氯化亚铜溶解到氨水中,而氯化铅不溶解,从而实现了氯化铅和氯化亚铜的分离,经过蒸氨得到氯化亚铜;再采用锌粉置换剩余的溶液,由于金属活泼性不同,从而可以将镍钴镉置换成金属单质。本发明能够实现全组分的分离和回收,回收率高,且最终得到的产品纯度高,产品附加值大,对环境的影响小,成本低。
本发明公开了一种连续加压氧浸处理高硫物料的方法,包括备料、加压氧浸造液、闪蒸、液固分离、洗涤、换热等步骤,利用物料中低价硫氧化过程放热维持反应温度,无蒸汽消耗和添加剂消耗,采用通入冷介质的方式消耗反应过程中多余的热量,反应温升得到有效控制,反应的热能通过换热得到充分综合利用;本发明采用一段加压连续浸出,一段闪蒸连续降温减压,浸出渣无需处理回收硫,整个生产流程连续作业,自动控制程度高,反应过程自热,无需添加单质硫或蒸汽维持反应温度,浸出时间短,金属收率高,生产能耗低,生产运行的连续性、平稳性和安全性更高。
本发明公开了一种提升粗制氢氧化钴品位的方法。本发明将含钴溶液分为三段处理,获得一种高品质的氢氧化钴;通过控制氧化镁加入量,使一段沉钴后液pH偏7.50,一段沉钴渣作为产品;一段沉钴后液加入氧化镁进行二段沉钴,控制二段沉钴后液pH偏8.00,其中二段沉钴湿渣返还至一段作为晶种,重复前述步骤;二段沉钴后液利用氧化钙与氧化镁继续处理,三段沉钴渣作为碱源返回浸出工序,三段沉钴后液送至污水处理厂。本发明可处理锰和镁含量较高的钴溶液,制备得到一种钴品位在44%左右、锰1.0%左右及镁2.5%左右的粗制氢氧化钴,达到了提高氢氧化钴品质,降低锰和镁杂质的目的,可降低后期萃取成本和运输成本。
本发明中公开了一种应用于污水处理的过滤膜的制备方法,其具体制备方法包括将一定量的聚乙烯醇(PVA)溶解与一定温度的水溶液当中,待溶解完全后,加入适量的碳纳米管搅拌使其均匀分散,然后将一定量的EVOH加入到有机溶剂当中,再加入适量的碳纳米管,搅拌,将上述两种溶液混合后再依次加入适量的壳聚糖(CS)、冰醋酸、丙三醇,在一定温度下充分搅拌得到铸膜液,采用流延成膜的方法倾倒在干净的聚四氟乙烯板上,瓜涂成膜,在一定温度下干燥,得到过滤膜。
本发明涉及铅酸蓄电池领域,尤其涉及废铅酸电池中正极板铅膏的处理方法,包括以下步骤,第一步,解剖、分离,对废铅酸电池进行解剖,将正极板与负极板和隔板进行分离;第二步,清洗、分离,对正极板进行清洗,当正极板成弱酸性后,将正极板的板栅和活性物质二氧化铅进行分离;第三步,干燥、研磨,将二氧化铅干燥后研磨,处理达到80~90%粒径为0.1?50μm二氧化铅;第四步,加热,去杂质,将二氧化铅加热到150?300℃,并去除纤维、水杂质。通过采用以上方法,电池中正极板铅膏能实现无污染的处理和回收使用。
本发明公开的金属硅的物理提纯方法,步骤为:将经过清洁的金属硅放入退火炉中,加热至1100~1300℃,保温10~50分钟,以0.1~2℃每分钟的速率降温至700~1000℃,保温30~150分钟,以0.1~2℃每分钟的速率降温至250~350℃,之后随炉冷却,浸泡在盐酸和氢氟酸等体积混合溶液中1~5个小时,即可。本发明利用了磷吸杂原理,在金属硅表面形成磷吸杂层,对金属硅中的金属进行吸杂处理。工艺流程简单,低能耗,低成本,无污染排放,生产效率高,产率高,通过此方法提纯可以得到纯度为4~5N的金属硅材料,可以作为太阳能电池用硅材料的原料。
本发明涉及一种在锌电解精炼工艺中用于收集电解槽底阳极泥的装置,主要包括电解槽体、真空抽吸装置,所述的电解槽体的底部为梯形状,在该电解槽体的底部设置有阳极泥捕集装置,电解槽体两端安装有传动机构,阳极泥捕集装置通过耐腐蚀牵引绳索与传动机构相连接;所述的真空抽吸装置位于电解槽体的两侧,真空抽吸装置内的真空抽吸管插入于电解槽体的底端,该真空抽吸管通过真空泵抽取阳极泥。本发明的有益效果为:该装置操作简单,易于实现工业化应用,操作稳定性好,不仅实现了阳极泥的在线抽吸,而且大大提高了阳极泥的抽吸率,避免了阳极泥的堆积。
本发明涉及一种大孔弱碱性苯乙烯阴离子交换树脂方法,包括以下步骤:步骤一,用丁醇和十二醇的混合醇作致孔剂,过氧化苯甲酰作引发剂,明胶和少量铵盐作分散剂,使苯乙烯和二乙烯苯交联共聚,得到苯乙烯‑二乙烯苯的共聚物;步骤二,在氯化锌的催化作用下,用氯甲醚对白球进行氯甲基化,得到氯甲基化共聚物;步骤三,用二甲胺溶液对氯球进行氨化,得到大孔弱碱性阴离子交换树脂,相对于现有技术,本发明制得的阴离子交换树脂,比表面积能达到65m2/g以上,大于2nm的中孔比例大于55%,全交换容量达到4.6mmol/g,弱碱交换容量达到3.6mmol/g以上。
本发明公开了一种大孔丙烯酸弱碱阴离子交换树脂的制备方法,包括如下步骤:步骤一、白球的制备:以明胶和羟乙基纤维素的水溶液作为水相,并加入无机分散剂和次甲基蓝溶液作为水相阻聚剂;以溶有BPO的丙烯腈和二乙烯基苯混合液以及致孔剂作为油相;油相和水相通过悬浮聚合法制得大孔交联聚丙烯腈聚合物微球,减压蒸馏回收所述致孔剂,对所述聚合物微球依次用热水和冷水洗涤,烘干后即得白球;步骤二、树脂的制备:将步骤一制得的所述白球与多乙烯多胺,在一定的温度下进行反应,制得大孔丙烯酸弱碱阴离子交换树脂。采用本发明方法制备的树脂不仅能用于水处理行业,同时在食品行业使用中,可有效去除有机酸中的氯根、硫酸根等阴离子。
本发明公开了一种湿法回收三元电池材料中镍钴的操作工艺,属于三元电池材料回收技术领域,一种湿法回收三元电池材料中镍钴的操作工艺,包括以下步骤:步骤一、放电处理:用电解质溶液浸泡法对拆解前的废旧三元电池进行了放电处理,以消除余电的安全隐患;步骤二、脱铝预处理;步骤三、无机酸酸浸;步骤四、铜铝铁除杂;步骤五、萃取回收钴镍;步骤六、得到钴镍产品;步骤三和四均在强化反应装置中进行,可以将操作的工序时间缩短百分之五十,大幅提升三元电池材料中镍钴的回收速率,并可大幅减少杂质对镍钴回收的影响,提升钴镍金属的回收率,从而可增强企业的回收能力,大幅减少资源的浪费,有利于环境的保护和可持续发展。
本发明提供了一种从含钒物料制备偏钒酸铵的方法,包括:a、将含钒物料与钠化剂混合,经过焙烧,然后用水浸出含偏钒酸钠的溶液;b、在偏钒酸钠溶液中加入铵源物质,向溶液中通入CO2并沉淀出NH4VO3;c、将沉淀出的NH4VO3与母液分离得到NH4VO3;d、将步骤c中分离后的母液与新的含钒物料和钠化剂混合,重复步骤a、步骤b以及步骤c的操作,从新的含钒物料制备偏钒酸铵。本发明从含钒物料制备偏钒酸铵的方法过程中无废水产生,废液可循环使用,可以降低生产成本减少环境污染,且钒的收率高。
本发明涉及一种从黄铜中提取铜和锌的设备和使用方法。从黄铜中提取纯铜和纯锌的设备,包括熔炼炉、冷却装置、一氧化碳存储罐和固体分离装置;熔炼炉包括密闭炉体及其上的进料管和螺杆,螺杆内设置用于冲氮气的中空氮气通道;密闭炉体的顶部设置锌气出口,密闭炉体的底部设置铜液出口,密闭炉体侧壁上设有调压观察口,调压观察口的下方设置密闭排渣口;锌气出口通过冷却装置分别连接一氧化碳存储罐和固体分离装置。该从黄铜中提取纯铜和纯锌的设备的优点是结构新颖,使用能耗低,改善了传统的提取方法存在的环境污染大的问题,可以的高效率的提取纯铜和纯锌。
本发明提供了一种具有较大孔径的大孔聚合物,典型孔径为5000~200000埃,典型压碎重量至少为175g/粒。这种大孔聚合物可以利用互穿聚合网络(IPN)技术制备,这种聚合物也可以形成大孔树脂。本发明也例举了这种大孔聚合物或树脂的应用方法。
本发明涉及一种橡胶衬里衬贴作业时不用涂刷胶粘剂,即可直接把自粘型橡胶防腐衬里敷贴在被防护的钢铁金属表面的自粘型橡胶防腐衬里施工新工艺,耐腐蚀橡胶100份、增粘剂200‑280份、软化剂280‑380份、补强助剂50‑80份、硫化剂0.5‑1.0份、防老剂A 1.5‑2.5份、防老剂B 1.5份、促进剂0.5‑2.0份。优点:一是由于无需涂刷胶粘剂,因此解决橡胶防腐衬里制作过程中存在的运输、储存和涂刷安全隐患,避免了易燃、易爆、有毒、有害情形的发生;二是不会发生易燃和有害气体挥发,确保了人体健康和环境不会被污染;三是采用本申请工艺制成的防腐橡胶衬里设备的橡胶片与钢铁金属的粘合强度达到了原胶粘剂的粘合性能,防腐性能满足实际应用要求。
本发明公开了一种以中空纤维多孔膜为基体的扩散渗析膜及其制造方法,它是以超亲水性、用编织管增强、带海绵状梯度孔的中空纤维多孔膜为基体的,孔隙内浸吸可溶的季胺型阴离子交换线形聚合物的醇溶液,同时溶入弱酸性丙烯酸系单体、极性长链交联剂和引发剂,然后加热使醇类溶剂挥发,最后引发共聚而制得的。所制得的扩散渗析膜产品,同时具有强碱性季胺基和弱酸性羧酸基,形成了半互穿聚合物网络结构;中空纤维膜丝的机械强度高、亲水性强,因此抗污染性能优异;同时,制造过程简洁、高效、环保。用所述产品组装中空纤维膜组器在工程应用上易于拆装和更换,适合用于废酸的回收处理。
本发明涉及一种利用烧结钕铁硼炉渣制备再生钕铁硼磁体的方法,属于稀土永磁材料领域。本发明烧结钕铁硼炉渣再生制备钕铁硼的过程中,对废弃钕铁硼炉渣经真空等离子感应炉熔炼,经过配方设计和烧结工艺得到性价比极高的烧结钕铁硼磁体。制备过程中对炉渣出炉后用惰性气体保护,避免了炉渣氧化;通过真空等离子感应炉极高的温度使炉渣快速完全溶解,可以更好的去除杂质;本发明过程简单、流程短,制造成本低,不会产生大量废酸废液,对环境保护起到一定积极作用,遵循可持续发展的原则。
本发明公开了一种聚偏二氯乙烯废弃物回收再利用的方法,(a)将粉碎后的聚偏二氯乙烯废弃物,碱性金属氢氧化物和增塑剂按一定重量份数配比后进行搅拌混合,于170~200℃温度下挤出造粒;(b)将造粒料在惰性气体氛围内,以两种不同升温速率分两步由25℃升温至700~800℃,再以10~20℃/min的速率降至25℃,得到炭化材料;(c)将炭化材料浸入酚醛树脂醇溶液中1~2h,在惰性气体氛围内,以两种不同升温速率分两步由25℃升温至850~900℃,再以5~10℃/min的速率降至25℃,得到多孔碳材料。本发明工艺简单、绿色环保、成本低,经济效益好。
本发明公开了一种综合利用低品位磷矿石的方法。现有的一种方法采用酸式磷酸盐做催化剂参与反应,使用酸式磷酸盐除铁,并回收氢氧化铁和磷酸根,该过程增加了新的工段及设备,造成投资增加,且氢氧化铁为胶体,液固分离过程较为困难。本发明将红土镍矿和低品位磷矿石在各自的磨矿体系中进行球磨处理;将得到的红土镍矿和低品位磷矿石与质量百分数为20-35%的浓盐酸混合,进行浸出反应;将得到的浸出渣和浸出液在压滤机中进行固液分离,洗渣过程也在压滤机中进行;洗液和浸出液混合后先用石灰乳进行沉淀收铬,之后再用石灰乳进行沉镍反应和沉镁反应。本发明合理利用了磷矿石和红土镍矿成份上的特点,实现了红土镍矿浸出渣的综合利用。
一种采用双组分络合剂溶胶凝胶制备负衰减系数锂离子电池Li1+xV3O8正极材料的方法,其特征在于络合剂由两种组分A和B构成,A在结构上具有锂离子络合及受到酰胺保护的羧基;B在结构上具有钒离子络合基团及羟基,络合剂A和络合剂B分别与锂离子和钒离子络合,通过水解去除羧基保护后将络合剂A-含锂体系与络合剂B-偏钒酸铵体系混合,用氨水调节体系的pH值到6.8-7.5,升高体系的温度至80℃-90℃保温0.5-1.0小时得到泡沫状蓬松产物,该产物在110℃-130℃真空烘箱中干燥10-20小时后在箱式电阻炉中450℃-550℃下煅烧3-5小时,自然冷却得到Li1+xV3O8正极材料。该方法能在分子级水平上形成完全化学剂量比混合,形成完整纯相的Li1+xV3O8正极材料。减少LiV3O8转变成为Li4V3O8相过程中的不可逆相变,在50个充放电循环中随循环次数的增加放电容量呈递增趋势。
本发明公开了一种废弃印花镍网回收处理的方法,包括如下步骤:废弃印花镍网经过剪切成碎片,置于酸性溶液中浸泡后取出,放入到盛有无机酸水溶液的微泡溶镍釜中,搅拌,向微泡溶镍釜内通入空气或氧气,通入的空气或氧气夹带溶液进入气液分离器后,分离的液体依次通过循环泵、液气喷射泵和折流盘进行乳化,乳化的液体再返回至微泡溶镍釜内,形成溶液在微泡溶镍釜内的循环,进行微泡浸出反应,反应结束后,依次进行过滤、预冷、冷冻结晶、固液分离和干燥,获得镍盐产品。本发明将废弃印花镍网通过微泡溶镍技术实现了镍网与表面薄膜的分离,同时实现高品质镍的回收,整个体系不产生废渣、废水、废气等,金属回收率高,处理成本低,而且环保意义明显。
一种混合氯化铜废蚀刻液综合回收处理方法,属于有色金属冶金有价金属回收领域。其工艺过程的主要包括以下步骤:(1)对氯化铜蚀刻液进行浓缩;(2)浓缩后的氯化铜溶液进行喷雾热解形成氧化铜复合粉;(3)氯气进行回收制备精制盐酸;(4)氧化铜复合粉经硫酸浸出;(5)硫酸铜浸出液经旋流电解系统进行选择性电积,得到化学成份达到1#铜产品标准的阴极铜产品。本发明的方法工艺简单、流程短、环境友好,操作简单可行,能够有效的实现酸性与碱性氯化铜蚀刻液综合回收并直接生产高品质铜产品,并有效的将废液中的氯离子转化为精制盐酸产品,达到资源的高效综合利用。
中冶有色为您提供最新的浙江有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!