本发明涉及一种铅铋物料真空蒸馏除铅提纯铋的方法,将铅铋物料在真空冶炼设备中,控制设备内真空度为0.01Pa,加热控制温度在850?950℃,并保证一定的蒸馏时间,利用铅铋二种元素的蒸气压的差异进行蒸馏分离。整个过程为物理过程,区别于吹氯除铅的化学过程,所以该过程不产生冶炼废渣,产品分别为粗铅合金与粗铋合金,元素直收率高,粗铅合金出售价格高,粗铋合金有利于下一步精炼。达到的技术经济指标为:粗铋合金中含Pb量均小于1%;粗铅合金中含Bi量均小于6.5%;Pb的直收率大于95%;Bi的直收率大于97%;产品均为合金,杜绝有害冶炼渣产生;产能:9?10吨/24小时;能耗:每吨物料耗电400?420千瓦时。
本发明实施例是关于一种废催化剂中钼回收方法,该方法包括:分别对所述废催化剂与碳酸钠进行研磨,并将研磨后的所述废催化剂与所述碳酸钠搅拌混合;将混合后的所述废催化剂和所述碳酸钠放入真空电阻炉中进行焙烧得到焙烧产物,其中,焙烧温度为140~200℃;对所述焙烧产物采用蒸馏水进行浸出得到浸出液和浸出渣的混合物;将所述浸出液和所述浸出渣的混合物进行分离得到浸出液。上述废催化剂中钼回收方法,一方面使用了真空技术,工艺流程简单、工艺周期较短从而使得工艺能耗降低,另一方面,工艺过程中的添加物相对无害、钼回收率高,且对于废催化剂进行钼回收后的废渣成分无明显的破坏,不会影响后续其他离子的回收,也不会造成二次污染,较为环保。
一种绿色化综合利用红土镍矿的方法。该方法包括以下步骤:(1)将红土镍矿磨细后与硫酸混合焙烧,焙烧熟料溶出、过滤,得到二氧化硅和溶出液;(2)溶出液除铁后得2号液和滤渣(铁化合物),2号液中含铝、镍、镁,可采用(3)或(4)两种方法处理:(3)将2号液用碱沉铝,过滤后滤液用硫化钠沉镍,再过滤后用碱沉镁;滤渣处理后分别得到氧化铝、氢氧化镍、硫化镍和氧化镁。(4)将2号液用碱沉铝、镍,含铝、镍的混合渣用碱处理后得到氢氧化铝和氢氧化镍产品;沉铝、镍后的滤液用氨或铵盐沉镁,得到氧化镁产品。本发明适于处理各种类型的红土镍矿,无三废排放,红土镍矿中的有价组元镁、镍、铁、铝、硅都被分离提取出来。
本发明公开了一种金属材料制造用的高效熔炼装置,包括熔炼箱、进料机构、连接机构、一级搅拌机构和二级搅拌机构,金属废料通过进料机构进入到熔炼箱中,隔板中的加热块和熔炼箱内壁中的加热块对金属废料进行加热,当隔板上的金属废料受热融化至缩小到一定体积后,会通过隔板上的多个通孔继续掉落,掉落的的金属废料落到熔炼箱的下部;连接机构中,第三安装板在转动过程中使得第二搅拌叶在搅拌过程中上下运动,同时通过连杆与安装座的球铰接设置,使得第二转轴在转动过程中会发生周向摆动,进一步提高第二搅拌叶对金属废料的搅拌效果;本发明中通过一级搅拌机二级搅拌机构和连接机构的设置,大大提高对金属废料的熔炼速度。
本发明涉及一种微波高温处理含碳载金矿‑脱碳推板窑设备,包括炉体、炉体支架和电气控制装置,所述电气控制装置设置于炉体支架的一侧,所述炉体设置于炉体支架上,所述炉体支架的一侧设有机架,所述机架上设有外循环辊道运动系统,所述炉体的内部设有焙烧物料保温层和耐火材料,所述炉体包括从右至左依次连接进料端、进料微波抑制段、第一升温段、高温段、恒温段、缓冷段、急冷段、第二升温段、出料微波抑制段和出料端。本发明利用微波在高频段工作特性,直接将微波能量转换为产品本身的热能,热量从产品内部开始均匀向外部传导迅速扩散,使产品自身整体温度快速升高,处理材料温升快速、温度梯度均匀、能耗小、连续稳定生产、脱碳效果好。
本发明公开了一种从废旧锂离子动力电池中回收隔膜、铜箔和电池正极的方法,包括以下步骤:(1)在15~40℃下,对废旧锂离子动力电池放电,将废旧锂离子动力电池的电压降至0.01~0.5V;(2)使用剪切破碎机对放电后的电池剪切破碎,破碎成几何规则形状;(3)将得到的电池规则碎片置于水中浸泡搅拌,将搅拌后的电池规则碎片筛分;(4)将得到的筛上物置于重力分选机中,将隔膜与铜箔和电池正极分离,回收隔膜;(5)将得到的铜箔和电池正极干燥后置于涡电流分选机中,分离回收铜箔和电池正极。本发明易于实现工业化,回收成本低,产品回收率高,对环境不会产生污染。
本发明公开了一种从酸性含砷废水中提取单质砷的方法,将还原剂I和还原剂II加入至初始pH不高于2的酸性含砷废水中进行还原反应,经固液分离得到脱砷后液和滤渣,滤渣经干燥得单质砷产品;所述还原剂I为次亚磷酸和可溶性次亚磷酸盐中的至少一种,还原剂II为可溶性亚硫酸盐、二氧化硫和可溶性焦亚硫酸盐中的至少一种。本发明实现了含砷废水中砷的高效资源化回收,且所得单质砷纯度高,另外,所需试剂毒性小,还原过程反应速度快,能耗低,工艺流程短,操作简单。
一种高砷金矿焙砂热态配入铅冶炼系统侧吹还原炉的方法,将含金焙砂在1100‑1350℃熔融,并配入铁矿石;富氧侧吹还原炉熔融高铅渣进料开始后5min至熔融高铅渣进料完成前5‑10min内将熔融含金焙砂通过溜槽与熔融高铅渣合并加入炉内,含金焙砂加料速度为0.1‑6吨/平方米富氧侧吹还原炉风口区截面积·小时,加入石灰石和还原剂,鼓入富氧空气,炉内熔体温度维持1050‑1200℃;高铅渣进料完成后,加入还原剂,炉内熔体温度保持1200‑1300℃,还原熔炼30‑60min。本发明可提高含金焙砂在铅冶炼系统中的搭配处理量12倍以上;贵金属回收率达到99%以上,适合大规模处理多种含贵金属难处理物料。
公开了利用钢铁厂锌灰和过氧碳酸钠快速脱除高砷氧化锌中砷和生产硫酸锌的方法。利用Fe(OH)3在pH3.0~5.4时能与砷酸生成FeAsO4沉淀的特性,通过浸出原料中的铁,再经氧化、水解反应生成Fe(OH)3,从而实现从溶液中除去砷的目的。具体过程包括根据高砷氧化锌和钢铁厂锌灰两种原料的砷、铁、锌元素化验结果,计算两种原料的使用量,并配好原料,经过浆化、浸出、调pH值、过氧碳酸钠氧化除铁砷、中和、压滤、净化后再进行蒸发结晶,最终得到合格的硫酸锌产品。砷则在冶炼过程中进入冶炼废渣固化,实现无害化。
本发明公开一种节能型熔炼装置,包括反射炉、缓冲器和换热器,反射炉包括钢罩、耐火层和隔热墙,耐火层包括谓反射炉体,隔热墙设于谓反射炉体底面的中部且与谓反射炉体顶面之间形成空挡,隔热墙将谓反射炉体分隔成上换热区、第一下熔炼区和第二下熔炼区,钢罩左右侧板的中心分别水平对应于隔热墙的两侧板开设有贯穿耐火层的第一进火口和第二进火口,上换热区的顶壁开设有与第一下熔炼区和第二下熔炼区对应的第一投料口和第二投料口,第一下熔炼区和第二下熔炼区分别开设有第一排料口和第二排料口,上换热区开设有排气口,该节能型熔炼装置可有效提高热能的直接利用率。
本发明针对目前我国废旧电子电器产品中贵金属难以有效回收的现状,提供一种废弃线路板中钯的有效富集方法。其特征是:首先采用预处理方式将去除电子元器件后的线路板脆化,破碎后采用两级筛分法配合风选使线路板分为金属大颗粒、非金属大颗粒、金属小颗粒和非金属小颗粒,接近100%的钯富集在金属大颗粒和金属小颗粒中。该方法操作简便、效率高、金属与非金属分离彻底,同时还可以实现其它贵金属的有效富集,具有良好的产业化应用前景。
本发明公开了一种分离和回收废弃锂电池中金属的方法,该方法是将废弃锂电池回收混合极粉进行浮选分离I,得到含碳正极极粉和负极极粉;将含碳正极极粉与硫源混合进行硫化焙烧,得到硫化焙烧产物;将硫化焙烧产物经过水浸,得到锂盐溶液和过渡金属硫化物富集渣;将金属硫化物富集渣进行磨矿和浮选分离II,得到过渡金属硫化物精矿,该方法不但能够高效回收废旧锂电池中锂与铁、钴、镍、锰等有价金属,且工艺简单,成本低,不易造成环境污染,有利于大规模生产。
本发明提供了利用氧化铜矿短程制备电解铜箔的工艺,它包括以下步骤:(1)、硫酸浸铜;(2)铜萃取;(3)、深度除油;(4)、树脂除杂;(5)、特种膜脱酸;(6)、电解液制备;(7)、铜箔制备:用电解液制备铜箔,得到生箔和废酸,废酸经过膜脱酸成为脱酸铜液和低酸溶液,脱酸铜液返回电解液中循环利用,低酸溶液返回步骤(1)。本发明的有益效果是颠覆了传统铜箔由电铜、拉丝、溶解再电积制箔的工艺,取消了湿法冶炼电积铜过程,同时省去了电铜熔融、铸锭、拉丝的铜线制备过程;本工艺技术运用分步结晶母液返回萃铜工艺,解决了冶炼过程铜酸比不能满足铜箔生产的难题。
本发明涉及一种废锂电池电极组成材料的资源化分离工艺。将拆解所得的废锂电池负极材料剪切成片状,然后放入锤式破碎机中对粘附于负极铜箔表面的碳粉和乙炔黑粉末进行锤击振动剥离;在锤式破碎机转子下部设置筛板,经锤击破碎小于筛板孔径的负极颗粒通过筛板小孔落入下方的筛分设备;尺寸大于筛板孔径的负极材料在锤式破碎机内被循环锤振破碎,直至尺寸小于筛板孔径;落入筛分设备的破碎颗粒利用颗粒间的尺寸差和形状差经振动过筛实现锤振剥离后金属铜与非金属碳粉和乙炔黑粉末的分离。将废锂电池正极剪切成片状,然后送入滚筒式热解设备中进行处理,粘结铝箔与钴酸锂和乙炔黑的有机粘结剂受热分解,组成材料相互剥离的电池正极从热解设备的另一端连续排出,经后续带有撞击构件的筛分设备振动撞击过筛,实现电池正极铝箔与钴酸锂和乙炔黑粉料的分离。本发明工艺简单、高效、容易控制且清洁环保。
本发明公开了一种由废旧锂离子电池再生制备暴露{010}晶面的片状单晶三元电极材料的方法,首先将回收的废旧三元锂离子电池放电、拆解,分离得到正极片,经碱浸预处理等得到三元电极材料粉体,接着将电极材料进行机械破碎或电化学破碎,然后将收集得到的破碎三元材料粉体与含锂熔融盐混合进行补锂煅烧,最终得到再生的暴露{010}晶面的片状单晶三元电极材料。这种暴露{010}晶面的片状单晶具有有序的内部原子排列,有利于锂离子在晶体内部的扩散,提高了单晶三元电极材料结构的稳定性。本发明由废旧锂离子电池三元电极材料所制备的暴露{010}晶面的片状单晶三元电极材料具有优异的电化学性能,为废旧锂离子电池三元电极材料的回收与循环再利用提供了一种经济有效的途径。
本发明公开了一种利用废旧电池铅膏制备高氧化度铅粉的方法,包括如下步骤:(1)将废旧铅膏研磨成粉末;(2)向铅膏粉末中加入硫酸溶液和还原剂,充分反应后分离除去液体,固体物料水洗至中性后烘干;(3)向步骤(2)所得固体物料中加入脱硫剂,充分反应后分离除去液体,固体物料水洗至中性后烘干;(4)向步骤(3)所得固体物料中加入酸溶液,充分反应后除去不溶杂质,得到含铅的溶液,向该溶液中加入碳酸盐,充分反应后除去液体,固体水洗后烘干,得到纯净的碳酸铅固体;(5)将步骤(4)所得碳酸铅固体置于马弗炉中焙烧,即得高氧化度的铅粉。本发明制备成本低,工艺流程简单,铅回收率和质量高,能明显降低能耗和减少环境污染。
一种降低电溶再生WC氧含量的真空高温处理方法为:将电溶WC物料装入设有排气孔并加顶盖的石墨舟中,石墨舟放进真空加热炉内,炉内初始真空度达到1-10PA时,加热炉便升温至1600°-2000℃,保温30-120分钟,物料即随炉冷却至60℃出炉。本发明所述的真空高温处理方法,可使电溶再生WC氧含量达到原生WC氧含量的技术标准。
本发明涉及一种提高稀土回收率的焙烧矿冷浸工艺,包括,步骤S1,将焙烧矿通过进料口注入冷却装置,同时启动风力装置,焙烧矿在风力装置的带动下沿冷却管移动;步骤S2,冷却水通过进水口注入冷却管内,对焙烧矿进行冷却;步骤S3,出料口温度符合预设标准的焙烧矿通过出料口排出冷却装置,出料口温度不符合预设标准的焙烧矿通过风力装置将不合格焙烧矿传送至预设位置重复冷却,直至焙烧矿温度符合预设标准。本发明设置有中控单元,用于调控各部件工作状态;中控单元通过调节冷却管内水水流速度、第一动力装置动力参数、第二风力机构传送角度和各透气阀的透气量,以使排出的焙烧矿温度符合预设标准。
本发明公开了一种综合回收再利用废旧三元电极材料的方法,利用层状三元电极材料的结构特点,在外加电场的驱动下选择性地将锂离子从三元正极活性物质中脱出,采用沉淀剂加以沉淀回收;此外,缺锂态的三元正极材料作为氧析出反应的催化剂使用。本发明回收方法既可以有效回收锂元素,又可以功能性整体利用电极材料作为催化剂使用,且工艺简单、易于实施,有利于推广应用。
本发明涉及由于多层镀敷方法而具有金色外观的镀有青铜的基材的制备。本方法特别包括对具有至少一层铜的基材镀敷锡层,所述锡层的厚度表示为该铜层厚度的3.5%至12%。本方法还包括在包含多个加热区的退火炉中将所述被镀敷的基材退火,炉的最后的加热区的退火温度在600℃至815℃的范围内。本方法的退火步骤是在受控的操作参数下进行的,其包括退火停留时间、退火温度和锡层相对于铜层的相对厚度。将所述操作参数根据彼此进行控制,以确保获得被镀敷的青铜的像金的外观。
本发明涉及一种铜冶炼过程中回收硫磺的系统及方法,属于硫磺回收技术领域,造锍熔炼炉中出来的高浓度SO2烟气除去微尘后进入流化床碳热还原塔,与碳基还原剂发生还原反应得到还原气,还原气先经过高温分离器,分离下来还原气中含有的未饱和粉焦,还原气经过冷凝后得到硫磺。还原气中夹带的饱和粉焦进入解析塔,解析出粉焦中的SO2气体,脱附后的粉焦进入流化床硫磺还原塔继续参与还原反应。解吸塔排出的一部分SO2气体排至流化床碳热还原塔生产硫磺,一部分进入脱硫塔。流化床碳热还原塔内的碳基还原剂循环倍率高,SO2转化率能达到98%,硫磺产率能达到95%,回收硫磺纯度达到99.7%以上。
一种废弃电路板的回收方法,包括下述步骤:1.加热离心分离:将废弃电路板置于油浴中加热使焊锡熔化,然后,将焊锡已熔化的废弃电路板通过离心机械使焊锡从废弃印刷电路板高效分离。2.真空裂解:将脱除焊锡后的废弃电路板基板、电子元件置于真空裂解装置中,加热,进行热裂解,收集热裂解挥发产物,并冷凝成液态油。3.收集真空裂解后固体物质:将热裂解后的电子元件、电路板基板分类收集,以回收电子元件的贵金属和其他有价金属及电路板基板上的铜箔、玻璃纤维等物质。本发明根据废弃电路板的结构特性分阶段处理、方法简单、无污染、成本低、效率高、废弃电路板废弃资源回收率高,适于工业化应用,适合废弃电路板的大规模回收。
本发明涉及一种基于废旧磷酸铁锂正极转化的沸石分子筛及其制备方法和用途,所述沸石分子筛以铝和磷为无机骨架,其晶体结构中,铝氧四面体和磷氧四面体共氧连接形成四元环,所述四元环两两共氧连接,构筑成内部呈现十二元环孔道结构。所述方法采用以废旧的磷酸铁锂正极为原料,通过碱浸和酸浸处理,将铝、磷等元素溶解在液相,再结合磷源和模板剂进行水热反应,合成微孔磷酸盐沸石分子筛。所述方法总体工艺流程简单,耗能低,整个转化过程体现了绿色化学思想,得到的沸石分子筛可对自然界污水中常见的重金属离子进行吸附,达到“以废治废”的目的。
一种顶吹转炉烘炉燃烧装置,由燃烧器、自动调节阀组、泄漏报警器构成,所述燃烧器由同轴套装的燃料管和氧气管构成,燃烧器的燃料管、氧气管通过金属软管分别与自动调节阀组的天然气、氧气出口管螺纹连接,泄漏报警器安置于自动调节阀组中的氧气调节阀出入口法兰上方和自动调节阀组中的天然气调节阀出入口法兰下方。该装置燃烧完全、火焰出口喷射速度高、火焰刚性强、燃烧稳定不回火、可自动调节氧油比,保证燃烧效果、带泄露检测报警,安全可靠。适用于顶吹转炉烘炉、升温、保温。
本发明适用于工业废弃物资源综合回收利用技术领域,提供一种从提钨后渣中高效浸出钴、镍的方法,该方法将提钨后渣用硫酸溶液进行酸性浸出,同时加入氢氟酸作为添加剂,酸浸完毕后,经过滤实现液固分离,得到浸出渣和富集钴、镍的浸出液,浸出渣用沸水进行洗涤,然后将洗涤水返回浸出液,实现了提钨后渣中钴、镍的高效富集,本发明通过加入氢氟酸作为添加剂,有效破坏并溶解了包裹钴、镍氧化物相的二氧化硅相,强化了钴、镍的浸出反应,提高了钴、镍的浸出率和浸出效率,并有效降低了酸耗,从而降低了钴、镍的回收成本。
本发明公开了一种电子废弃物中多组分金属制备五水硫酸铜的方法,其工艺步骤为:(1)将多组分金属颗粒磁选,得到非磁性金属颗粒;(2)将非磁性金属颗粒用盐酸在浸取,得到粗铜渣;(3)所述的粗铜渣与硫酸反应,然后经固液分离得到滤渣;(4)所述的滤渣与蒸馏水混合,然后过滤得到含铜溶液和黑色滤渣;含铜溶液经过浓缩结晶、固液分离后得到五水硫酸铜;(5)所述的黑色滤渣水洗、过滤至滤液为无色,得到含铜滤液和黑色渣滓;所述的含铜滤液经浓缩结晶得到五水硫酸铜;(6)所述的黑色渣滓烘干后与硫酸、氯酸钾反应,过滤后所得的含铜反应液经过浓缩结晶、固液分离后得到五水硫酸铜。本方法具有工艺简单、适用范围广、经济环保的特点。
中冶有色为您提供最新的有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!