提供了一种制备用于贵金属回收的废贵金属固定床催化剂的方法,包括:a)将所述催化剂加入苛性碱溶液中以洗涤所述废催化剂并制备具有碱性pH的洗涤浆料,其中所述废催化剂已经与氯铝酸盐离子液体催化剂接触,并且其中所述废催化剂包含5至35重量%的氯化物;和b)过滤所述洗涤浆料,并收集:i)滤饼,其中所述废催化剂中的至少70重量%的氯化物被除去和所述贵金属被保留,和ii)洗涤滤液。还提供一种滤饼,其包含具有40至75重量%的固体、25至小于60重量%的滤饼水分含量、0.1至1.5重量%的总贵金属以及0至小于4重量%的残余氯化物含量的洗涤固结饼。
本发明涉及从燃料电池(10)的燃料电池堆(11)的组件或电解池的组件中获取金和/或银和/或至少一种铂族金属的方法。在氧化步骤中用电解质水溶液流处理并用至少一种气态氧化剂处理所述燃料电池(10)中的组件或所述电解池中的组件。在至少一个还原步骤中,用电解质水溶液流处理并用至少一种气态还原剂处理所述燃料电池(10)中的组件或所述电解池中的组件。此外,本发明涉及借助于其可执行所述方法的装置。它具有至少一个用于电解质溶液的储存容器(20)。第一管线(30)与所述至少一个储存容器(20、20a‑b)的出口(21)连接。所述第一管线具有连接到燃料电池(10)或电解池的阳极入口处的阳极入口连接件(31)。所述第一管线还具有连接到燃料电池(10)或电解池的阴极入口处的阴极入口连接件(32)。至少一个氧化剂引入单元(33)被设置用于将至少一种气态氧化剂引入第一管线(30)中。至少一个还原剂引入单元(34)被设置用于将至少一种气态还原剂和/或惰性气体引入第一管线(30)中。至少一个第一泵(35)布置在所述第一管线(30)中。
本发明涉及用于在对熔融锍进行造粒时浸出金属的方法,包括如下步骤:将熔融锍作为下落的流供给到造粒室(30)中,将液体射流喷洒在熔融锍的流上以雾化该锍,并且冷却如此形成的锍颗粒。该液体射流包含含有水和硫酸的酸溶液,使得当液体射流接触熔融锍时该酸溶液开始从该熔融锍浸出金属。可使来自造粒的产物溶液的一部分循环到液体射流以增加该溶液中的金属含量和降低其酸含量。
描述了用于监测此种材料处理组件中的热状况的热感测系统和方法的各种实施例。热感测系统包括传感器线缆,传感器线缆结合一个或多个热传感器或联接到一个或多个热传感器上。传感器线缆定位在组件中,且热传感器提供温度测量。在各种实施例中,传感器线缆和热传感器可为光学装置或电气装置。
本公开涉及一种生产在镍金属氢化物(NiMH)电池中使用的活化负极粉末的方法,所述方法包括以下步骤:a)提供至少一个预先循环的NiMH电池;b)从所述预先循环的NiMH电池中分离出负极粉末;c)湿磨或研磨所述负极粉末,从而获得所述活化负极粉末与富含稀土氢氧化物的副产物的混合物;以及d)将所述活化负极粉末与所述副产物分离。本公开还涉及一种通过所述方法生产的活化负极粉末,以及包含这种粉末的电池电极和电池。
提供了从含金属材料中回收金属的方法,更具体地,提供了通过在提取工艺中使用表面活性剂组合物来提高提取工艺中浸出效率的方法以及用于回收金属的方法中的浆液。
制备含碱金属或碱土金属(如锂)和基质金属(如 铝)的合金的方法。制备碱金属或碱土金属的活性有 机溶液然后将其与它们的源汇集。制备含有基质金 属的金属结构并将其与同金属源接触的有机溶液汇 集直至形成金属结构的基质金属和碱金属或碱土金 属的合金,其活性由有机溶液确定。该有机溶液充当 碱金属或碱土金属对基质金属的传输剂。负电极由 该合金与聚合物薄膜一类的电解质汇集制成。还述 及电极及用它制备的电化学电池。其循环特性显著 地得到改善。
本发明涉及一种预处理具有对进一步加工这类矿石或浓缩物有干扰作用的高铋含量的硫化矿或硫化矿浓缩物的方法,以致能进一步加工这类矿石或浓缩物,回收其所含的有价金属,或至少有助于这种处理。本发明的特征在于,在预定的时间内在同时加热和pH低于2的条件下用硫酸浸出该矿石或浓缩物,此后,从浸出液中分离出呈产品形式的浸出渣,该产品与进料相比铋含量较低而其所含的有价金属更为富集。
本发明涉及一种从镍处理的浸提循环例如镍冰铜浸提中除去硫的方法。根据该方法,镍电解冶金法中产生的阳极液借助钙基中和剂进行中和,其中硫以石膏的形式从浸提循环中除去。
用于处理金属提取过程例如镍提取过程中产生的混合氢氧化物产物(MHP)(10)的方法。所述方法包括下列步骤:用第一酸性溶液(12)在4~8的pH值下处理所述MHP(10),该步骤为第一再溶解步骤(14);以及将在所述第一再溶解步骤(14)中形成的第一液体(16)与在该第一再溶解步骤中形成的第一残留物(18)分离。所述方法还包括下列步骤:用第二酸性溶液(20)在0.5~4的pH值下处理所述第一残留物(18),该步骤为第二再溶解步骤(22)。以这种方式,可以在这两个再溶解步骤中选择性地除去所述MHP中的杂质。
本发明涉及用于从固体基质中回收有色金属的方法,包括如下阶段:(a)在氧存在下,在温度100℃-160℃和压力150kPa-800kPa下,用含氯离子和铵离子、pH为6.5-8.5的含水基溶液沥滤固体基质,以获得包含沥滤金属的提取溶液和固体沥滤残余物;(b)将所述固体沥滤残余物与所述提取溶液分离;(c)使所述提取溶液经历至少一次置换沉淀以回收元素态的金属。
本发明公开一种粗氧化锌精炼处理方法,其依序包含有备料步骤、擦洗步骤、分级步骤、浸渍步骤及结晶煅烧步骤;本发明先利用该擦洗步骤以去除粗氧化锌中的杂质后,再通过分级步骤中分选出高含铁量及高含铅锌量的粗氧化锌后,最后利用该浸渍步骤中的不同酸碱值的硫酸溶液进行浸渍,以分别处理前述分选出不同含量的粗氧化锌,除减少浸渍过程中的硫酸使用量外,同时将不同含量的粗氧化锌分别处理时,又能避免浸渍过程的铁与铅相互混合,故该残渣内所含的铁及铅得以再回收利用,进而减少有害的残渣产生,故本发明具有成本降低、资源有效利用及环保等功效。
一种以有价值的高纯度碳酸铅形式回收电极粘液和/或铅矿物中的铅成份的湿法,所述方法对环境影响小,且所述碳酸铅能够通过在相对低温下在炉子中的热处理而转化成高纯氧化铅,所述氧化铅完全适用于生产新电池的活性电极糊或其它用途。所述方法基本上包括下列步骤:A)向所述起始不纯物料的不同的酸浸悬浮液中添加硫酸以将所有溶解的铅化合物转化成不溶的硫酸铅;B)将由硫酸铅和不溶杂质构成的固相与所述酸浸溶液分开;C)将包含在所述分离的固相中的硫酸铅选择性地溶解于一种溶解铅用的化合物的水溶液中,所述溶解铅用的化合物优选包含醋酸钠;D)将含溶解的硫酸铅的溶液与包含不溶杂质的固相残余物分开;E)向所述分开的硫酸铅溶液中添加所述溶解用化合物的相同阳离子的碳酸盐,以生成不溶的碳酸铅和/或碳酸氧铅和所述相同阳离子的溶解的硫酸盐;F)将所述沉淀的碳酸铅和/或碳酸氧铅与所述溶解用溶液分开,所述溶解用溶液现在还包含所述溶解用化合物的阳离子的硫酸盐。
本发明是一种通过级联还原反应方案、然后使用CO2作为介质通过消解和沉淀流程以及一系列物理分离程序直接从废锂离子电池的废正极和负极粉末回收锂和有价值的过渡金属如钴、镍和锰成高级别产物的方法。
本发明涉及一种从块状烧结Nd‑Fe‑B磁体和/或磁体废料回收Nd2Fe14B晶粒的方法。在所述方法中,使用非水液体电解质(5)阳极氧化所述Nd‑Fe‑B磁体(1)和/或磁体废料,所述阳极氧化释放所述Nd‑Fe‑B磁体(1)和/或磁体废料中所述Nd2Fe14B晶粒(6)。在所述阳极氧化期间和/或之后,收集所述释放的Nd2Fe14B晶粒(6)。所提出的方法为再生EOL Nd‑Fe‑B磁体/Nd‑Fe‑B磁体废料提供了一种更环保且更具成本效益的方式。
本发明涉及一种从含镍和铁的原材料富集高密度镍铁的方法。更具体来说,该方法包括以下步骤:将含镍和铁的原材料还原,然后通过加入水来制备浆料;通过向浆料制备中所得的经还原的含镍和铁的原材料的浆料中加入盐酸或硫酸来处理所述浆料以同时进行镍铁分离和铁浸提反应,盐酸的摩尔量是经还原的含镍和铁的原材料中(Fe+Ni)的摩尔量的0.5-1.5倍,硫酸的摩尔量是经还原的含镍和铁的原材料中(Fe+Ni)的摩尔量的0.25-0.75倍;过滤和分离浆料处理中所得的溶液中的含镍铁固体,来去除含铁溶液;以及从过滤和分离固体物质所得的含镍铁固体中制备浆料,并将浆料与经还原的含镍和铁的原材料混合,以制备浆料,并通过进行浆料的酸处理和固体物质的过滤的分离来富集镍铁。此外,本发明涉及一种从镍浓缩物回收高纯度镍的方法以及再利用镍浓缩物回收过程中产生并被浪费的含铁溶液的方法。
生产低铁含量的金属镍产品的方法,其包括如下步骤:(I)提供含有至少镍和铁的酸性产物液体;(II)用离子交换法处理所述酸性产物液体,其中离子交换树脂从所述产物液体中选择性吸附所述镍和部分铁;(III)用酸性溶液从所述树脂中洗脱镍和铁以制得含有所述镍和铁的洗脱液。(IV)中和所述洗脱液至PH值为2.5至3.5以引起大量所述铁的沉淀,剩下铁被耗尽的洗脱液;(V)中和铁被耗尽的洗脱液至PH值为7至8以引起低铁含量的氢氧化镍的沉淀;(VI)煅烧所述氢氧化镍以将其转化成氧化镍;(VII)在还原剂的存在下将所述氧化镍直接熔融以得到熔融态的镍;以及(VIII)通过氧化精炼所述熔融态的镍以制得低铁含量的金属镍产品。
从至少含有镍和钴的酸性树脂洗出液中回收镍和钴的方法,所述方法包括以下步骤:(A)使用不相混的有机试剂(18)处理所述洗出液以便选择性地吸收所述洗出液中的大部分的钴以及一部分任意存在的铜、锌和锰,剩下含有所述镍和少量杂质的萃余液;(B)中和所述萃余液以便将所述镍沉淀为氢氧化镍(19);(C)从该有机试剂(22)中反萃取所述钴;以及(D)回收该钴(23)。
描述了一种用于从阴极射线管电视机的处置得到的屏幕中回收玻璃的工艺,其中定量回收金属形式的铅。
本发明涉及一种处理包含塑料与金属材料混合物的材料的方法,该方法包括:粉碎待处理的材料;热解粉碎的材料;对热解后的材料实施首次磁力分离,从而一方面提供铁类金属组分,另一方面提供非铁类残余物;对所述非铁类残余物实施二次磁力分离,从而一方面提供非铁类金属组分,另一方面提供非磁性残余物。本发明还涉及实施所述方法的设备。
本发明涉及一种用于回收的锂电池的方法,该方法包括以下步骤:(a)在至少100℃、特别是至少140℃的分解温度(TA)下使用浓硫酸(12)来分解包含锂电池的电极的粉碎组成成分的粉碎材料(10),从而产生废气(14)和分解材料(16),(b)排出废气(14),和(c)湿式化学提取分解材料(16)的至少一种金属组成成分。
本发明涉及一种通过电解从铅膏中回收铅的方法,其中所述膏包含硫酸铅。该方法提供了对未脱硫的膏的浸取,并随后通过沉淀除去了硫酸盐;然后将含有铅离子的浸出液进行电解以回收金属铅。本发明还涉及一种用于回收铅蓄电池组件的方法,其中根据上述方法来回收蓄电池的膏中所含的铅。
从含有镍和钴的矿石中回收镍和钴的方法,包括如下步骤:首先用酸溶液浸取红土矿石和/或部分氧化的硫化矿石以产生至少含有溶解的镍、钴和铁离子的富浸取液,随后用上述富浸取液浸取硫化矿石或精矿以产生成品液。作为选择,红土矿石和/或部分氧化的硫化矿石可在混合浸取中与硫化矿石或精矿一起浸取。富浸取液或混合浸取中的铁离子含量足以在硫化物浸取中维持足够高的氧化还原电位,以帮助从硫化矿石或精矿中浸取镍。
本公开涉及用于冶金烟雾中浓缩锂的方法。该方法包括下列步骤:‑提供冶金熔融浴炉;‑制备包括带有锂的材料、过渡金属以及助熔剂的冶金炉料;‑在所述炉中在还原条件下冶炼该冶金炉料以及该助熔剂,从而获得具有合金和渣相的熔融浴;以及,‑可选地将该合金与该渣相分离;其特征在于,通过添加碱金属和/或碱土金属氯化物至该方法,该锂的主要部分从该熔融渣发烟为LiCl。使用单一冶炼步骤,将炉料中还存在的有价值过渡金属(诸如钴和镍)收集在合金相中,而将锂报告为烟雾。烟雾中的锂以浓缩形式提供,适用于后续的湿法冶金加工。
本发明涉及一种用于生产阴极铜的方法。该方法包括熔炼步骤,其包括将含有硫化铜的材料(1;1a,1b)和含氧反应气体(2)进料到悬浮熔炼炉(5;5a,5b),以产生粗铜(7);火法精炼步骤,其包括将粗铜(7)进料到阳极炉(12)以产生熔化铜阳极(13);阳极铸造步骤以产生铸造阳极(15);质量检查步骤(16)用于将铸造阳极(15)分为合格铸造阳极(17),和不合格的铸造阳极(18);电解精炼步骤,其包括在电解槽(19)中使合格的铸造阳极(17)经受电解精炼以产生阴极铜(20)和作为副产物的不合格的铸造阳极(21);回收步骤,用于回收不合格的铸造阳极(21)的阳极铜。
本发明公开一种从废弃印刷电路板中回收金的方法。首先,对废弃印刷电路板进行微波裂解,接着,使用硫酸系酸浸液对微波裂解后形成的固体残留物进行酸浸处理,然后,使用硫代硫酸盐混合液从经酸浸处理的所述固体残留物中溶取出金离子,以得到含金离子溶液,最后,在所述含金离子溶液中加入氧化剂,使得金离子形成金属金。借此,能实现废弃印刷电路板中金的再利用。
本发明涉及一种制造具有所需锰、镍和钼含量的机械耐用的含铬和铁的团块的方法。本发明还涉及通过所述方法制造的具有所需锰、镍和钼含量的含铬和铁的团块。
本发明涉及从含有金属的炉渣中提取金属的方法,其中,将熔融的含有金属的炉渣在至少一个电弧炉(1、2)中加热。为了提供一种用于从炉渣中提取尤其是铜的改进方法,本发明建议将含有金属的炉渣在形式为交流电炉或直流电炉的第一炉(1)中加热并且将熔液投入形式为直流电炉的第二炉(2)中。此外,本发明还涉及用于从含有金属的炉渣中提取金属的装置。
将由未用过的惰性阳极、用过的惰性阳极和惰性阳极生产中使用的金属陶瓷得到的金属陶瓷材料精选成非铁金属精矿组合物,可使用常规熔炼过程容易地从该组合物中回收其中包含的有价金属。本发明还涉及该组合物在从本发明的金属陶瓷组合物中回收有价金属的熔炼过程中的应用。
中冶有色为您提供最新的其他有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!