本发明涉及一种高Cr含量、高耐压性铜铬触头材料及其制备方法。该铜铬触头材料是由以下重量百分比:Cr含量60-70%,Cu余量组成。其制备方法包括原材料选择---混粉---压坯---熔渗---退火。本发明是基于现有的粉末冶金、熔铸和电弧熔炼工艺只能制备出CuCr1到CuCr50材料的基础上,开发一种制备Cr含量高达70%的高性能触头材料,以满足高电压等级对耐压性能的需求。本发明是以高熔点的Cr作为基体骨架,掺入Cu粉形成一定强度的CuCr压坯,再真空熔渗出高Cr含量的铜铬触头材料。
一种复合材料锤头及其铸造方法,首先采用电炉熔炼金属母体材料形成金属液,将WC颗粒与粘结剂混制成膏状并置于锤头模具的型腔的端面侧(工作面或打击面),烘干后形成预制层,启动立式离心铸机控制其转速在50~200转/分钟,进行金属液浇注,浇注完毕后将立式离心铸机的转速提高至500~900r/min,转动3~10min,停机冷却即可。按照本发明的制备方法所获得的复合材料锤头的锤端即工作面或打击面为WC颗粒增强复合材料,复合材料层硬度为HRC55~67,厚度为6-20mm,具有优异的抗冲击磨损性能;复合材料层与金属母体的界面、以及复合材料层中WC颗粒与基体的界面呈良好的冶金结合,结合强度高,WC颗粒分布均匀,颗粒体积分数可调范围为18%~52%。
本发明提供一种低电位元素Zn用于铁基材料的净化精炼、变质处理、合金化的新用途,及为此新用途由该元素作主导组分制成的添加剂。本添加剂以Zn为主导组分,含有Li、Be、Mg、Ca、Ga、B、Ti、Zr、Hf、V、Nb、、Ta、Al、Mn、Si、Fe、Cu、Ni、C、O、F、Cl、Br、I中的一种或一种以上。是在铁基材料的熔炼、精炼、浇注过程中,或粉末冶金过程中,或复合合成过程中将其加入的。本添加剂高效、价廉,使用简便。其韧化效果视成分和热处理的不同使铁基材料的冲击韧性值提高20—200%,使裂纹扩展功提高200—1000%。
本发明公开了一种高导电、高耐磨铜硼合金的制备方法,以电解Cu粉与纳米B粉为原材料,采用粉末冶金与真空感应熔炼相结合的方式,首先通过粉末冶金方法获得Cu‑B预合金坯体,然后结合真空感应熔炼方式,采用预抽真空再加氩气保护进行坯料熔炼获得均匀的Cu‑B合金液,最终通过导流管底注式浇注方式将合金液注入石墨模具中获得Cu‑B合金。本发明方法制备出表面质量良好、成分稳定、组织均匀,硬度大于89HV,导电率高于78%IACS,摩擦系数介于0.57~0.69,磨损形貌为粘着磨损的高硬度、高导电、高耐磨的Cu‑B合金,具有一定的实用意义。
本发明公开了一种钛铌钽锆合金的制备方法,以Ti粉、Nb粉和Ta粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Nb‑Ta中间合金,其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Nb‑Ta中间合金与混合料进行压制,得到电极块并组焊为自耗电极;其中,混合料由0级海绵钛颗粒和工业级HZr‑1海绵锆颗粒组成;将自耗电极进行至少四次真空自耗熔炼,每次真空自耗熔炼时真空度低于10‑1Pa,得到Ti‑Nb‑Ta‑Zr合金铸锭;本发明解决了在制备Ti‑Nb‑Ta‑Zr合金熔炼过程中Ta、Nb元素难溶的问题。
本发明提供了一种高性能纳米氧化镧掺杂钼-硅-硼合金的制备方法,以钼粉、硅粉和硼粉为原料,掺杂不同含量纳米氧化镧粉末,球磨混合均匀后进行预压预烧结,将得到的烧结体在真空电弧炉中熔炼,熔炼工作电流为800-1000A,将得到的合金锭粉碎并球磨制粉,将合金粉末用200-300目泰勒筛筛分处理,将得到的合金粉末在真空热压烧结炉中进行烧结,温度:1500-1700℃,压强:30-50MPa,时间:1-3小时,烧结完成后随炉冷却到室温。本发明弥补了传统粉末冶金工艺制备钼-硅-硼合金烧结温度高时间长、反应不充分和宏观缺陷较多的缺点,制备的纳米氧化镧掺杂钼-硅-硼合金具有组织均匀,高致密度和高强度的特点。
本发明公开了一种二硼化钛铜基球形复合材料粉末的制备方法,具体按照如下步骤进行:步骤1:按照原位反应TiB2增强体生成量设计铜硼、铜钛中间合金配比,采用分离式石墨混合器将两类中间合金分区熔炼。步骤2:通过调整熔炼参数、导流管布局、雾化气体压力等参量,采用超音速环孔型雾化器雾化复合材料熔体,最终得到球形TiB2/Cu复合材料粉末。本发明能够将大体积复合材料熔体雾化为细小的复合材料粉末,可在粉末微区有效抑制TiB2颗粒与Cu基体之间的比重偏析,并且获得增强体颗粒均匀弥散分布的均一组织,能够为粉末冶金法制备大尺寸、复杂结构导电铜基材料部件提供高品质原材料,为大尺寸铜基复合材料产业化提供了新的思路。
本发明公开了一种钛钼合金的制备方法,以Ti粉和Mo粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Mo中间合金;其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Mo中间合金与海绵钛进行压制,得到电极块并组焊为自耗电极;其中,海绵钛为0级或1级海绵钛颗粒;将自耗电极进行至少三次真空自耗熔炼,每次真空自耗熔炼时真空度低于10‑1Pa,得到Ti‑Mo合金铸锭;结合粉末冶金法和合金熔炼法制备出组织成分均匀的钛钼合金。
本发明公开了一种WSTi2815SC阻燃钛合金,按照质量百分比由以下组份组成:V?24~32%,Cr?12~18%,Si?0.1~0.6%,C?0.05~0.14%,余量为Ti和不可避免的杂质;制备方法为:将钒铬合金、钛硅合金、碳粉和小颗粒海绵钛压制成电机块,并将电极块焊接成电极,最后对电极进行多次熔炼即得。本发明通过改变合金元素的添加方式来提高大型铸锭的成分均匀性,在熔炼过程中通过提高熔炼电流和增加熔炼次数,以达到均匀化成分的目的,解决了现有方法熔炼WSTi2815SC合金无法保证合金成分的均匀性,避免高熔点元素钒、铬和硅形成宏观偏析和不熔块等冶金缺陷的问题,适用于工业化生产。
本发明公开了一种洁净钛及钛合金铸锭的生产方法,该方法的步骤为:称取海绵钛或纯合金元素、中间合金和海绵钛,将海绵钛或纯合金元素、中间合金和海绵钛压制成电极块,用真空自耗电弧炉将电极熔炼,一次熔炼得到Φ120-300MM铸锭;然后将所得到的铸锭进行电子束冷床熔炼,熔炼结束后,铸锭从铸锭室中取出,得到洁净的钛或钛合金铸锭。本发明生产的钛及钛合金铸锭,化学成分均匀,铸锭宏观组织优于真空自耗电弧熔炼铸锭,无TIN和WC等高熔点夹杂;本发明适用于生产冶金质量要求高的铸锭。
本发明公开了一种涂层导体用镍钨合金基带的制备方法,采用粉末冶金法按照NI∶W=95∶5的原子数比制备出NI-5AT%W预合金棒,将预合金棒在真空电弧炉中经过两次熔炼,得到镍钨合金铸锭,通过锻造、热轧和冷轧得到NI-5AT%W合金带材,冷轧过程中加一次去应力中间退火;将NI-5AT%W合金带材通过连续再结晶退火,得到具有立方织构的镍钨合金基带。本发明通过粉末冶金法与真空电弧炉熔炼制备镍钨合金铸锭,改善了合金分布的均匀性,采用锻造、热轧、冷轧及连续再结晶退火工艺得到具有高锐利度的立方织构的镍钨合金基带,该合金基带的抗拉强度和屈服强度高,其宽度和长度均可达到实用化涂层导体长带制备的实际应用要求。
本发明公开了一种双金属复合耐磨管的制造工艺。用普通钢管作外套管,外套管内装入聚苯乙烯泡沫塑料制成的消失模,并安装上浇注系统,把外套管、消失模和浇注系统经过多道次的浸涂料和挂砂处理,在外壁形成壳体,然后放入高温焙烧炉进行焙烧,实现壳体烧结、泡沫塑料气化和钢管预热,出炉后烧注耐磨合金材料,即制成外层为普通钢,内衬为耐磨合金材料的复合耐磨管。该制造工艺解决了各种形状的复合管两层金属间无法实现大面积冶金结合的难题,使复合界面结合强度高,抗热振性强,对磨损严重的局部部位可做到偏心复合、加厚复合,还可以实现薄壁复合耐磨管的生产。
本发明属于有色冶金领域的钼冶金行业,涉及一种从含铼钼精矿中提取钼和铼的方法,具体包含8个步骤,分别是预处理过程,混匀造粒过程,固化焙烧过程,水浸过程,沉淀、结晶过程,酸浸过程,共萃取‑反萃取过程,酸沉过程,得到的钼以四钼酸铵形式结晶析出,铼以高铼酸钾形式晶体析出。本发明对钼精矿进行预处理脱铅,使铅以二氯化铅形式回收,铅的危害大大降低,加入生石灰,使精矿中硫化物转化为硫酸盐,消除了氧化焙烧过程中产生的SO2气体带来的环境污染问题,此外本发明所述工艺有望缩短工艺流程,减小设备投资,提高钼、铼的回收率和产品的质量,便于生产钼酸铵产品。
一种钼铁的生产方法,涉及一种火法冶金生产钼铁的方法,特别是利用钼废料生产钼铁的方法。其特征在于其生产过程的步骤包括:(1)将含钼废料进行烘干或焙烧除杂;(2)用氧化钼调整钼品位;(3)用硅铝热法还原冶炼钼铁。本发明提出的方法,不仅对品位较高的钼废料有很好的回收效果,对品位较低的钼废料也有很好的回收效果,适用于6~60%钼含量的废料,回收工艺简单,流程短,回收率高。制备的钼铁检测指标Mo、S、P、C、Cu、S等均达标,抽样结果均达钼铁国家标准。制备的钼铁总成本有明显降低,经济效益明显,充分利用钼的二次资源,同时也具有良好的环境效益,解决了钼生产过程中的废弃物污染问题,实现了从钼冶炼到钼化工的清洁生产。
本发明提供了一种赤泥火法炼铁冶炼装置及其工艺,属于冶金技术设备,该冶炼装置包括炉体、炉盖、烟囱、变压器、短网、把持器、液压装置、水冷装置、出铁装置、出渣装置、炉口排烟装置、开堵眼机装置、下料装置和上料装置等,该工艺包括赤泥制球、预还原、深还原三大过程,本发明提出的新型装置结构简单,提出新工艺过程易于操作和实现,通过该综合方案实现了赤泥的再利用,3吨赤泥中可以回收利用1‑2吨铁水,具有广泛的社会价值和环境价值。
湿法冶金用抗形变钛阳极及其制备方法,包括钛铜复合导电棒棒与强化钛网组成的钛基体、热沉积在强化钛网上的打底层及热沉积或电镀在打底层上的活性层,露铜端切割成圆弧状在工作时可保证导电棒与导电铜排充分接触增强导电,强化钛网由中心钛网、支撑钛板及强化边条组成,中心钛网四周焊接支撑钛板构成基础钛网,在垂直于基础钛网周围左右及底部的支撑钛板处加焊强化边条后制得强化钛网;在对基础钛网进行热校形时,采用梯度双温加热,该校形技术可充分保证基础钛网平整度;本发明制备的湿法冶金用抗形变钛阳极,制备工艺简单,基材易于获取,制备成本低,制得的钛阳极平整度高,适用范围广,极大减少短路情况发生。
一种无碳化硅热还原镁冶金装置及方法。针对铁合金产业与镁冶金产业在“双碳”和“双控”目标的重压下,通过两个产业之间物质流和能量流协同衔接,利用硅系合金过热能源作为镁冶金还原能源,实现镁冶金的无碳化目标。即本发明采用熔融态硅系合金还原MgO,通过调整MgO反应量,在过量(硅/氧比≥1.5)硅系合金过热(温度高于75FeSi的1300℃熔点温度300℃以上)完成MgO还原过程;保持硅系合金的熔融状态,有助于镁冶金过程通过液相(硅系合金)与固相(MgO)反应替代皮江法固相(硅系合金)与固相(MgO)反应,特别是通过熔融态金属雾化,形成液相包裹固相反应结构,强化两相之间的传热、传质、传能,提高还原效率,大幅度降低镁冶金能耗,同时实现无碳化进程。
本发明公开了一种基于激光收光路径调控的无坩埚激光微区冶金方法,该方法包括:一、制备原料粉末;二、设计多个激光微区冶金方案;三、建立激光微区冶金参数与微区材料之间的关系;四、根据目标产物的组织与性能要求,设计对应的激光微区冶金参数;五、制备微区材料;另外,本发明还公开了一种基于激光收光路径调控的无坩埚激光微区冶金方法在计算材料学快速验证上的应用。本发明利用激光使得微区熔池周围的粉末自生成“冶金坩埚”,实现无基体、无坩埚式短周期微区冶金,并根据原料粉末特性调节激光波形确定激光收光路径,实现微区冶金冷却凝固阶段的可控性,从而控制微区材料的相组织;本发明的应用为计算材料学提供一种高效、快捷的验证方法。
本发明公开的一种粉末冶金法制备硬质足金的方法,步骤包括:1)分别称取纯金属Au、Y、Ti、Co、Ga配置合金原料,合计质量为100%,四种合金元素Y、Ti、Co、Ga的质量百分比总和不超过0.1%;2)将合金原料在气雾化设备进行熔炼制粉,将收集所得粉末在200℃下保温2h去应力退火后得到原料金粉;3)将原料金粉盛装在烧结模具内,进行烧结成型,烧结完成后随炉冷却即得到烧结试样;4)将烧结试样使用热处理炉进行固溶处理,得到固溶试样,水冷;5)将固溶试样进行时效处理,即得硬质足金产品,随炉冷却。本发明方法,使足金材料的强度及硬度明显提高。
一种粉末冶金用母合金铸锭的真空自耗冶炼工艺,包括以下步骤:步骤1,起弧后电流预热电极,然后缓慢增加电流逐渐形成熔池,即经过1‑5min低于0.8kA电流、22.0‑22.8V电压预热后,逐步将电流增加到1.8‑2.8kA,电压增加到23.2‑24.0V,保温2‑3min,逐渐形成稳定熔池;步骤2,在步骤1形成熔池后,采用保持电流1.8‑2.8kA,电压23.2‑24.0V的工艺实现电极缓慢熔炼;步骤3,在1‑4min内将电流降低到0.6‑1.2kA,电压降低到22.2‑22.8V,实现快速降低熔速,然后在电流0.4‑0.6kA、电压18.8‑22.2V的条件下保温5‑8min,实现缓慢降低熔池深度;该发明能够改善真空感应浇注铸锭内部缩孔问题,提高铸锭的成分均匀性,降低杂质元素含量,得到更优质的母合金铸锭。
本实用新型公开了一种激光微区冶金装置,包括水平放置在实验台上的基体、给料子系统和将混合粉微区冶金成激光增材合金试样的激光发生子系统;基体为陶瓷基体,陶瓷基体上开设有N个呈阵列式排列的球冠形的凹槽,其中,N为不小于100的正整数,给料子系统包括出粉机构、对出粉机构输出的多种金属粉末进行混合的混粉器和对混粉器输出的混合金属粉末进行准确投放至凹槽的落料器,激光发生子系统输出的高能激光束的末端光斑面积小于凹槽的敞口端面积。本实用新型高能激光束对预置于基体上凹槽内的混合粉定点微区熔炼,基于激光熔池的强烈对流实现金属材料微区合金化,实现多元多组分金属材料的快速制备,实现激光增材合金的高效设计与制备。
一种提高镍基金属离心雾化细粉收得率的冶金方法,包括以下步骤:步骤1,在镍基金属中加入微量的非金属元素,熔炼成金属棒材;步骤2,金属棒料精加工成电极棒;步骤3,采用等离子旋转电极设备,等离子枪输出功率在50~400kW熔炼电极棒;步骤4,在惰性气体保护下对粉末进行筛分、包装;制备的粉末细粉收得率高、氧含量低。
本发明公开了一种粉末冶金制备铌钛合金的方法,将铌粉与钛粉末混合均匀,然后压制成生坯,经过气氛保护热压烧结后随炉冷却,得到致密铌钛合金。本发明通过简单的粉末冶金法制备铌钛合金,与传统熔炼相比,不但工艺简单,而且效率高、成本低。本发明制备的合金晶粒尺寸的范围很好的控制在43~54,同时致密度在97.83%左右,为铌钛合金的制备提供了一种简单高效的方法。
一种服役温度为850℃的粉末冶金用钛铝粉末的制备方法,通过在过包晶TiAl合金中添加中等含量的Nb和少量Ta,以改善TiAl合金的性能,能够实现组织细化与强韧化。通过真空电弧熔炼并以Nb粉、Ta粉形式添加Nb、Ta元素,获得成分均匀的铸造合金。采用粉末冶金成型工艺可以避免Nb、Ta添加导致的成分偏析,同时进一步细化了晶粒组织。本发明得到的粉末的高球形度有利于提高粉末冶金件的致密性,杂质少和空心粉少均有利于减少粉末冶金制件潜在裂纹源,氧含量低有利于提升材料的高温力学性能,因此所述的TiAl‑(Nb,Ta)金属粉末,能够在粉末冶金成型和热处理组织调控后,满足850℃高温服役需求。
本发明公开了一种基于激光微区冶金的材料基因库的建立方法,包括步骤:一、构建激光微区冶金系统;二、确定金属粉末种类并准备足量质量的各类金属粉末;三、移动落料器;四、固定混合粉总质量并根据各类金属粉末质量比控制各类金属粉末输出;五、各类金属粉末的混合及投放;六、完成基体上所有凹槽内混合粉的投放;七、设置激光发生子系统的激光加工参数并进行微区冶金;八、建立激光增材合金试样成分与显微组织的对应关系,并对激光增材合金试样进行微纳米压痕测试;九、训练BP神经网络模型;十、激光增材合金试样材料基因库的建立。本发明高能激光束对预置于基体上凹槽内的混合粉定点微区熔炼,基于激光熔池的强烈对流实现金属材料微区合金化。
本发明公开了一种钼合金电子束熔炼用电极的制备方法,该方法为:一、制备钼合金原料杆和带有预制孔位的钼合金原料棒;二、将钼合金原料杆加工为连接杆和推料杆,再将钼合金原料棒的预制孔位加工为销孔;三、将连接杆的端部以过盈配合方式插设于相邻钼合金原料棒的销孔内,使钼合金原料棒相邻之间通过连接杆依次串联,形成串联钼合金原料棒组件,再将推料杆的一端插设于串联钼合金原料棒组件的首端或末端的销孔内进行过盈配合,得到钼合金电子束熔炼用电极。本发明采用过盈配合的连接方式制备得到的钼合金电子束熔炼用电极具有整体性及刚性好,且强度高的优点,从而提高了该电极的稳定性及原料的利用率,大幅降低了该电极的制备成本。
本发明公开了一种粉末冶金法制备合金的工艺,该工艺包括以下步骤:1.高温合成母合金;2.高能球磨细化母合金粉末,制得平均粒度为1~1.5ΜM的母合金超细粉末;3.星型混料;4.冷等静压成型:将经星型混料后的混合粉装入方形冷等静压包套进行冷等静压压制制得粉末压坯;5.低温扩散烧结:将粉末压坯置于真空炉中进行扩散烧结制得成分均匀的合金烧结坯;6.后续处理:将制得合金烧结坯经常规后续加工处理后,制得成品。本发明设计合理,能有效弥补常规熔炼法制备组元之间熔点、密度及质量配比相差较大的合金时易产生成分偏析的不足,实现合金中各组分的均匀分布,有效保证所制备合金的各种性能。
本发明公开了一种电子束悬浮熔炼钼铼合金铸锭的热加工方法,该方法是将钼铼合金烧结条经电子束悬浮熔炼,获得圆棒形铸锭,第一火次高温轧制,平行铸锭轴向喂料,轧制速度300~400MM/MIN,保温1小时,经三道次轧制到规定厚度,第二火次高温加热,保温1小时,轧制速度300~400MM/MIN,换向轧制到规定厚度,第三火次高温加热,保温30分钟,经三道次轧到规定厚度,退火后转冷轧。本发明减小了单一滑移面位错运动量,降低了位错运动速度,控制了位错运动方向,避免了晶界处位错堆积产生的裂纹,可保证开坯不裂,保证热加工过程顺利进行,可获得晶粒细小、尺寸均匀的合格板材,其纯度达99.99%以上。
本发明提供了一种真空熔炼银镉合金铸锭的方法,该方法采用的设备包括真空感应熔炼炉主体,所述主体内设置有坩埚、感应线圈、坩埚盖、料斗和铸模,所述主体上设置有抽气阀和充气阀,所述坩埚盖、料斗和坩埚分别与翻转手柄连接;该方法包括以下步骤:一、将银锭放入坩埚中,将镉锭放入料斗中,将真空感应熔炼炉主体抽真空,然后将块状银锭加热熔融成液态银;二、充入惰性气体,待液态银温度稍降后,将镉块加入坩埚,然后盖合坩埚盖并感应加热,形成银镉合金液,然后浇注于铸模中得到银镉合金铸锭。本发明操作简单易行,可重复性强,适于大规模工业化生产;采用本发明能够得到纯度高、成分均匀稳定、表面无氧化、内部无冶金缺陷的银镉合金铸锭。
本发明公布了一种分层组合电极矿热熔炼炉及其控制方法,所述分层组合电极矿热熔炼炉的结构包括电极系统和炉体。所述电极系统包括上电极把持器,下电极把持器,电极铜瓦,中轴阴电极,外围空心阴电极,炉底阳电极,电源,变压器,电机履带装置,总控制电脑,电压表。所述炉体包括炉盖,炉壳,炉衬,炉体支撑,水泵,热电偶。通过布置外围空心阴电极,使得电流可以流过靠近炉衬侧炉料。相比于传统单电极矿热熔炼炉,分层组合电极矿热熔炼炉炉内不但焦耳热极值降低,而且炉内焦耳热分布范围得到了扩大,有效地改善了炉内炉料热量分布不均的问题,同时也提升炉内能量的利用效率和炉料熔化速率,可广泛应用于冶金化工行业。
中冶有色为您提供最新的陕西西安有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!