本发明提供一种高导热绝缘氮化硼复合材料及其制备方法,该制备方法包括以下步骤:1)将氮化硼粉末的分散液加入铺有玻璃纤维毡的抽滤容器的滤芯上,抽滤得氮化硼/玻璃纤维毡混合物;2)将氮化硼/玻璃纤维毡混合物冻干,得到预成型体;3)预成型体放入到模具上,按照复合材料真空导入工艺,对预成型体进行密封,然后注入树脂基体,固化成型后得氮化硼复合材料。该方法能够用于制备较大尺寸的氮化硼复合材料,且制备工艺重现性好,制备的氮化硼复合材料不容易出现裂纹,在复合材料内部氮化硼形成逐层堆积的密实结构,在保证复合材料绝缘特性同时提高其面内导热性能。
本发明提供了一种高导热Ti3C2Tx/石墨烯微片/聚乳酸电磁屏蔽复合材料及其制备方法,属于电磁屏蔽复合材料技术领域。本发明采用FDM 3D打印技术制备片状石墨烯微片/聚乳酸复合材料,对其中的石墨烯微片产生取向,使制备材料的面内导热性能大大提高;同时将Ti3C2Tx制成薄膜对复合材料进行微结构调控,使电磁波在进入有微结构调控的复合材料之后在其内部经过多次反射、散射和吸收等过程,延长电磁波在材料内的路程,提高复合材料的电磁屏蔽性能。
本发明涉及复合材料制备技术领域,具体是一种高强高阻的多尺度协同增强铝基复合材料的制备方法。所述的制备方法包括下述步骤:(1)在碳纤维表面电泳沉积一层不均匀的碳纳米管涂层:(2)在步骤(1)得到的碳纤维表面电镀镍涂层:(3)制备碳纤维与铝粉的混合粉体;(4)热压烧结。本发明通过制备一种由纳米颗粒和微米纤维组成的具有特殊结构的增强体,将该增强体应用到铝基复合材料制备中,使得铝基复合材料同时具有高的强度和高的阻尼性能,为铝基复合材料在空间光学系统的支撑结构件中应用提供了可能,实现了该类铝基复合材料的大批量生产。
本发明公开了一种基于纤维素/类玻璃高分子复合材料的湿度发电装置及其制备方法和应用,包括以下步骤;将纤维素材料浸渍在含有光热转化效应的纳米材料溶液中并进行干燥,获得复合材料P1;将小分子反应物、催化剂和有机溶剂混合,得到类玻璃高分子预聚体,并将复合材料P1浸渍在所述类玻璃高分子预聚体中,随后通过光固化获得最终复合材料P2;在所述复合材料P2的上下表面通过丝网印刷的方式获得第一金属电极层和第二金属电极层;对第一金属电极层和所述第二金属电极层分别配置导线,得到纤维素/类玻璃高分子复合材料的湿度发电装置。本发明不仅具有较高的输出电压,而且能够耐高温、高湿以及具有良好机械性能,透明性以及自愈合特性。
本发明涉及一种聚偏氟乙烯/聚酰亚胺复合材料的制备方法,属于高分子复合材料领域。该复合材料的制备方法为先将聚偏氟乙烯在加热的状态下于N‑甲基乙酰胺中完全溶解,然后加入制备聚酰亚胺的原料二元胺单体和四羧酸二酸酐,在室温下反应制备得到聚偏氟乙烯/聚酰胺酸的混合溶液,将该溶液在烘箱中烘至溶剂挥发完全,然后在于马弗炉中,于高温下脱水进行亚胺化反应得到聚偏氟乙烯/聚酰亚胺复合材料。本发明通过原位制备聚酰亚胺来改善聚偏氟乙烯的性能,聚偏氟乙烯/聚酰亚胺复合材料。聚偏氟乙烯均匀分散在聚酰亚胺基体中,所制备的复合材料热分解温度高于470℃。
本发明公开了一种非均匀结构二硼化钛/铜复合材料的制备方法,具体为:分别称取Cu粉、Ti粉、B粉,首先将Ti粉与部分Cu粉球磨为复合粉末,然后对复合粉末与B粉和剩余的Cu粉进行机械混粉,混合均匀;混合均匀的粉末冷压成型,得到压坯;对压坯进行热压烧结,随炉冷却至室温,即得到TiB2增强铜基复合材料。本发明还公开了采用上述方法制备得到的复合材料。本发明制备的二硼化钛/铜复合材料中,TiB2增强体在基体中呈非均匀分布状态,其微观组织结构为增强体富集区和贫化区两种组织的混合状态,使得复合材料保持较高导电率的同时,增强了复合材料的强度和韧性。
本发明公开了一种碳纤维复合材料层合板直流小电流伏安特性两电极测量方法及装置,以得到碳纤维复合材料层合板在直流小电流区域的非线性伏安特性或者碳纤维复合材料体电阻和面电阻的特性。测量装置包括上升速率可调直流电源、保护电阻/限流电阻单元、电压取样单元与计算机测控与分析单元。通过被试碳纤维复合材料层合板的电流为两个电压传感器测得的电压差除以限流电阻。通过计算机控制改变可调直流电源的电压输出就可以获得一组被试品两端的电压与通过的电流值,通过被试碳纤维复合材料层合板的不同连接方法,可以获得被试碳纤维复合材料层合板不同方向、直流小电流下的伏安特性曲线或体电阻和面电阻特性曲线。
本发明公开了一种流延法制备大尺寸厚膜压电复合材料的方法,其基本步骤如下:1.制粉。2.制备流延浆料。3.流延成型。4.排胶烧结。5.极化。即成为压电复合材料。本发明工艺简单,成本低廉,适于大量连续生产,可用于生产厚度在微米量级、结构均匀、性能优异的压电复合材料。
本发明提供一种采用ATRP技术制备聚羧酸/MMT纳米复合材料的方法,首先采用NaOH将水溶性烯酸类单体水溶液的pH值调节至8.5-9,然后向水溶性烯酸类单体水溶液中加入有机改性蒙脱土、卤化亚铜催化剂以及催化剂配体,再在氮气或惰性气体的保护下,采用水浴将反应体系加热至60-90℃后搅拌反应12-24h,即制得聚羧酸钠/MMT纳米复合材料溶液;将聚羧酸钠/MMT纳米复合材料溶液通过强酸性阳离子交换柱进行离子交换,收集液体,烘干,即制得聚羧酸/MMT纳米复合材料。本发明制备的聚羧酸/MMT纳米复合材料分子量分布窄,结构规整、均一,性能稳定能够实现单一插层型或剥离型纳米复合材料的构筑。
本发明公开了一种层叠碳纤维复合材料的层间连接弹性模量计算方法:层叠碳纤维复合材料的层间连接包括层叠复合材料碳纤维之间中间缝隙中的各向异性材料的局部连接和基于层叠碳纤维复合材料的各个层之间各向同性材料的均匀连接两个部分;中间缝隙中的各向异性材料的局部连接具有随机性;各个层之间各向同性材料的均匀连接不具有随机性;采用材料力学和随机理论建立层叠碳纤维复合材料的层间连接弹性模量计算方法,为层叠碳纤维复合材料预制体的层间连接弹性模量和剥离强度的力学提供一种计算和评价方法。
本发明提供了一种鸟巢状CoxFe4‑x/C复合材料及其制备方法和应用,以四水合乙酸钴和六水氯化铁为金属源,2,5‑二羟基对苯二甲酸为有机配体,通过掺入一定量的Fe3+来获得鸟巢状结构,以超纯水为反应溶剂,在油浴下回流一定时间后,将得到的黑色产物离心、洗涤和干燥,最后在氩气中热处理,得到鸟巢状CoxFe4‑x/C复合材料。此种方法得到的CoxFe4‑x/C复合材料为鸟巢状,因其独特结构和多组分使其作为吸波材料表现出极好的电磁吸波性能。
本发明涉及一种聚合物/粘土纳米复合材料电流 变液及其制备技术,特别涉及聚邻氨基苯胺/蒙脱土纳米复合材 料电流变液。其分散相与传统的核壳结构式复合颗粒具有很大 的不同,表现在两种组份在纳米尺度上相互交错,这种混杂材 料兼有无机材料极性大、制备过程简便及有机材料比重小质地 软、抗沉降稳定性好的优点。PDANI-MMT纳米复合材料的 电流变效应较聚邻氨基苯胺及蒙脱土有较大改善,强电场下的 力学值较高(如附图1电流变液静态剪切应力与电场强度的关系(T=20℃,5S-1)显示)。本发明的另一优越之处在于材料制备工艺简单,常温下实施乳液共混插层法原位聚合反应,成本低廉。
本发明公开了一种炭/炭复合材料型材的制备方法,制备过程为:炭纤维布经浸渍树脂后,通过裁剪铺层或卷绕,采用外工装施压或模压方式进行固化,固化脱模后制成炭/树脂基复合材料型材制品,然后在N2保护下进行炭化处理,制成炭/炭复合材料型材半成品,将炭化后的炭/炭复合材料型材半成品进行带金属质或石墨模具工装补增密处理;将补增密后的炭/炭复合材料型材半成品进行机械加工,制成炭/炭复合材料型材制品。本发明工艺简单、成本低、实施性强,由于采用炭胶布裁剪铺层或卷绕,外工装施压或模压固化定型方式,制得的炭/炭复合材料型材具备一系列的优势,定型方式简单,产品尺寸基本不受限制,厚度方向不需机加,具有优越的性价比优势。
本发明公开了一种钨基高分子复合材料的制备方法,先将液态高分子材料和液态固化剂混匀,然后加入到钨粉中混匀,固结成型后得钨基高分子复合材料;所述钨基高分子复合材料的密度为4g/cm3~15.5g/cm3,抗压强度为30MPa~250MPa,抗拉强度为10MPa~120MPa,延伸率为0%~30%。本发明采用液态高分子材料、液态固化剂与钨粉混合固化成型制备钨基高分子复合材料,在保证钨基高分子复合材料高密度的同时,降低了钨基高分子复合材料的强度并提高了塑性,并可根据使用要求调节液态高分子材料、液态固化剂和钨粉的比例,从而对钨基高分子复合材料的密度、强度和塑性进行调控,从而满足了不同场合应用的要求。
本发明公开了一种基于光学、红外热波与超声波融合的复合材料的损伤智能检测方法,获取具备可重叠性的复合材料损伤样件同一损伤的红外热波成像图以及对应的超声波C扫成像图,并对两者进行预处理使其匹配;进行损伤位置标记得到复合材料的损伤样本集,并在进行前处理后将复合材料的损伤样本集分为训练集和验证集;选取集成融合功能的卷积神经网络,采用训练集和验证集进行训练,得到优化后的用于检测复合材料损伤的卷积神经网络模型;采用用于检测复合材料损伤的卷积神经网络模型对待检测复合材料同一损伤的红外热波成像图以及超声波C扫成像图进行损伤检测,并将输出预测的损伤类别及损伤位置在对应的光学图像上标记出来。降低成本,提高效率。
本发明涉及一种3D中空结构功能一体化吸波复合材料及制备方法,由纤维增强体、树脂基体以及吸波剂填料构成的结构功能一体化吸波复合材料,所述增强体为附有空腔结构的纤维增强体,所述基体为具备良好力学性能与耐环境性能的树脂材料,所述吸波剂填料是具有电磁损耗能力的微小颗粒。步骤:超声分散法制备颗粒增强树脂的吸波浆料;玻璃纤维编织体浸渍吸波浆料制备具有吸波特性的3D中空复合材料;3D中空结构功能一体化吸波复合材料的固化成型工艺。本发明方法制备的3D中空结构功能一体化吸波复合材料以其质轻、抗分层、抗冲击性能强、宽频强吸收及隔热等优异特性可代替现有的夹心功能吸波材料,广泛应用于航空、航天及陆地武器装备等领域。
本发明公开了一种不开裂高耐磨损耐腐蚀镍基复合材料涂层,属于激光喷涂技术领域,通过在镍基复合材料涂层中添加铌粉末、钽粉末和碳化铌粉末、硼化铌粉末、碳化钽粉末和硼化钽粉末等强化陶瓷相粉末,铌和钽均是强碳化物形成金属元素,在熔池中会优先与碳结合生成碳化铌或碳化钽,避免粗大碳化物的形成,在熔池中会优先长大,同时外加的一定比例的强化陶瓷相粉末可以起到弥散强化作用防止合金硬度的大幅降低,由此通过抑制粗大脆性相的生成并增加异质形核质点的方法实现了镍基复合材料粉末塑韧性的增加,解决了镍基复合材料粉末塑韧性较差且制备工艺较为复杂的缺陷,能够使所制备的镍基复合材料涂层不开裂并且具有高耐磨损、耐腐蚀性能。
本发明涉及一种含有氧化铝涂层和碳化硅涂层的炭/炭复合材料坩埚,属于单晶硅拉制炉用热场部件技术领域。所述复合材料坩埚包括炭/炭复合材料坩埚本体以及依次涂覆在坩埚本体内表面的碳化硅涂层、氧化铝涂层,碳化硅涂层有效缓解了氧化铝涂层与基体之间的热失配,氧化铝涂层在熔融硅过程中不引入杂质,能够有效保证硅料的纯度,而且碳化硅涂层和氧化铝涂层配合使用具有优异的抗侵蚀性能,能够有效避免含硅蒸汽对复合材料坩埚本体的侵蚀,进一步提高复合材料坩埚的使用寿命,满足单晶硅拉制的需求。
本发明公开了一种高塑性原位纳米颗粒增强镁基复合材料及其制备方法,属于镁基复合材料制备技术领域。首先,利用纯铝锭和混合盐发生原位化学反应制备Al‑TiB2中间合金熔体;其次,将镁合金加入Al‑TiB2中间合金熔体中,在半固态下进行机械搅拌使颗粒均匀分布,再迅速升温浇铸进金属模具;最后,将浇注后制得的复合材料进行均匀化处理,再用温水淬火,制得高塑性原位纳米颗粒增强镁基复合材料。本发明方法制备得到原位纳米颗粒增强镁基复合材料具有高的塑性,断裂延伸率能达到14.5%,并且制备工艺简单,成本较低,能够进行工业化生产。
本发明涉及一种改性多元醇树脂复合材料,特别是涉及一种改性多元醇树脂复合材料及其制备方法,所述的改性多元醇树脂复合材料,由以下重量份的组份组成:二氧化碳基聚碳酸酯60份,乙二胺2‑10份,丙烯酸丁酯20‑60份,聚氨基甲酸酯0.01‑1份,非乙二胺2‑10份,有机硅偶联剂KH‑560‑0.5‑2份,去离子水100‑300份,磷酸三乙酯0.5‑4份,聚酰胺乳液5‑40份。本发明还提供了该改性多元醇树脂复合材料的制备方法。本发明提供的改性多元醇树脂复合材料以二氧化碳基聚碳酸酯为基础原料,先通过有机硅偶联剂改性,再与聚酰胺乳液复合改性制得,具有较高的耐改性和附着力。
本发明公开了一种C/C复合材料表面抗氧化涂层的制备方法,包括:采用包埋法在C/C复合材料表面包埋SiC涂层,得到SiC涂层防护的C/C复合材料;在SiC涂层防护的C/C复合材料表面喷涂ZrSi2‑SiC粉体,在C/C复合材料表面得到ZrSi2‑SiC/SiC抗氧化涂层。外涂层中的SiC和内涂层SiC成分一致,可有效减小内外涂层的热膨胀系数差值,缓解内外涂层因热应力不均匀导致的裂纹的产生,甚至造成外涂层的剥落;该涂层为梯度涂层体系,热膨胀系数值由内涂层至外涂层呈现梯度分布,有效缓解涂层热应力,提高涂层体系抗氧化性能。
本发明公开了一种具有预置孔结构的金刚石‑铜基复合材料的制备方法,属于电子封装材料技术领域。该复合材料由铜合金和金刚石颗粒经过压力熔渗复合而成,该铜基复合材料的制备过程为:1)选用不同粒径配比的金刚石颗粒和粘结剂混合;2)在压制金刚石预制坯的过程中通过设计模具,制备具有预置孔结构的金刚石预制坯;3)将上述金刚石预制坯进行烘干交联强化;4)将CuCr5合金和金刚石预制坯按照从上到下的顺序放置在高强石墨模具中,进行压力熔渗。本发明制备的复合材料致密度高,热导性及热膨胀系数均较高,而且本发明设计了独特的预置孔结构,解决了高体积分数金刚石复合材料不能采用传统方法加工的难题。
本发明公开了一种空心碳微球负载碳纤维织物复合材料的制备方法,包括:配置聚乙烯醇溶液,加入酚醛树脂空心微球制备出PVA与空心微球复合纺丝混合溶液,借助静电纺丝工艺,用复合纺丝溶液制备出PVA与空心微球复合纤维膜前驱体负载到碳纤维织物上。空心微球负载碳纤维的织物经预氧化处理与高温碳化处理,并将其与环氧树脂复合,形成增强复合材料。本发明制备的复合材料,其空心碳微球无团聚、分散均匀性及结构形貌稳定性较好,赋予其织物复合材料较好的电磁屏蔽性能,且使用的材料成本较低,工艺便捷且绿色环保;具有较优异的操作性及质量稳定性,可满足碳纤维复合材料制品电磁屏蔽效果,且结构更加稳定可靠,应用价值高。
本发明公开了一种双回路复合材料塔头杆塔,属于输电线路用杆塔技术领域,包括复合材料塔头和钢材塔身,采取复合材料和普通钢材结合的结构,一方面利用塔头部分复合材料的绝缘性,减少输电线路的污闪事故,提高线路安全运行水平;减小塔头尺寸,大幅度的缩小输电通道走廊宽度,减少土地占用,节约宝贵的土地资源。一方面由于复合材料的弹性模量较钢材低,整体稳定问题突出,对塔身下部主要受力构件需要选择较大的截面,选择钢材则可以充分利用钢材的特性,节约材料,降低整体造价。
本发明一种大型复合材料加筋壁板结构设计方法属于飞机复合材料结构设计领域。本发明方法根据复合材料的设计许用剪应变γ和正应变ε,计算金属材料盒段壁板的等效弹性模量E与剪切模量G的比值,根据该比值确定该考核区复合材料层压板的铺层比例,再根据应变情况确定考核区初步铺层层数、角度和顺序,将铺层角度信息及材料性能数据输入有限元模型求解应变及校核稳定性,经过迭代,确定蒙皮长桁铺层层数、顺序和角度,保证所有铺层对称均衡,采用数字化建模,并进行数字化三维标注、玻璃布铺贴、材料及加工附注等信息。该发明大大缩短了大型复合材料壁板设计制造周期,同时也大大提高了产品的质量。
一种碳/碳复合材料SiC/C-AlPO4-莫来石抗氧化涂层的制备方法,将硅粉和石墨粉混合得粉料A;将Al2O3粉、WO3粉和B2O3粉混合得粉料B;将粉料A与粉料B混合得包埋粉料C;将试样放入石墨坩埚,并加入包埋粉料C,将石墨坩埚放入立式真空炉中,通入氩气作为保护气氛加热反应后降至室温,用无水乙醇在超声波中清洗干净后获得碳/碳复合材料碳化硅过渡层;将C-AlPO4和莫来石粉体加入到甲醇再加入碘得悬浮液,将该悬浮液置于水热釜内,阴极选用制备了碳化硅过渡层的碳/碳复合材料,密封水热釜并将其放入超声波-微波发生器中,沉积完成后取出试样,干燥得碳/碳复合材料SiC/C-AlPO4-莫来石抗氧化复合涂层。制备的复合涂层可在1500℃静态空气保护C/C复合材料322小时,氧化失重小于2%。
本发明公开了一种自封锁层状碳纳米管纸/SiC梯度纳米复合材料及制备方法,包括层向封闭的多层复合材料,所述的多层复合材料至少包含相互层叠的结构层和界面层;所述的结构层为B4C改性CNT纸/SiC复合材料层;所述的界面层为膨胀石墨和SiC晶须弥散强韧的树脂碳层;其中结构层中的SiC含量沿厚度方向呈梯度变化;所述的结构层的厚度为200~500μm;所述的界面层的厚度为20~50μm。本发明采用膨胀石墨、SiC晶须均匀弥散分布于其中的树脂碳将多层CNT纸/SiC复合材料结构层焊接起来;且逐步改变碳纳米管纸多孔预制体中的Si含量,使最终由树脂碳‑熔融Si原位反应生成的CNT纸/SiC纳米复合材料SiC含量沿厚度方向递增,形成组成与结构成梯度变化的类树木年轮状的自封锁层状复合材料。
本发明公开了一种用于风扇机匣内壁的弧形复合材料胶接方法,特别适用于航空发动机,将相邻弧形复合材料涂敷胶粘剂,并采用工装夹具压板压紧,然后,从风扇机匣外工艺孔中穿过螺栓,同时拧紧螺母;在拧紧螺母过程中,调整相邻复合材料上端面处于同一水平线上;然后在室温下,保证弧形复合材料与风扇机匣紧密贴合,静置至弧形复合材料胶接固化;本发明可解决弧形复合材料与金属机匣的胶接;相较于现有的胶接技术,本发明设计了搭接式固定夹紧装置,可实现同时定位、加压两片复合材料板材的目的,大大提高了胶接效率和效果,满足设计要求。同时,采用室温固化环氧胶粘剂获得较高的胶接强度。
本发明涉及一种C/C复合材料之间无压连接的方法,采用表层多孔、内部结构完整的C/C复合材料作为连接母材,在高温下使陶瓷连接层转变为液相扩散渗入连接基体并与之反应产生化学结合,实现无压条件下C/C复合材料之间的成功连接,接头的连接强度为4.71~6.87MPa。有益效果:因采用表层多孔内部完整的C/C复合材料作为连接母材,利用高温使陶瓷中间层转变为液相扩散渗入连接基体并与之反应产生化学结合,实现了无压条件下C/C复合材料之间的成功连接,接头的连接强度为4.71~6.87MPa。此方法可解决传统热压连接无法实现C/C复合材料异型件或曲面的连接难题。
本发明属于金属基复合材料技术领域,具体涉及碳纤维‑碳纳米管混杂增强金属基复合材料及其制备方法和应用,所述金属基复合材料按质量百分数计,包括30%~45%羧基化碳纤维、0.1%~2%羟基化碳纳米管和50%~70%金属基体,其制备方法包括:首先依次进行碳纤维羧基化、编织碳纤维预制体制备、碳纳米管羟基化,然后将带有官能团的碳纤维和碳纳米管采用压力浸渗工艺制备混杂增强金属基复合材料,本发明制备的碳纤维‑碳纳米管混杂增强金属基复合材料具有优异的力学性能和导热、导电性能,适用于在航空航天等领域中高性能金属基复合材料构件的广泛应用。
中冶有色为您提供最新的陕西西安有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!