本发明公开了一种锂离子电池正极材料多孔磷酸钒锂/碳的制备方法,包括以下步骤:将锂源、钒源和磷源溶于去离子水中得到前驱体溶液,在搅拌条件下向其中络合剂、氧化剂和助燃剂,加热,恒温搅拌得到前驱体凝胶;将前驱体凝胶点燃,充分燃烧得到前驱体粉体;将前驱体粉体与碳源混合均匀,在惰性气体中煅烧、冷却、研磨、过筛,得到本发明的磷酸钒锂/碳。通过本发明制备的磷酸钒锂/碳正极材料,以金属锂为负极制备成电池,电化学性能优越,循环性能良好。本发明成本低廉,工序简单,易于产业化发展,得到的高性能产品可广泛应用于电子产品及动力电池领域。
本发明属于锂离子电池材料领域,尤其涉及一种锂离子电池用隔膜及其制备方法和锂离子电池。本发明提供了一种锂离子电池用隔膜,包括:含卤素元素的聚合物基体和锑氧化物粒子;所述含卤素元素的聚合物基体上涂覆有所述锑氧化物粒子。本发明锂离子电池用隔膜使用了含卤素元素的聚合物基体,并在含卤素元素的聚合物基体的表面涂覆了锑氧化物粒子。性能测试表明,该锂离子电池用隔膜热稳定性强、吸液率高、离子导电率高、自熄灭时间短,能够解决现有锂离子电池用隔膜与电解液的浸润性差、安全性低等问题。
本发明公开了一种兼顾高低温性能的高容量锂离子电池电解液,所述的电解液包括非水溶剂和六氟磷酸锂,所述的电解液还包括负极成膜添加剂、抑制气胀添加剂、低阻抗添加剂;其中,负极成膜添加剂由占电解液总质量3~15%的氟代碳酸乙烯酯组成;抑制气胀添加剂由占电解液总质量0.3~5%的1,3‑丙烯磺酸内酯或酸酐类化合物中的一种或两种组成;低阻抗添加剂由占电解液总质量0.2~3%的二氟磷酸锂或二氟草酸磷酸锂中的一种或两种组成。该电解液适用于高镍正极和硅碳复合负极锂离子电池,兼顾常温循环性能的同时,改善该锂离子电池的高温存储性能和低温放电性能,同时本发明还提供该电解液的制备方法以及采用该电解液的高容量锂离子电池。
本发明公开了一种锂电池隔膜用涂覆浆料,包括陶瓷颗粒和多巴胺功能化的埃洛石纳米管;所述多巴胺功能化的埃洛石纳米管的长径比为5~20;固含量为6%~10%,其中,多巴胺功能化的埃洛石纳米管的含量在0.8%~2.5wt%。本发明还公开了上述锂电池隔膜用涂覆浆料的制备方法及锂电池隔膜。采用本发明的锂电池隔膜用涂覆浆料制备得到的锂电池隔膜在保证热稳定性的同时,具有更高的离子电导率和锂离子迁移数。
本发明公开了一种水系空气电池及利用其分离回收钴酸锂中锂钴元素的方法、应用。所述水系空气电池,由正负极电解液、正负极材料和中间反应仓电解液组成,其中,正负极电解液均为锂盐或钠盐溶液,中间反应仓电解液为含Li+和Co2+的溶液,正极材料为氧气,负极材料为锂盐或钠盐,负极材料反应电位低于正极材料的反应电位,且高于析氢电位;所述中间反应仓电解液通过阴阳离子膜与负正极电解液连接,所述正负极材料分别置于正负极电解液中。在水系空气电池基础上,通过自发的氧化还原‑双离子耦合过程,实现锂、钴离子的分离。该方法不使用沉淀剂、绿色环保,可降低成本。此外,在放电回收锂、钴离子的同时能释放电能。
本发明公开了一种锂离子电池正极材料磷酸锰锂/碳的合成方法,包括以下步骤:1)混料:取原料:锂源化合物、磷源化合物和锰源化合物,加入到球磨罐中,然后加入碳源化合物,再加入液体介质至将所述原料和碳源化合物浸没,球磨至均匀;2)球磨后的混合物干燥:将步骤1)得到的混合物取出放在蒸发皿,干燥,研磨成粉末;3)高温煅烧:将步骤2)得到混合物粉末,于500-800℃惰性气氛下,煅烧1-12h,得到碳包覆的磷酸锰锂。本方法的合成工艺过程简单,实验条件容易控制,且降低了磷酸锰锂的生产成本,有利于实现工业化生产,制备得到的锂离子电池正极材料具有良好的电化学性能。
本发明软包装磷酸铁锂水性正极锂电池的预化成方法属于锂电池生产技术领域,由以下几个充放电阶段组成:小电流恒流充电阶段,电流范围:0.005C~0.5C;高电压恒压充电阶段,电压范围:3.9V~4.5V,恒压至0.005C~0.5C;小电流恒流放电阶段,电流范围:0.1C~1C;小电流恒流半充电阶段,电流范围:0.1C~1C。该方法针对磷酸铁锂水性正极使用水性粘结剂的特点,使磷酸铁锂和水性粘结剂相互配合,适用于由磷酸铁锂水性正极和碳负极,以及含有机溶剂和锂盐的电解液组成的软包装磷酸铁锂水性正极锂电池,化成时适当过充,使副反应充分产生,真空二封时抽出副反应产物,能制造出低成本、高安全、长寿命的磷酸铁锂电池。
本发明属于锂离子电池材料及电解铝废料资源化利用技术领域,公开了一种利用含氟锂尾料回收制备碳酸锂的方法。所述方法包括将含氟锂尾料与硫酸混合反应,收集氟化氢,剩余溶液经过滤分离不溶物后加入碳酸氢钡反应,得到混合沉淀和含锂溶液,将混合沉淀采用氢氧化钠溶液溶解,得到含铝溶液;将含锂溶液与氢氧化钠反应或热解,得到碳酸锂和纯碱溶液;再将所得氟化氢和不溶物、含铝溶液和纯碱溶液混合反应,得到冰晶石产品。本发明方法实现了含氟锂尾料中锂元素的回收利用,将其转化为锂离子电池材料用的碳酸锂,并能够实现含氟锂尾料的全资源化利用和完全无害化处理,对于缓解锂资源缺乏及实现绿色低碳转型具有显著意义。
本发明公开了一种磷酸铁锂型锂离子电池正极片及其制造方法,正极活性物质涂层由纳米磷酸铁锂正极活性物质涂层、纳米磷酸铁锂正极活性物质涂层组成,纳米磷酸铁锂正极活性物质浆料涂覆在集流体上,纳米磷酸铁锂正极活性物质浆料涂覆在纳米磷酸铁锂正极活性物质涂层上,极耳点焊于集流体的预留空白处。其步骤:A、将磷酸铁锂正极活性物质,分别与纳米炭黑导电剂、聚偏氟乙烯粘结剂和N-甲基吡咯烷酮溶剂,按比例混合,制成纳米磷酸铁锂正极活性物质浆料;B、将磷酸铁锂制备的浆料,单面或者双面涂覆于厚度为正极集流体上,形成涂层;C、制成涂层的正极极片。制造的磷酸铁锂型锂离子电池容量高、高倍率,效果好,有效地延长锂离子电池的使用寿命。
本申请公开了一种汽车锂电池析锂量的定量检测方法,所述汽车锂电池析锂量的定量检测方法包括以下步骤:获取所述汽车锂电池的负极极片的表面的待测材料粉末;将所述待测材料粉末与电解液混合,得到第一待测混合物;通过差示扫描量热仪对所述第一待测混合物进行检测,确定所述汽车锂电池的析锂量。本申请解决了现有技术对汽车锂电池的析锂量进行定量检测的检测成本较高的技术问题。
本发明提供了一种铌酸锂包覆正极材料制备方法、铌酸锂包覆正极材料和应用,涉及电池材料技术领域,本发明提供的铌酸锂包覆正极材料的制备方法通过将正极材料分散在调节剂溶液中,使得调节剂均匀吸附于正极材料表面,再通过调节剂的正电性将铌酸铵草酸盐水合物均匀吸附到正极材料表面,后续通过与锂源混合煅烧,制备得到铌酸锂均匀包覆于正极材料表面形成均匀致密铌酸锂层的铌酸锂包覆正极材料,从而实现通过采用调节剂的加入制备得到铌酸锂均匀致密包覆于正极材料表面的铌酸锂包覆正极材料。
本发明公开了一种LiAl5O8纳米线的制备方法、复合固态电解质、锂金属电池,所述LiAl5O8的制备方法包括如下步骤:对Al(EtO)3纳米线进行预煅烧,然后在保护气氛下,将预煅烧后的Al(EtO)3纳米线膜浸泡于锂离子溶液中;浸泡结束后进行固液分离,得到补充锂的Al(EtO)3纳米线;煅烧所述补充锂的Al(EtO)3纳米线,得到LiAl5O8纳米线。由本发明的LiAl5O8纳米线制得的复合固态电解质可以引导Li+以层片状而不是以枝晶状的形式沉积,能够显著改善锂金属电池的长循环稳定性和倍率性能。
本发明涉及一种锂二次电池电解液及锂二次电池,锂二次电池电解液包括有机溶剂、导电锂盐和添加剂;所述添加剂包括双草酸硼酸锂和N‑苯基双(三氟甲烷磺酰亚胺)。上述锂二次电池电解液利用无机锂盐双乙二酸硼酸锂(LiBOB)和有机物N‑苯基双(三氟甲烷磺酸亚胺)(NPBS)的协同作用,作为电解液的防腐蚀功能添加剂,含有这种功能添加剂的锂二次电池循环性能得到改善,应用前景良好。
本发明公开了一种碳包覆的富锂多元锂离子电池正极材料及其制备方法。该方法通过使用碳酸盐作为pH值调节剂制取含有Ni, Co, Mn, Li,X(X=K, Na, Mg, Cs),M(M=Fe, Al, Ti)的浆料,通过添加表面活性剂实现对物料形貌的控制,添加Al, Ti作为结构稳定剂,K、Na作为锂离子电池通道扩充剂,通过喷雾干燥的方法一步制取富锂多元材料前驱体,焙烧得到所述材料LinXmNiaCobMn1‑a‑bMcO2。本发明可有效降低制造成本,制得的材料颗粒度小,具有放电比容量高和循环稳定性好等优点。采用具有导电性的有机物衍生碳对多元富锂材料进行包覆处理,可有效提升材料的循环稳定性。
本发明属于锂硫电池的技术领域,公开了一种长循环寿命高比容量锂硫电池正极材料和锂硫电池正极及其制备。所述正极材料为:(1)在盐酸溶液的体系中,以过硫酸铵为氧化剂,将氨基苯硫酚进行聚合反应,后续处理,得到导电聚合物;(2)在惰性氛围下,将导电聚合物与硫磺混合均匀,升温至140~170℃,保温,继续升温至170~200℃,保温,冷却,研磨,干燥,得到正极材料。所述正极为将正极材料、导电剂、粘结剂以及有机溶剂混合均匀,得到浆料;将浆料均匀涂覆在集流体上,真空干燥,得到锂硫电池正极。本发明的锂硫电池正极材料和正极结构稳定,具有高容量和超长循环寿命,本发明的方法简单可行,能耗少,易于实现工业化生产。
本发明属于电池材料技术领域,具体涉及一种硫化聚丙烯腈材料及其锂硫电池正极、锂硫电池。本发明将聚丙烯腈与硫粉所形成的混合物加热形成的硫化聚丙烯腈材料,具有接近100%的库伦效率和极低的自放电率。硫化聚丙烯腈作为一种含硫正极材料,能在电解液中稳定存在并参与锂离子的循环,不存在锂硫电池的“穿梭效应”。将本发明的硫化聚丙烯腈材料用作锂硫电池正极,既可以维持锂硫电池的导电性能、缓解充放电过程中的体积膨胀,又可以改善锂硫电池的循环性能。
本申请属于锂硫电池技术领域,尤其涉及一种锂硫电池正极及其制备方法和锂硫电池。其中,锂硫电池正极包括正极浆料和集流体,所述正极浆料覆盖在集流体表面,所述正极浆料包括活性材料、导电剂、粘结剂、有机溶剂以及β‑MoTe2,β‑MoTe2提高了锂硫电池正极的氧化还原动力学,降低了锂硫电池内阻和电荷转移阻抗,并且改善了锂硫电池的循环稳定性;本申请提供的锂硫电池正极及其制备方法和锂硫电池可以解决用于化学吸附和催化转化多硫化物的催化剂种类不够多的技术问题。
本发明公开了一种电解液以及包括该电解液的锂二次电池。其中电解液包括电解液盐、有机溶剂、添加剂。所述添加剂为具有如下通式化合物中的一种。所述的化合物具有如下之一的通式:R1的化学式为CaFbHdOe;0≤a≤2,0≤b≤2,0≤d≤4,0≤e≤1。本发明还公开了一种采用该电解液的锂二次电池,采用本发明电解液的锂二次电池具有良好的高温存储和循环性能。
本发明提供一种球形磷酸锰锂正极材料的自组装制备方法,将碳纳米管与磷酸锰锂材料复合,利用碳纳米管的超高电导率改善磷酸锰锂的导电性能。该方法使用碳纳米管为晶核,原位制备由纳米磷酸锰锂颗粒自组装形成的球形磷酸锰锂颗粒,碳纳米管穿插于球形二次颗粒之间。本发明还提供包含由上述制备方法制得的自组装球形磷酸锰锂与碳纳米管复合正极材料。
本发明提供了一种锂一次电池负极结构及锂一次电池,涉及锂一次电池技术领域,所述锂一次电池负极结构包括锂负极片,所述锂负极片设置有压接区域,所述压接区域压接锂带,所述锂负极片和所述锂带之间压接有极耳,缓解了现有负极结构在放电后期,锂负极片容易发生断裂的技术问题,本发明提供的锂一次电池负极结构,通过在锂负极片上压接锂带,且极耳位于锂带和锂负极片之间,从而使得锂带与锂负极片的压接区域局部增厚,能够有效避免电池放电后期,锂负极片与极耳连接处发生断裂,从而有效提高锂一次电池的容量发挥和放电稳定性。
本发明提供了一种无酸浸提回收废旧磷酸铁锂电池中锂的方法,属于锂离子电池材料回收技术领域。本发明通过将废旧磷酸铁锂电池的正极材料加水制浆,得到磷酸铁锂浆料;将金属离子络合剂、氧化助剂与磷酸铁锂浆料混合反应、过滤,得到含锂溶液和磷酸铁渣;将碳酸盐与含锂溶液混合沉淀即得到碳酸锂产品。本发明的提锂方法不需要添加酸碱试剂,避免了环境污染及浪费水资源,通过金属离子络合剂及氧化助剂的相互配合作用,有效且精准的将锂离子析出,提锂效率高达99.8%,碳酸锂产品纯度高达98%,碳酸锂可以直接使用。
本发明属于锂二次电池材料领域,其公开了一种锂二次电池电解液,包括有机溶剂、导电锂盐、添加剂A、二氟磷酸锂、N‑苯基双(三氟甲烷磺酰)亚胺、三烯丙基异氰脲酸酯;所述添加剂A的使用质量相当于锂二次电池电解液总质量的0.1%~3.0%;所述二氟磷酸锂的使用质量相当于锂二次电池电解液总质量的0.1%~1.0%;所述N‑苯基双(三氟甲烷磺酰)亚胺相当于电解液质量的0.1%~1.0%,所述三烯丙基异氰脲酸酯相当于电解液质量的0.1%~1.0%;所述添加剂A为四乙烯基硅烷、磷酸三乙烯酯中的至少一种;该电解液通过添加剂的优化组合,达到了高温、常温、低温综合性能改善的目的。
本发明公开了一种钼酸锂表面修饰锂离子电池富镍正极材料及其制备方法。该锂离子电池富镍材料的化学式为:LiNiaCobM1-a-bO2(其中a、b为摩尔数,0.5≤a≤1,0≤b≤0.2,M为金属离子Mn、Al和Fe中的一种或几种,Li2MoOx为表面修饰层材料钼酸锂,3≤x≤4)。本发明通过简单的液相前驱体制备、表面修饰和高温固相烧结反应,制备出钼酸锂表面修饰锂离子电池富镍材料。钼酸锂表面修饰层具有很好的锂离子导电性,有利于锂离子的脱嵌。利用钼酸锂表面修饰富镍正极材料可大幅提高富镍正极材料的倍率性能、循环性能和安全性能,本发明制备方法的原材料易得,操作简单,成本低,易实现工业化大规模生产。
本发明提供一种锂离子电池电解液及其制备方法、锂离子电池。该锂离子电池电解液包括溶剂、电解质锂盐和添加剂,电解质锂盐和添加剂分散于溶剂中,添加剂为五氟苯基三乙氧基硅烷。五氟苯基三乙氧基硅烷作为添加剂,不仅能够先于电解液其他材料被氧化,并且氧化产物能够在界面形成一个更为稳定、内阻更低的膜,以抑制电解液的分解;同时五氟苯基三乙氧基硅烷还能够有效吸附副产物氟化氢及其电离形成的氢离子、氟离子,防止由该副产物腐蚀导致的活性物质剥离,保证电池的长循环稳定性。
本发明扣式锂电池的正极钢壳及扣式锂电池属于电池领域,扣式锂电池的正极钢壳是一个敞口的壳体,在正极钢壳内表面上设置具有高氧化电位的金属防腐层,高氧化电位的金属防腐层是铝箔或铝合金,其厚度为5-35μm。金属防腐层使扣式锂电池的正极钢壳在整个工作电压范围内不发生电化学腐蚀,电池的内阻和自放电显著减小,电化学性能优良。本发明可以避免电池钢壳由于高氧化电位而发生电化学腐蚀,减小电池的自放电和降低电池的内阻,是一种性能优良的扣式锂电池。
本发明公开了一种高压煅烧制备锂镍锰氧锂离子电池正极材料的方法,包括以下步骤: 将锰源化合物、镍源化合物与掺杂元素M的化合物加入水中并混合,在搅拌状态下加入沉 淀剂,将不溶物经过滤、洗涤、干燥后得到前驱体;将锂源化合物与得到的前驱体混合均 匀后移入高温炉内;向高温炉内通入气体,气压在1-10MPa,高温炉内温度控制在 600-1000℃,混合物料在高温炉内煅烧10-40小时后冷却;物料经粉碎、筛分得到化学式为 Li(Nix-yMyLi1/3-2x/3Mn2/3-x/3)O2的锂离子电池正极材料。该方法能够降低制备过程中的煅烧温 度,缩短反应时间,降低成本,制备的锂离子电池正极材料电化学性能优良。
本申请提供一种锂离子电池电解液、锂离子电池以及用电设备,属于电池制造领域。锂离子电池电解液包括有机溶剂、锂盐和添加剂,添加剂包括具有如式I所示的结构通式的联嘧啶衍生物:其中,R1~R6均独立选自氢原子、氟原子、氰基、硅烷以及C1~C6的烃基或含氟烃基中的一种,通过该锂离子电池电解液,能够在保证电池的循环性能以及安全性能的情况下,兼顾解决电池的高低温电学性能欠佳的问题。
本发明公开了一种复合固态电解质,所述复合固态电解质包括聚合物固态电解质以及无机固态电解质与无机填料中的一种或两种,所述聚合物固态电解质由式(1)结构的聚合物的均聚物、无规共聚物或嵌段共聚物中的一种或多种与锂盐混合而成;该复合固态电解质具有高离子电导率、高锂离子迁移数、高热稳定性,且机械性优异以及电化学稳定。制备出来的全固态锂电池电芯适用于‑50℃~200℃的温度范围,同时能保证优异的电化学性能和安全性能。同时,能够提升全固态锂电池电芯和全固态锂电池的使用寿命和能量密度。
本发明实施例提供了一种钝化锂粉的制备方法和金属锂负极,所述制备方法包括:对锂箔和乌洛托品进行球磨处理,得到球磨后的锂粉;对所述锂粉与全氟癸硫醇进行球磨处理,得到钝化锂粉。通过本发明实施例,实现了通过低温球磨来制备纳米级钝化锂粉,该钝化锂粉具有极低的过电位和超高的比表面积容量,可以有效地抑制或阻止锂枝晶的生长,从而使以钝化锂粉作为锂金属负极构建的全固态电池具有高度稳定的循环性能和倍率性能。
本发明属于固体废弃物综合回收利用领域,具体地说,涉及一种从含锂辉石磁性固废中回收锂辉石的方法,本发明公开了一种磁性固体废弃物回收锂辉石的方法,通过弱磁选脱除强磁性杂质矿物,再通过中、高场强磁选,脱除弱磁性杂质矿物,并对该中、高场强磁选尾矿进行浮选后得到锂辉石精矿,本发明有效解决了磁选除杂过程中夹杂锂辉石的回收问题,同时对提高我国矿产资源综合利用率、提高锂资源保障能力有深远的意义。
中冶有色为您提供最新的广东广州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!