本发明公开了一种车用厢体复合板材及其制备方法,包括聚丙烯蜂窝芯材,聚丙烯蜂窝芯材上下两面均连接有玻纤增强聚丙烯复合材料层,两层玻纤增强聚丙烯复合材料层均连接有聚丙烯面膜,玻纤增强聚丙烯复合材料为轴向不同的连续玻纤增强聚丙烯单向带热压复合材料、玻纤以及聚丙烯纤维编织布和短玻纤增强聚丙烯带中的两种叠层复合而成,轴向不同的连续玻纤增强聚丙烯单向带热压复合材料0°/90°、0°/±30°、0°/±45°或0°/±60°方向铺置的连续玻纤增强聚丙烯单向带热压复合而成。所得板材轻质环保、不易变形、力学性能高、强度高、成本低,符合当前车厢体板材需求,适用于包括物流快递厢体、移动建筑、房车、包装等领域。
本实用新型提供了一种弹性金属塑料瓦。弹性金属塑料瓦包括:瓦基(10);复合材料树脂层(20),固定于瓦基(10)的连接表面;连接柱,包括相对设置的第一端和第二端,第二端与瓦基(10)的连接表面固定连接,连接柱的高度小于复合材料树脂层(20)的厚度,瓦基(10)与复合材料树脂层(20)通过多个连接柱固定。根据本实用新型,由于采用多个连接柱连接瓦基与复合材料树脂层,能够使连接柱与瓦基的连接实现自动化,并提高制作复合材料树脂层的效率,从而实现自动化生产,提高生产效率。
本发明公开了一种水下机器人用碳纤维复合耐压舱体,属于水下机器人耐压舱体技术领域。该耐压舱体包括圆柱形耐压舱体、密封件和端盖,所述圆柱形耐压舱体包括复合材料筒体、端环和防水涂层,复合材料筒体的两个端面粘接端环,复合材料筒体和端环的外表面设有防水涂层;所述端盖与圆柱形耐压舱体通过密封圈进行密封连接。本发明针对水下机器人作业深度变化明显且反复的工作特点,在复合材料筒体两端粘接金属端环用于形成结构密封面,进而实现与两侧端盖的轴向、径向双结构密封,并对端盖与舱体配合处的应力集中现象进行了改善。本发明采用了优化后的缠绕工艺和复合材料低损高效加工技术,满足强度及稳定性要求。
本发明提供一种热固连续纤维增强树脂自冲铆接工艺,具体包括以下步骤:S1:对预浸带预先进行定位打孔,取设置有预制孔的预浸带进行铺层,制成纤维增强复合材料层板;S2:金属区域部件包括搭接部和装配部,搭接部直径大于预制孔孔径,装配部厚度不大于预制孔的孔深度;S3:在每一层纤维增强复合材料层板的预制孔中嵌入一个金属区域部件,然后,将纤维增强复合材料层板固化成形;S4:采用自冲铆接铆钉在两层纤维增强复合材料层板的金属区域部件上进行自冲铆接。本发明解决了连续纤维增强复合材料无塑性变形阶段,导致自冲铆接困难的问题。
本发明提供了一种弹性金属塑料瓦及其制造方法。弹性金属塑料瓦包括:瓦基(10);复合材料树脂层(20),固定于瓦基(10)的连接表面;连接柱,包括相对设置的第一端和第二端,第二端与瓦基(10)的连接表面固定连接,连接柱的高度小于复合材料树脂层(20)的厚度,瓦基(10)与复合材料树脂层(20)通过多个连接柱固定。根据本发明,由于采用多个连接柱连接瓦基与复合材料树脂层,能够使连接柱与瓦基的连接实现自动化,并提高制作复合材料树脂层的效率,从而实现自动化生产,提高生产效率。
一种基于碳纳米管三维网络薄膜的应变传感器制备方法,主要解决现有基于聚合物基体内的碳纳米管传感技术会影响复合材料成型及复合材料力学性能的问题。实现步骤:(1)将碳纳米管和表面分散剂的混合物通过机械融合的方法制备碳纳米管的单分散水溶液;(2)将碳纳米管的单分散水溶液倒入真空吸滤装置的容器在过滤膜上抽滤成膜;(3)将碳纳米薄膜与过滤膜压实,放入烘箱内固化,固化后剥离滤膜后得到三维薄膜;(4)从薄膜上切下长方形结构,将导线固定于薄膜表面,将此传感器埋入复合材料内部特定位置,按复合材料固化工艺成型。具有界面结合性能好,可与复合材料共同成型,适合进行结构内部应变场监测,应变传感精度高和线性可重复性的特点。
本发明公开了一种桥梁水下混凝土构件养护结构,包括定位带、预修补层、纤维复合材料层、CFRP条带、内侧保护层、外侧保护层与临时约束带,所述定位带设置在缺陷混凝土柱A上,缺陷混凝土柱A上损伤部位设有预修补层,所述纤维复合材料层设置在内侧保护层与外侧保护层之间,所述CFRP条带设置在纤维复合材料层与外侧保护层之间,所述纤维复合材料层、CFRP条带、内侧保护层与外侧保护层形成整体结构,所述整体结构通过临时约束带安装在缺陷混凝土柱A上。本发明提供了一种桥梁水下混凝土构件养护结构,对病害及其影响范围进行定位,保证了纤维复合材料在铺设过程时位置的准确性,可以有效节省经济成本、降低施工周期,并有效提高结构的耐久性。
阻燃陶瓷化EVA及其制备方法,涉及一种复合材料及其制备方法,按重量计,含有:EVA100份、气相法白炭黑10~60份,抗氧剂1~5份、交联助剂0.2~3份、偶联剂1~8份、硼酸锌型瓷化粉10~180份,氢氧化物阻燃剂10~60份,交联剂0.2~4份。将上述材料在捏合机中混炼均匀,形成团状陶瓷化EVA,经开炼即得交联结构陶瓷化EVA复合材料。本发明能使EVA复合材料的机械性能得到明显提升,本发明EVA复合材料选用合适的交联剂和加工方法,对EVA材料进行了交联处理并添加一种硼酸锌型陶瓷粉,能够使得交联过后的陶瓷化EVA复合材料的机械性能明显提升,烧结温度降低,提高了生产效率,进而降低了生产成本。
一种冶金用阀门阀芯及内衬的制备方法,涉及一种阀门阀芯及内衬的制备方法,该方法将热压烧结致密B4C陶瓷、B4C‑SiC陶瓷、B4C‑SiC‑环氧树脂陶瓷基复合材料、B4C‑酚醛树脂陶瓷基复合材料、B4C‑SiC‑酚醛树脂陶瓷基复合材料和B4C‑SiC‑聚四氟乙烯陶瓷基复合材料作为加压湿法冶金用阀门的阀芯;热压烧结致密B4C陶瓷的体积密度大于2.48g/cm3、致密度大于98.0%;B4C‑SiC陶瓷的体积密度大于2.50g/cm3、致密度大于98.0%。本发明将B4C陶瓷及B4C‑SiC陶瓷基复合材料作为加压湿法冶金用阀门的阀芯及内衬,解决我国加压湿法冶金生产中普遍存在的金属阀门腐蚀严重问题。
本发明公开了一种均三嗪环修饰的石墨烯‑聚氨酯泡沫复合物及其制备、应用,属于环境材料制备及污染治理技术领域。该复合材料的制备方法为:将2‑氯‑4,6‑二氨基‑1,3,5‑三嗪先溶解于二甲基亚砜中,然后加入到去离子水中,超声分散后,90℃搅拌直至完全溶解。将胺化的石墨烯‑聚氨酯泡沫复合材料放入上述水中,在加热条件下反应,然后干燥得到均三嗪环修饰的石墨烯‑聚氨酯泡沫复合材料。该制备方法简单,制备的复合材料作为生物载体,可以有效吸附微生物分泌的胞外黄素,从而解决生物反应体系中黄素流失问题。并且复合材料中的石墨烯和黄素能够作为电子传递媒介体,加速微生物对难降解有机污染物的厌氧生物还原速率。
本发明旨在提供一种金属塑料轴承及金属塑料轴承制造方法。本发明的金属塑料轴承包括:瓦基,形成筒形;复合材料层,覆盖在瓦基的内表面上,复合材料层为整体一体成型;其中,复合材料层包括中间层和塑料层,中间层包括金属丝骨架,塑料层复合在中间层内。应用本发明的技术方案,金属塑料轴承的复合材料瓦面为整体瓦面,整体成型,只有一道接缝。因此可以安装在非承载区,大大提高了产品的实用性和可靠性,使弹性金属塑料瓦这种优良的减摩耐磨复合材料的应用领域进一步拓宽到轴承领域。
本申请属于风洞试验领域,特别涉及一种针对跨音速颤振风洞模型加工的设计参数控制方法。包括:采用金属梁架制作飞机承力构件,生成第一颤振风洞模型,并对第一颤振风洞模型进行第一次地面共振试验;在第一颤振风洞模型上粘贴配重块,生成第二颤振风洞模型,并对第二颤振风洞模型进行第二次地面共振试验;在第二颤振风洞模型上安装辅件,内埋传感器,以及粘贴泡沫填充物;获取复合材料蒙皮试验件,并对复合材料蒙皮试验件进行材料拉伸试验以及复合材料蒙皮试验件共振试验;在模具内铺设复合材料蒙皮,并将第二颤振风洞模型置入复合材料蒙皮中进行中温固化,生成第三颤振风洞模型,并对第三颤振风洞模型进行第三次地面共振试验。
本发明公开了一种冷藏车用厢体内板及其制备方法,该厢体内板由聚丙烯面膜、玻纤增强聚丙烯复合材料层、高分子隔离膜和无纺布层复合而成,所述聚丙烯面膜和所述无纺布层之间设有两层玻纤增强聚丙烯复合材料层,两层玻纤增强聚丙烯复合材料层之间设有高分子隔离膜;所述玻纤增强聚丙烯材料为轴向不同的连续玻纤增强聚丙烯热压复合材料、玻纤聚丙烯纤维编织布复合材料或短玻纤增强聚丙烯复合材料中的一种。本发明通过机械将内板侧的无纺布与PU泡沫保温层连接,大大提高了内板与PU泡沫保温层结合强度,拼接方式简便、成本低,同时通过高分子隔离膜阻断了PU保温层泡内气体的逃逸,符合当前节能环保冷藏车厢体板材需求。
本发明公开了一种石墨相C3N4/碳纳米管复合对电极的制备方法,包括步骤如下:将碳纳米管加入单氰胺或双氰胺溶液中,加热回流后过滤,并干燥,得到表面吸附有单氰胺或双氰胺的碳纳米管;将制备的碳纳米管放入管式炉中,升温,在氮气气氛下热处理;冷却到室温,得到石墨相C3N4/碳纳米管复合材料;将得到的复合材料与溶剂和添加剂混合,形成分散液;将分散液均匀涂到电极基底表面,制成表面覆盖石墨相C3N4/碳纳米管复合材料薄膜的电极基板;将电极基板在真空条件下干燥处理,制备出所述石墨相C3N4/碳纳米管复合对电极。有益效果是:有利于电子的传递;能有效减少碳纳米管和石墨相C3N4的聚集,提高其催化表面积。制备过程简单,不需要复杂设备,易于工业大量生产。
一种新型输电线路杆塔,左、右组件的复合材料塔身上段下端与塔身下段的上端通过法兰盘和连接螺栓连接;左、右组件的复合材料塔身上段之间交叉连接支撑杆,支撑杆与复合材料塔身上段之间连接斜拉杆;左、右横担均由并列的双杆构成,双杆夹持在复合材料塔头上固定;左、右横担的两端与复合材料塔头顶端均通过双斜拉杆连接;复合材料塔头顶端组装连接地线横担,本实用新型结构简单,组装容易,运行寿命长,抗腐蚀,抗老化氧化;取消了原有杆塔上的悬式绝缘子串,缩小线路通道;重量轻,免维护,减少线路造价,节约运行成本。
本发明涉及一种锂离子电池负极用锂铁氧化物/ 锂铁氮化物复合材料及其制备方法,具有可逆脱嵌锂性能的锂 铁氧化物/锂铁氮化物复合材料 Li2FeyO/Li3- xFexN,x=0.2~ 0.8,y=0.4~0.6。采用机械化学法与高温固相反应联用制备。 基体材料的合成与材料间的复合两个过程同步完成,复合体系 中的各组分间分散均匀,具有良好的相容性。其中 Li2FeyO的高理论容量与Li3- xFexN的富锂态 形成良好的互补体系,使该复合材料不仅具有较高的容量,还 能够利用其自身丰富的锂源对首次不可逆结构变化引起的容 量损失进行补偿,其储锂容量明显高于目前商用的锂离子电池 碳类负极材料,且库仑效率高。
一种石墨烯包覆的Co掺杂的Ni3(NO3)2(OH)4复合电极材料的制备方法属于材料领域,通过一步溶剂热法制备石墨烯包覆的Co掺杂的Ni3(NO3)2(OH)4复合电极材料,纳米粒子的尺寸大概在150‑200nm左右,具体步骤为:制备氧化石墨烯;将氧化石墨烯超声分散于环己醇溶剂中,再将硝酸镍、硝酸钴超声溶解于上述液,120℃~200℃条件下进行水热反应6h~24h后得到粗产物,粗产物水洗、离心、真空干燥后得到该复合材料。本发明制备工艺简单、快捷、能耗低,且不需要加入任何碱性物质和氧化剂;石墨烯的包覆能够极大地提高该复合材料的导电性能;复合材料具有高的比电容及倍率性能,有望用作超级电容器电极材料。
本发明涉及一种电极旁置式柔软压敏探头研制方法,属于传感器技术领域。该探头由敏感区、传导区和接口区组成。敏感区和传导区包括三层柔软结构:中间层由导电高分子复合材料构成,最外两层为绝缘封装薄膜;接口区包括五层结构:中间层为导电高分子复合材料,次外两层为与后续电路连接的金属电极,最外两层为绝缘封装薄膜。导电高分子复合材料是利用溶液混合法将纳米导电粉末分散到高分子基体中制备而成。绝缘封装薄膜是利用催化剂和交联剂使液态高分子材料硫化成型制备而成。利用本发明提出的方法研制的压敏探头,其敏感区和传导区不含刚性电极,具有柔软性高、厚度薄、结构简约、工艺简单、成本低等优点,特别适用于曲面层间压力与位移测量。
一种用碳纤维电发热体复合材料制造的铁路除冰雪枕木,本发明主要包括有碳纤维复合材料束丝状加热体、绝缘导热耐温层、绝缘防水防潮保护层、直流电源温控器、漏电保护器、变电器、交流电源开关及碳纤维复合材料增强快速凝固剂固定枕木螺栓组成,其碳纤维复合材料束丝状加热体包裹有绝缘导热耐温层,绝缘导热耐温层外包裹有导热耐温绝缘防水防潮保护层,碳纤维复合材料束丝状加热体一端与电源温控器连接,电源温控器与漏电保护器相连接,漏电保护器与变电器相连接,变电器与交流电源开关相连接。碳纤维复合材料增强快速凝固剂固定水泥枕木螺栓与钢轨相连接。主要为铁路而特制的速效电热化冰雪解冻枕木,可随时随地地提供应急措施。
本发明公开了一种具有抗菌性能的纳米银-羟基磷灰石-聚乳酸复合材料及制备方法,按质量份包括:纳米银粉末,2~5份;羟基磷灰石粉末,20~50份;聚乳酸,40~50份;壳聚糖,2~10份。步骤如下:将纳米银粉末和羟基磷灰石粉末加入聚乳酸熔浆中,并滴加壳聚糖溶液,冷冻干燥,获得纳米银-羟基磷灰石-聚乳酸复合材料;将冷冻干燥的复合材料浸泡在氢氧化钠溶液中,用水冲洗;然后浸泡在硼氢化钠溶液中,用三蒸水冲洗,冷冻干燥,获得具有抗菌性能的纳米银-羟基磷灰石-聚乳酸复合材料。本发明的复合材料具有持久、高效的杀菌、抗感染能力,具有生物相容性,适合成骨细胞生长,同时能够降解,为骨缺损的修复提供了一种新型的复合材料。
本项申请为一种制取PP基复合材料的方法及产品。方法中以普通的PP材料为基料,以碱式硫酸镁为添加剂,在一定的工艺条件下基料与添加剂按20-50份的质量比例进行混炼,制成PP基碱式硫酸镁晶须复合材料。方法中使用的碱式硫酸镁晶须直径≤1.0ΜM,长径比≥50;所制得的复合材料与纯的PP材料相比具有很好的阻燃、抑烟性能,材料的抗拉强度和弹性模量都有明显提高。
本发明公开一种结构简单、易于操作、以空气为载气、运行成本低、具有良好的稳定性及重现性、检测效率及精度高的天然气中H2S的光信号检测方法及其检测器,是以纳米催化发光检测器进行检测,所用纳米材料为CeO2与Fe2O3的纳米复合材料,CeO2占纳米复合材料总质量的5~20%,检测波长为400~490nm,纳米材料加热温度范围300~450℃,空气作为载气,载气流速为100~200ml/min。所用检测器有石英管,在石英管的轴心线上有进样口和放空口,在石英管内中部置有陶瓷管,在陶瓷管内有加热丝,所述石英管与陶瓷管之间填充有多个小石英管,小石英管外表面涂有纳米复合材料。
本发明公开了一种飞机钣金拉伸模具的制备方法。包括步骤:制备基体材料和表面拉伸部材料;将基体材料和表面拉伸部材料粘结为一体,形成整体复合材料;将装有上述整体复合材料的成形器皿置于固化炉中固化成型;固化后形成坯料制造模具。本发明提供的制备方法充分利用多元铝复合材料的自润滑等性能,有效弥补现有模具的缺陷,充分满足飞机制造产业对该类产品的需求。使新型模具产品制件精度大幅提高,制件数量上升,达到2000件以上。本发明很好地解决了飞机钣金拉伸模具的种种缺陷所造的困扰多年的难题。
本发明涉及一种陶瓷或陶瓷基复合材料粉末烧结方法,是将陶瓷粉末或陶瓷基复合粉末进行加热、加压、加电火花复合式烧结(在整个烧结过程中这几种手段可先后或同时进行)。烧结气氛可控,为空气或真空或氩气或氮气气氛。利用本发明可以在较短时间、较低成本下完成陶瓷或陶瓷基复合材料的粉末冶金烧结,针对解决陶瓷或陶瓷基复合材料粉末冶金烧结所需周期长、成本高、烧结过程中晶粒易长大的问题。
本发明属于气体传感器技术领域,提供了一种基于球状核壳结构ZnSe/SnO2异质结的二氧化氮气体传感器及制备方法。该二氧化氮气体传感器包括气体敏感材料和加热电极,所述气体敏感材料均匀涂覆于所述加热电极的表面;气体敏感材料包括球状核壳结构硒化锌和氧化锡形成的纳米异质结复合材料。本发明复合材料的表层均匀分布氧化锡颗粒,与内层硒化锌部分接触,二者之间形成异质结,引起自由电子在异质结两侧发生转移及积累,增加了复合材料表面的活性位点,有利于促进复合材料表面吸附更多的气体分子,从而增强了复合材料的气敏性能。本发明采用水热法制备获得一种球型核壳结构纳米异质结复合材料,其原材料获取方便、价格低廉、制备过程简单。
本发明涉及储氢材料,具体的说是一种负载型多孔金属有机化合物储氢材料,它是一类负载型金属-多孔金属有机化合物复合材料,其可按如下步骤制备:1)以无机盐和有机羧酸为反应物,采用水或有机溶剂,水热合成或溶剂热合成法制备多孔金属有机化合物;2)将可溶性金属盐负载在该多孔材料上,采用液相还原或氢气还原的方法得到负载型金属-多孔金属有机化合物复合材料;其中金属的负载量为复合材料质量的2-20%。本发明制备工艺简单,成本低,通过对多孔金属有机框架材料进行化学改性,有效地提高了温和条件下材料的吸放氢性能,从而提供了一类新型的,能够在温和条件下实现良好吸放氢的储氢材料。
本发明提供了一种新型纤维金属层合板及其制备方法,属于复合材料制备技术领域。本发明的新型纤维金属层合板是由金属板材和预浸料层叠而成,并且在一定的温度和压力下固化而成的一种超混杂复合材料。该制备方法包括以下步骤:步骤(一)、金属板材表面采用增材制造技术制备出金属表面带有一定高度的“凸起”结构,金属板表面的预处理;步骤(二)、预浸料的剪裁以及在模具内的铺放;步骤(三)预浸料层的预压、表面扎孔以及二次剪裁;步骤(四)金属层和预浸料层的层叠铺放及热压成型。采用该方法制备的新型纤维金属层合板能够提升金属和复合材料界面的连接强度,抑制分层,同时能够改善纤维金属层合板的层间性能,提高层间剪切强度和损伤容限。
本发明涉及纳米复合材料技术,具体为一种用高 分子组装后的介孔分子筛填充聚合物基纳米复合材料,提高热 塑性聚合物材料性能的方法。用单分散的纳米介孔分子筛做填 充剂,用超临界的方法将具有不同柔顺性的高分子链引入到介 孔分子筛的孔道内,得到具有软、硬结合的用高分子组装后的 介孔分子筛复合填充剂,再与热塑性聚合物熔融共混制备聚合 物/纳米介孔分子筛复合材料。本发明采用的纳米介孔分子筛具 有双重纳米结构;采用超临界 CO2对聚合物具有很强的溶胀作 用,能够大幅度提高小分子在溶胀后的聚合物中的扩散速度和 吸附作用、可将许多小分子吸入聚合物中,改变温度和压力可 调节单体和聚合物的溶解能力,通过减压即可实现反应-分离 一体化。
中冶有色为您提供最新的辽宁有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!