本发明涉及一种永磁断路器储能电源的应急充电装置,包括:用于与永磁断路器储能电源电连接的充电头;220V/110V直流电压逆变电路,与所述充电头电连接,经由电压选择开关的动作输出直流220V电压或直流110V电压,为永磁断路器储能电源充电;被充电源电压显示模块,用于显示永磁断路器储能电源被充至的电压,以供判断是否充满;锂电池以及与所述锂电池电连接、用于显示所述锂电池剩余电量的电池电量显示电路。本发明具有操作简单,携带方便,安全可靠的特点,同时该设备具备充电功能、被充设备电压监控功能、输出自适应功能,能够很好解决储能电源故障引起的合闸问题。
本发明所述的一种数控机床在机测量无线电自适应匹配装置,其结构由:BT30刀柄(1),电池仓盖(2),电池仓(3),O型圈(4),14250锂电池(5),发射电路板(6),透视环(7),指示灯固定座(8),LED灯(9),互通电路板(10),下主体(11),绝缘座(12),精密复位压簧(13),装饰盖(14),精密复位机构组件(15),三爪件(16),测头底盖(17),探针(18)构成,所述的14250锂电池(5)安装在电池仓(3)内,所述的电池仓盖(2)盖住14250锂电池(5),电池仓盖(2)盖好后与电池仓(3)连成一个整体,所述的BT30刀柄(1)与电池仓(3)通过螺纹连接在一起。
本发明公开了一种电池的制作方法及电池,电池包括正极极片、负极极片和电解液,该方法包括步骤:将正极材料制成正极浆料,正极浆料中各材料的质量比为:镍锰酸锂∶碳纳米管CNT∶粘结剂=96.5:1.5:2.0;将负极材料制成负极浆料,负极浆料中各材料的质量配比为:钛酸锂:CNT∶粘结剂=95:2:3;将正极浆料涂敷在正极极片表面,形成正极浆料涂层,以及将负极浆料涂敷在负极极片表面,形成负极浆料涂层;将负极极片和正极极片制成电池极芯,在含有电池极芯的电池中注入电解液;将注入电解液的电池水平放置,并通过夹具对水平放置后的电池进行化成,以得到电池。本发明提高了钛酸锂材料电池的输出电压。
本发明提供了一种基于伺服模组的新能源电池抓取及搬运机构,包括传送机构、抓取机构,检测装置,传送机构与底座固定连接,抓取机构与底座固定连接,抓起机构与传送机构位置相对,检测装置与抓取机构电性连接;传送机构包括传送带、限定板,多个限定板与传送带固定连接,限定板之间的距离与新能源电池尺寸相匹配,检测装置能识别出摆放位置不对应的新能源锂电池,检测装置控制抓取机构,对传送机构上的新能源锂电池进行摆正,限定板负责将新能源锂电池固定在指定区域,检测装置能够检测限定板之间的摆放不齐的新能源电池,控制抓取机构对摆放不齐的新能源电池进行调整摆放,将新能源电池摆放整齐,提高新能源电池的流水线生产效率。
本申请提供一种电极片、固态电池和电子设备,固态电池包括正极片和负极片;所述正极片包括正极集流体和设置在所述正极集流体至少一功能表面的正极活性层,所述正极活性层包括内部具有锂盐的第一凝胶电解质;所述负极片包括负极集流体和设置在所述负极集流体至少一功能表面的负极活性层,所述负极活性层包括内部具有锂盐的第二凝胶电解质,所述第一凝胶电解质和第二凝胶电解质不同;或者,所述负极片为锂金属。在应用固态电池中时,凝胶电解质能够实现电极‑固态电解质界面接触性能的优化,使固态电池的安全性能和循环性能得到进一步改善。
本发明公开了一种多孔NiFe2O4/C@S纳米纤维复合材料及其制备方法与应用,所述方法包括:利用NiFe2O4纳米颗粒和多孔碳制备NiFe2O4/C纳米颗粒,将所述NiFe2O4/C纳米颗粒通过静电纺丝制备多孔NiFe2O4/C纳米纤维前驱体;将所述多孔NiFe2O4/C纳米纤维前驱体经氧化和碳化处理,得到多孔NiFe2O4/C纳米纤维复合材料;所述多孔NiFe2O4/C纳米纤维复合材料通过高温渗硫处理,得到所述多孔NiFe2O4/C@S纳米纤维复合材料。本发明的多孔NiFe2O4/C@S米纤维复合材料具有丰富的孔隙,均匀分散的NiFe2O4纳米颗粒能够有效吸附锂多硫化物,碳纳米纤维基体既形成良好的导电网络,又有效保证了复合材料整体结构的稳定,多孔NiFe2O4/C@S纳米纤维复合材料作为锂硫电池正极材料,表现出优异的电化学性能。
本发明涉及健身设备技术领域,且公开的一种多功能蓝牙健身音响,包括硅胶垫,所述硅胶垫的顶部固定连接有底壳,所述底壳的顶部卡接有PCBA主板,所述PCBA主板的顶部设有锂电池,所述锂电池的顶部设有密封PVC片,所述底壳的外侧螺纹套装有保护壳,所述保护壳包裹PCBA主板、锂电池与密封PVC片,所述保护壳内腔的顶部设有喇叭,所述喇叭的顶部螺纹套装有喇叭网,所述保护壳的外侧固定套装有硅胶套。该多功能蓝牙健身音响,通过按摩凸点和喇叭之间的配合使用,凹凸不平的按摩凸点和舒缓的音乐刺激手掌第二和第三掌骨,有利于调节中枢神经的功能,达到镇静怡神和健脑益智的功效,从而增强自身脏腑的生理功能,发挥“动则不衰”的生理效应。
本发明属于电化学领域,其公开了电池正极及其制备方法、电池负极及其制备方法、电容电池;该电池正极,包括铝箔以及涂覆在铝箔上的正极活性材料,其中,所述正极活性材料包括质量比为85∶5∶10的氧化石墨、聚偏氟乙烯粘结剂以及导电炭黑Super P;其中,所述氧化石墨中,氧的质量百分数为20~60%。本发明制得的电容电池具有如下有益效果:(1)由于电池正极本身不含锂,且电池负极采用锂片贴合结构,简化了操作工艺,降低制造成本;(2)该正极片与含金属锂的负极组成电池,其充放电时,不易产生枝晶,也就避免了电池内部短路问题。
本发明提供一种正极材料的改性方法,包括以下步骤:1)将粘接剂与固体成份按比例混合形成浆料;2)将所述浆料与磷酸铁锂粉末按比例混合并超声处理形成混合物;3)在300℃~400℃温度下,将所述混合物进行热处理4~8小时,形成固化浆料;4)在600℃~700℃温度下,将所述固化浆料进行热扩散处理36~48小时后,得到改性后的磷酸铁锂,作为正极材料。本发明提供的正极材料的改性方法可以提高磷酸铁锂电池的倍率性能,6C充电恒流比高达95.53%,通过改善动力电池倍率性能来扩展动力电池的应用领域。
一种利用同侧电极电芯低压注塑工艺对正负极异侧电芯封装的方法,包括如下步骤,(1)将具有正负极异侧铝壳锂离子电芯中的正极用镍片引导到该电芯的负极旁边,使该电芯变成为具有同侧电极的电芯;(2)电芯的正极和负极分别焊接在PCB上;(3)放入低压注塑模具内进行注塑;(4)装上电池后盖;(5)用商标纸包装电芯,即成为电池成品。本发明具有可利用现有的只适合于对同侧电极的锂离子铝壳电芯进行低压注塑的工艺,可以对异侧电极的锂离子铝壳电芯也能进行封装,提高了低压注塑工艺对电芯的适用范围,提高了电池封装厂的产能的优点。
本发明提供了一种负极活性材料的制备方法。该方法步骤包括:a、将钛源和有机碳源加入到pH值为0-6的有机溶液中配置成混合溶液;b、在上述混合溶液中添加氧化剂,于20-80℃下反应1-24h,后分离沉淀、水洗、干燥得含钛前躯体;c、将步骤b所得含钛前躯体与锂源混合球磨,后在惰性气氛下焙烧。采用本发明的方法制得的钛酸锂复合材料的杂相少,制备的钛酸锂颗粒为纳米级,颗粒形貌完美,同时制备方法耗时短、能耗低、成本低、产率高、制备的材料颗粒均匀、制备的材料性能稳定、工艺流程简单可控,可实现大规模工业清洁化生产。
本发明公开一种四元正极材料及其制备方法和应用,属于锂离子电池技术领域。该四元正极材料的制备方法,包括以下步骤:S1、将硼酸、镍钴锰前驱体以及锂源混合得到第一混合物,将所述第一混合物在600℃‑800℃下进行一次焙烧得到第一烧结物;S2、将所述第一烧结物与包覆剂混合得到第二混合物,将所述第二混合物在450℃‑550℃下进行二次焙烧得到所述四元正极材料。本发明还提出一种四元正极材料,由上述制备方法制备得到。本发明还提出一种上述制备方法制备得到的四元正极材料或者上述四元正极材料在制备锂离子电池中的应用。本发明的制备方法提高了该四元正极材料的循环稳定性和倍率性能。
本发明公开一种智能水杯盖,包括上盖体、下盖体及电子器件,上盖体包括下端部向内凹入形成容置腔且侧面设有指示灯透镜的上盖主体及设于其上的触控开关;下盖体包括上端部向内凹入形成容纳腔且底端设有透镜组件的下盖主体;电子器件包括电路板、锂电池及铝基板,电路板安装于容置腔内,其包括主控芯片,其下表面设有至少二分别与其电连接且沿其边缘设置的行程开关,下盖主体对应每一行程开关设有供触杆穿设的通孔,触杆两端均伸出通孔,以分别与行程开关及杯体的上周沿接触,电路板对应指示灯透镜设有发光二极管;锂电池及铝基板装于容纳腔内,锂电池分别与电路板及铝基板电连接,铝基板的下表面装有深紫外线发光二极管。
本发明公开了石墨烯复合物电极的制备方法,涉及电池技术领域。所述石墨烯复合物电极的制备方法为:按重量份,取1‑10份石墨烯复合物、0.01‑0.5份导电助剂、0.05‑1份粘合剂以及0.01‑2份N‑甲基吡咯烷酮,充分研磨混合均匀,得到浆料;将浆料均匀涂覆在金属箔表面;再将金属箔置于磁场中,干燥,即得石墨烯复合物电极。本发明在不损害锂电池寿命的前提下,利用石墨烯复合物经磁场作用后的特性,可在集流体表面构建垂直于集流体平面的电极,有效增加锂离子通道,解决锂离子慢速扩散的问题,加快充电速度。
本发明提供了一种KLi3Fe(C2O4)3的制备方法、电池正极活性材料、电池及用电设备,涉及电池正极材料的技术领域,KLi3Fe(C2O4)3在锂离子电池或钾离子电池正极活性材料中的应用,其制备方法包括如下步骤:使钾源、锂源、铁源和草酸源发生溶剂热反应,得到KLi3Fe(C2O4)3,缓解了现有钾离子电池正极活性材料化学性能不理想的技术问题,本发明提供的KLi3Fe(C2O4)同时含有Li和K,既能应用于锂离子电池正极活性材料,又能应用于钾离子电池正极活性材料,其在两种电池中均具有良好容量和循环性能,从而有效提高两种电池的化学性能。
本发明公开了一种固态聚合物电解质及其制备方法和应用。本发明所述制备方法包括:混合溶液的制备和电解质膜的制备这两个主要步骤。本发明基于聚(偏氟乙烯‑三氟乙烯)较高的极化强度,利用其可以促进锂盐的解离,提升固态聚合物电解质的离子电导率的特性,制备出了一种高性能的固态聚合物电解质,该固态聚合物电解质具有较高的室温离子电导率和锂离子迁移数,而且,基于本发明所制备的固态聚合物电解质的锂金属电池具有较高的放电比容量以及良好的循环稳定性,前景发展广阔。
本发明公开一种金属坩埚的制作方法及坩埚盖体的制作方法,属于锂离子电池负极材料加工技术领域。所述金属坩埚的制作方法包括:利用耐热温度大于950℃的不锈钢板,获得坩埚金属主体与筒底;将所述坩埚金属主体与所述筒底焊接,获得坩埚金属衬体;在所述坩埚金属衬体的全部表面覆盖坩埚隔离层,获得坩埚本体,其中,所述坩埚隔离层用于保护所述坩埚金属衬体。本发明使用全部表面覆盖有隔离层的金属坩埚装载锂离子电池负极材料半成品,取代了碳化硅坩埚,在相同外径尺寸和高度下,金属坩埚的制造方式简单,制作成本不到碳化硅坩埚的1/3,由于金属坩埚的使用寿命是碳化硅坩埚的数倍,分摊到每次的使用成本极低,且保证了锂离子电池负极材料的产品质量。
本发明公开了一种自动调整电池固定纸长度的方法,包括以下步骤:更换大小不一样型号的锂电池时,纸张收放装置进行放纸,保证用于形成纸槽来固定电池的纸张变得松弛;纸张下压装置进行下压,调整限定纸张所形成的纸槽的深度;纸张收放装置收卷多余的纸张长度,将纸张拉紧,在纸张下压装置的限位下,从而使得纸张形成所需深度的纸槽,以适配大小不一样型号的锂电池。本发明还公开了实施上述方法的自动调整电池固定纸长度的机构。可以快速便捷地自动调整电池固定纸所形成的纸槽的深度,以适配不同型号不同大小的锂电池。
本发明公开了一种固态电解质的制备方法、固态电解质及固态电池。该固态电解质的制备方法包括如下步骤:将粒径为1μm~50μm的基层固态电解质材料和粒径为10nm~50nm的导锂材料置于干法包覆机中混合,进行包覆处理,使导锂材料均匀分散并吸附于基层固态电解质材料表面形成包覆层,制备复合材料,导锂材料为金属材料;将复合材料制备成膜状材料,得到复合固态电解质基层;在复合固态电解质基层的一侧表面沉积第一面层固态电解质材料,形成第一固态电解质面层;及,在复合固态电解质基层相对的另一侧表面沉积第二面层固态电解质材料,形成第二固态电解质面层。由该固态电解质的制备方法制备所得的固态电解质的离子电导率能够得到显著的提升。
本发明提供了一种便携式余泥渣土含沙量测量装置及测量方法,该测量装置包括装料量筒、筛选筒体、若干筛选板、可充电的锂电池以及震动底座。装料量筒与筛选筒体顶部连接,筛选筒体放置在震动底座上,锂电池为震动底座提供电能。装料量筒用于装载余泥渣土的样本,启动震动底座,使筛选筒体及其上的装料量筒震动一段时间,样本即落入各个测量空间中。读取并记录该目标测量空间中的沙子的体积,根据目标测量空间内沙子的体积与余泥渣土样本体积的比值,可得到该余泥渣土样本中的沙子含量。本发明的装置体积小、结构简单、重量轻、便于携带。此外,本装置的震动底座采用锂电池供电,无需人工摇动装置,节省人力。
本发明提供了一种富氢超导材料及其制备方法,所述富氢超导材料的分子式为Li(CH4)n,其中n≥0.5;所述的富氢超导材料的制备方法包括:提供锂粉和甲烷气体,将所述锂粉置于反应腔室中并将所述甲烷气体注入所述反应腔室,在密闭条件下于所述反应腔室中对所述锂粉和所述甲烷气体进行加压压制处理,制备获得所述富氢超导材料。本发明提供了一种富氢超导材料,属于氢基超导材料,该超导材料可在10GPa~100GPa的较低压力范围内获得超导相变,更易于实现在工业生产中的应用。
本发明公开了一种铝负极储能器件电解液、铝负极储能器件及其制备方法,涉及电化学储能器件技术领域。铝负极储能器件电解液包括锂盐和有机溶剂,有机溶剂包括10‑20vol%环状酯类溶剂和80‑90vol%线型酯类溶剂。本发明缓解了现有的电解液体系在Al负极体系中影响电池的容量发挥、电池的循环性能较差,而常温循环较好的体系,低温性能又较差。本发明提供的低温电解液与Al负极体系匹配性好,低温下能够保持低粘度,使体系有较高的电导率,同时负极‑电解液具有较低的固液界面阻抗,使锂离子能够有效脱出,使用该电解液能显著改善Al负极锂离子储能器件的低温充放电性能。
本发明涉及一种智能控制均衡的电池管理系统,包括锂电池组、供电总线、MCU、从控盒采集单元、均衡电流采集单元、多绕组充电单元、内阻监控单元以及电子开关单元,从控盒采集单、均衡电流采集单元、内阻监控单元均分别与MCU连接,锂电池组经电子开关单元与多绕组充电单元连接,锂电池组通过供电总线与多绕组充电单元连接。本发明采用单独MCU与电池管理系统的从控盒采集单元进行通讯,接收从控盒采集单元的发出来的电压信息进行均衡,同时通过内阻监控单元采集每节电芯的直流内阻,根据电池内阻输出均衡电流来充电,实时监控电池内阻,提高电池的使用寿命;能根据电池的性能进行均衡,为电池组的寿命预测及功率比提供可靠数据。
本发明公开了一种层状二维材料层间限域金属或金属化合物的复合材料、其制备方法及用途。所述复合材料包括层状二维材料,及限域在所述层状二维材料的层与层之间的金属或金属化合物。所述方法包括:1)对层状二维材料进行锂化处理,得到锂化的层状二维材料;2)将干燥的锂化的层状二维材料、金属盐与溶剂混合,密封于反应釜中,水热反应,得到层状二维材料层间限域金属或金属化合物的复合材料。利用本发明的制备方法能实现一系列二维材料层间限域金属及金属化合物的复合材料的可控制备,而且,制得的复合材料尤其是二维二硫化钼层间限域金属氢氧化物的复合材料作为析氢催化剂具有电催化活性高、稳定性好的优点,在电解水产氢领域具有应用前景。
本申请提供了一种正极复合材料及其制备方法、应用。该正极复合材料包括内核和原位生长在所述内核上的壳层,内核的材料包括LixAOy,壳层的材料包括含锂、M元素的磷酸盐,其中,1<x≤8,0<y≤6,A元素包括Co、Cu、Ni、Fe、Zr、Zn和Mn中的至少一种,M元素包括非锂金属元素;内核和壳层的界面处存在金属键。该正极复合材料具有壳核结构,内核材料具有补锂效应,并且该正极复合材料可转化成具有较高的导电率、较高能量密度和良好的循环稳定性的正极活性材料。此外,该正极复合材料具有较高的结构稳定性、良好的储存稳定性,并且不易与电池中的电解液发生副反应,有利于电池性能的正常发挥。
本申请涉及一种用于电动车电池的自动配对系统,属于电动车电池自动配对的技术领域,其包括自动上料装置,所述自动上料装置包括支架、固定连接支架上的机械臂以及安装在机械臂上的机械手;所述机械手包括设置在机械臂上的安装座、滑动连接在安装座上的夹板、用于驱动夹板滑动的水平气缸、以及固定连接在水平气缸活塞杆上的吸能组件;所述夹板设置有两个,所述夹板相对设置,所述水平气缸驱动两个夹板朝向相反的方向滑动。本申请吸能组件会吸收水平气缸活塞杆的一部分动能,从而降低夹板对锂电池的冲击力,从而降低锂电池发生的变形,从而减小锂电池的性能变化。
本发明公开了一种智能装饰珠,包括上壳、充电插座、充电锂电池、微型主控板、马达和下壳,上壳和下壳为半球形空心结构,上壳和下壳拼接构成珠子本体,所述珠子本体的内部设置充电插座、充电锂电池、微型主控板和马达,其中马达连接微型主控板上的马达驱动模块,充电锂电池和充电插座均连接微型主控板的供电模块,所述微型主控板上集成微控制器蓝牙模块、马达驱动模块、外部复位模块和传感器,本发明将蓝牙智能手环的功能做到装饰珠里面,且装饰珠能够制作成佛珠/手串,使得佛珠手串不仅具有文玩文化特性,又有智能化健康数据监测功能。这样同时克服了一般蓝牙智能手环佩戴舒适性、以及美观性的问题。
本发明公开了一种复合正极材料的制备方法,要解决的技术问题是简化工 艺,降低生产成本。本发明的制备方法,包括以下步骤:制备前驱体,烧结制 备正极材料,复合制备复合正极材料。本发明与现有技术相比,采用纳米制备 和分散、改性、球形化和催化制备前驱体,通过烧制前驱体合成具有 xLi2MnO3·(1-x)LiNi0.5Mn0.5O2组成的锂离子电池正极材料,包覆改性后的材料 容量高、循环寿命长,提高现有锂离子电池材料的能量密度,改善正极材料的 高温性能和倍率性能,合成前驱体方法简单,易于工业化,降低锂离子电池正 极材料的成本,具有很高的推广价值。
间隙挤压涂布控制阀是锂离子电池设备--挤压式涂布机的一部分。连续涂布需人工将工艺标准要求的涂布间隙位的极粉刮除,浪费原材料,耗费人力。在国外,通过高灵敏度控制阀可以实现间隙涂布,但价格昂贵,且结构复杂,不易维护,在发生浆料堵塞情况时,需要长时间的清洗。本发明的控制阀采用一个三通阀和一个二通阀构成主阀体,气缸驱动,实现快速通断。阀体直接安装在挤压头上,进料距离缩短,结构简单,控制、清洗方便。本专利可实现间隙涂布,提高挤压涂布机的涂布质量和对锂离子电池制造工艺对广泛适应性。
中冶有色为您提供最新的广东深圳有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!