本发明公开了一种耐高温锂离子电池生产用烘烤装置,包括箱体和烘烤室,箱体的底端固定安装有支腿,箱体的侧表壁设置有蓄电池,箱体的前表壁活动连接有密封门,密封门的一侧表壁固定安装有把手,把手的一侧开设有控制台,密封门的后部表壁拐角处固定安装有温度检测器,箱体的夹层设置有保温板,箱体的内侧开设有烘烤室,烘烤室的内壁涂附有保温涂层;该一种耐高温锂离子电池生产用烘烤装置通过置放板可便于存放大批量的锂电池产品,以此实现锂离子电池烘烤的快速安装及转移,方可提高锂电池的烘烤效率;定时组件可实现烘烤组件的定量输出,可实现箱体烘烤智能化的启停操作,且有效的降低了能源的消耗。
本发明公开了一种高成品率的锂电池正极材料用匣钵,包括钵体和保护涂层;钵体包括:莫来石50~70%、α‑氧化铝10~30%、有机金属盐5~15%、结合剂1~5%;保护涂层包括:碳化硅粗粉30~40%、碳化硅细粉30~40%、聚丙烯酸酯10~20%、甲醇1~10%、凹凸棒土0.1~0.5%。上述匣钵的制造方法包括:称取组成钵体的原料,加水形成浆料;将浆料置于模具中,冲压成型得到坯料;对坯料养护后脱模,得到坯体,将脱模后的坯体烘干后烧成,即得钵体;称取保护涂层的原料,加水形成涂料;将涂料涂覆在所述钵体的内表面,自然晾干;烧成。本发明公开的锂电池正极材料用匣钵具有高成品率、高寿命、耐腐蚀性能。
本发明提供了一种负极活性物质、复合负极材料、复合负极极片以及包含该复合负极极片的快充型锂离子电池。该负极活性物质包含类球形人造石墨和未石墨化碳;类球形人造石墨为核壳结构,包括内核和壳层,内核为石墨一次颗粒和导电炭黑的混合物,壳层为石墨烯层,类球形人造石墨的配向性I(004)/I(110)的值为0.5~3.0。采用该负极活性物质和导电剂、粘结剂混合制备复合负极极片,该极片配向性I(004)/I(110)的值≤15。本发明的含有这种负极极片的快充型锂离子电池在具备大倍率充电能力的同时,具有较低的温升,提高了电池的安全性能和循环性能。
本发明公开了一种硒复合正极材料、其制备方法及其全固态锂硒电池,该硒复合正极材料包括:纳米硒、导电碳和纳米硫化物固态电解质,其制备方法是:首先将硒单质和硫化物电解质分别溶解于两种溶剂,再依次将两溶液滴加在导电碳中并进行超声分散,真空干燥后得到混合粉末,最后在惰性气体氛围中,混合粉末经退火,得到硒复合正极材料。该硒复合正极材料中,纳米硒和纳米硫化物电解质紧密接触并均匀填充在导电碳的孔洞和缝隙中及覆盖在其表面,硒粒径小,负载量较高,得到的全固态锂硒电池整体阻抗小,硒利用率高,比容量损失少,循环性能稳定。
本发明提供一种锂离子电池用梯度结构的NCM三元正极材料及其制法与应用,所述梯度结构的NCM三元正极材料的分子式为:LiNixCoyMnzO2,其中:0.6≤x≤0.9,0.1≤y+z≤0.4,x+y+z=1,所述NCM三元正极材料包括由若干条状一次颗粒由中心向四周发散组合形成的球形颗粒,且材料具有从中心往外层呈Mn的含量保持不变,Ni的含量逐渐减小,Co的含量逐渐增大的梯度结构。该梯度结构的三元正极材料制备工艺简单,加工性能好,使用该材料制作的锂离子电池容量高,倍率性能、循环稳定性和安全性能好。
本发明公开了一种基于健康状态的锂离子电池荷电状态估计的方法和装置。其中方法主要包括:使用锂离子电池的二阶等效电路模型,计算开路电压和荷电状态之间的函数关系,并采用带遗忘因子的递推最小二乘进行电路模型参数的辨识;根据实验平台采集的数据,采用相关向量机进行电池剩余使用寿命的预测,并将电池的剩余使用寿命量化为关于电池实际容量的基准函数关系式;然后建立工作温度和充放电倍率关于电池实际容量的补偿函数关系式,通过补偿函数关系式对基准函数关系式的校正,得到最终的电池实际可用容量。最后通过电路模型建立的状态空间方程,采用粒子滤波的方法实现电池荷电状态的估计。本发明基于电池的健康状态,能够在不同老化程度下实现荷电状态的准确估计。
本发明公开了一种提高锂电池正极分散性能与稳定性能助剂的制备与使用方法。该助剂为接枝有阳离子表面活性剂的纳米磷酸基聚醚脂。其方法包括:制备改性偶联剂;链接表面活性基团;分离提纯;溶解保存。本发明的助剂是通过表面活性剂在偶联改性的链接,使其对疏水性能的材料具有良好的浸润性能,通过聚合成醚脂,赋予正极颗粒间界面作用力改善颗粒分散性能并提高导电性,从而提高电池稳定性。本发明的助剂所提供的助剂可以有效提高正极固含量,提高锂电稳定性能,并公开其使用方法。
一种废旧锂离子电池正极的回收再利用方法及其回收装置。回收再利用方法包括以下步骤:将正极极片在惰性气体下进行煅烧得到正极活性材料粉末;正极活性材料粉末与还原性气体混合进行高温还原反应制得金属合金;对金属合金淋水处理得到过渡金属合金和LiOH溶液;LiOH溶液蒸馏除去水分得到LiOH晶体;过渡金属合金按比例选配过渡金属盐或者过渡金属氧化物,然后进行氧化烧结反应生成NiCoMn三元氧化物。本发明的回收流程简单易操作,减少了有价金属元素和锂源的逐级损失,可以用于大规模正极回收处理工艺。
本实用新型提供了一种三元锂电材料还原装置及还原系统。还原装置包括加热炉、传送带以及气体管。加热炉具有加热区。传送带包括沿自身传送方向依次设置的进料段、反应段和出料段,反应段行经加热炉的加热区。气体管道位于传送带的靠近加热炉的一侧,具有用于分别向进料段、反应段和出料段释放目标气体的第一分段、第二分段和第三分段,以及分别与第一分段、第二分段和第三分段连通供气上的第一进气部、第二进气部和第三进气部。第二进气部相比第一进气部、第三进气部靠近加热炉的加热区。第二进气部较为靠近加热炉的加热区,气体输送路径缩短,因而可以向反应段快速提供较为充足的目标气体,从而使得三元锂电材料的还原效率较高或安全性较高。
一种废旧锂离子电池处理系统,包括无氧破碎机、碳化炉、焚烧炉、尾气处理装置和废渣处理装置,碳化炉与废渣处理装置连接,焚烧炉与尾气处理装置连接,无氧破碎机分别与碳化炉和焚化炉连接,尾气处理装置包括依次连接的喷淋洗气塔、碱液池、碱液再生池和碱液存储槽,碱液存储槽通过管道与喷淋洗气塔内的喷头连接,喷淋洗气塔的上部通过管道与活性炭吸附塔、净化排气塔连接,废渣处理装置包括依次连接的锤式破碎机、振动筛、磨粉机、气流分选机、旋风除尘机、布袋除尘机和收集料仓。本实用新型提供了一种高效、简单和环保的废旧锂离子电池破碎、碳化、尾气处理和分选的装置系统,具有简单、高效、无环境污染的特点,非常适用于工业化。
本实用新型涉及电芯填装技术领域,具体为一种铝壳方形锂电池电芯入壳填装装置,包括底座,底座的顶面设有两个相互平行的固定板;该铝壳方形锂电池电芯入壳填装装置通过设有的填装机构和固定机构,一方面,多个电芯放置在电芯放置槽内,在气缸的作用下,活塞杆带动推块运动,并将电芯推入至出料槽内,另一方面,第二电机的输出轴转动带动齿轮转动,在齿轮的转动下,齿板运动并带动横杆在水平方向上运动,当其中一个固定槽运动至出料槽处时,推块将电芯推入至固定槽内的壳体中;在气缸和横杆的持续运动下,多个电芯即可持续的填装至铝壳内;该设计改变了人工持续放置电芯的方式,节省了人力。
本发明涉及一种锂离子电池用电解质锂盐LiDFOB的制备及纯化新方法,属于新能源材料及制备技术领域。具体步骤如下:(1)先将无水干燥的NaBF4与LiCl溶解在有机溶剂中;(2)然后加入催化剂,30~80℃下加热搅拌回流,使其充分反应4~12h;(3)过滤,固液分离,得到LiBF4的有机溶液,然后在惰性气氛下加入H2C2O4和催化剂,于30~120℃下磁力搅拌反应4~12h,直到无气体产生,终止反应;(4)过滤,并用旋转蒸发仪蒸发滤液,直至刚形成白色固体颗粒为止,然后向其中加入非极性溶剂,低温下重结晶,过滤,60℃真空干燥,得到高纯LiDFOB产品。该LiDFOB合成方法简单,所用原料安全无毒,中间体LiBF4无需与溶剂分离,简化了工艺流程。由该工艺得到的LiDFOB性能优异,在动力电池领域有着良好的应用前景,便于产业化。
一种草酸二氟硼酸锂的提纯方法,该方法是先将需提纯的草酸二氟硼酸锂(LiODFB)溶解在溶解性高的溶剂中,然后将该溶液与析晶剂进行混合,通过固液分离,将析晶出的固体物质置于真空干燥箱中干燥,即得纯化的LiODFB产品。本发明提纯方法所得产品经13C、11B和19F的核磁共振光谱证实即为LiODFB,经一次提纯后的产品水分含量为0.0020%,金属离子的钠、钾、铝、铁、钙、锌的质量百分含量分别为0.0115%、0.0032%、0.0010%、0.00045%、0.0002%、0.0001%,本发明的优点在于:工艺简单、容易操作、条件温和、成本低、产率高,适合工业化生产。
本发明公开了一种低应力锂离子电池隔膜的制备方法,先将聚烯烃高分子材料与石蜡油热融成流态,再将热融成流态的聚烯烃高分子材料与石蜡油复合物,经过导流辊冷却成膜,将冷却的复合膜进行纵、横双向拉伸,然后进行化学去应力处理‑萃取处理‑热辐射加热工艺去应力处理。采用化学去应力处理与热辐射加热工艺去应力处理相结合的工艺方法制备的低应力隔膜材料,有效地解决了商用聚烯烃类隔膜应力集中的性能缺陷。在耐大电流充放电的条件下,隔膜材料的热收缩性能得以改善,从而提高了锂离子电池的安全性能及倍率性能。
本实用新型涉及电池模组领域,具体公开了一种锂电池的封装模组,包括伸缩架、安装于伸缩架顶部的封盖,以及固定于伸缩架底部的底板,所述伸缩架内部安装有至少两个电芯,所述伸缩架顶部设有安装框,所述安装框侧面设有用于拆装封盖的安装槽,所述伸缩架包括上框架和下框架,且所述上框架和下框架之间安装有可折叠收缩的旋杆和用于保护电芯的伸缩杆,所述底板内侧固定有汇流板,所述汇流板表面设有至少两个汇流条,所述底板外侧设有输出电极。该种锂电池的封装模组,对电芯保护力较高,散热能力较佳,且闲置状态便于收纳。
本实用新型公开了一种锂电池材料烧结辊道窑,包括窑体和底座,窑体包括预热带、烧成带和冷却带,冷却带从内向外依次为工作通道、炉膛和炉壳,冷却带的工作通道上端设有冷却板,冷却板的下端面贴合有防锈层。防锈层为复合层,防锈层从冷却板向工作通道依次包括有第一耐高温导热层、玻璃纤维层、氧化铝陶瓷层、耐高温阻氧层及第二耐高温导热层。本实用新型能够很好的保护冷却板,防止其氧化脱落到锂电池材料内而影响材料纯度和质量,进而提高了产品纯度和质量;在延长冷却板使用寿命的同时,也不影响冷却带的冷却效果。
本发明属于锂离子电池技术领域,尤其涉及一种复合负极片以及制备方法以及锂离子电池,包括集流体和设置于集流体至少一表面的活性涂层,所述活性涂层包括若干片状活性物质,若干片状活性物质与集流体的表面垂直,若干片状活性物质所在平面之间相互相交。本发明的一种复合负极片,设置有活性涂层,具有快速充放电、且不易脱模的优点。
本发明公开了一种锂电池硅碳负极复合材料的制备方法。先将边角硅料在溶剂中通过超声波清洗,把表面的污垢清洗干净,然后进行干燥,得到硅料;所得硅料粉碎至亚微米级,再将所得硅颗粒和碳源在溶剂中搅拌分散,得到均匀的浑浊液;所得浑浊液在惰性气氛高温碳化处理,得到碳化硅粉末;再进行研磨,即得到锂电池硅碳负极复合材料。本发明全程液态掺杂,简单易行,所得硅碳材料为多孔球形或类球形的结构,包括多孔Si‑SiOx核以及包覆在表面的无定型碳壳,大大改善了硅体积效应,显著提高了其电化学稳定性,制备成本低廉,工艺简单可控,能够适合大规模工业化生产。
本实用新型公开了一种锂电池的防爆多层电池盒,包括底座板,所述所述底座板表面固定连接有支撑板,所述底座板表面设置有固定板,所述固定板表面固定连接有固定框,所述固定框设置有缓冲机构,所述固定板开设有连接槽,所述连接槽侧壁转动连接有转换轮,所述转换轮设置有锁定机构,所述底座板两侧开设有矩形槽,所述矩形槽侧壁转动连接有水平板,所述水平板设置有阻挡机构。本实用新型通过第一挡板、第二挡板、垂直板、伸缩板和气囊,可以有效的在锂电池发生爆炸时,起到缓冲作用,极大程度的降低爆炸带来的威力,气囊不经可以起到缓冲的作用,还可以在锂电池发生燃烧时,内部的石灰粉会洒落,将火盖住,避免发生更大的危害。
一种锂电池密封防护盒,包括防护盒本体,所述防护盒本体的内侧壁设有缓压组件和减震柱,所述防护盒本体内设有隔空板,隔空板上设有锂电池放置槽,所述缓压组件包括固定盒体、转化杆、位于固定盒体内的活动块和压缩弹簧,所述压缩弹簧的一端固定在固定盒体内,其另一端与活动块连接,所述活动块的侧壁设有滑块,所述固定盒体的内侧壁设有与滑块相适配的滑槽,所述转化杆通过转轴与活动块连接,所述转轴与活动块活动连接。本实用新型能在运输过程中避免锂电池发生碰撞,降低运输安全隐患。
本发明公开了一种锂电池极片微孔箔材的涂布方法,包括以下步骤:S1:在PET膜上添加聚合物单体,经高温聚合形成改性PET膜;S2:采用带有凸点的胶辊在改性PET膜上滚压,从而使改性PET膜表面形成微孔结构;S3:将微孔箔材粘附在改性PET膜上;S4:涂布,在微孔箔材未粘改性PET膜的一面涂电极材料;S5:将改性PET膜撕下;S6:在微孔箔材撕下改性PET膜后的一面涂电极材料。本发明解决了微孔箔材的漏料问题,同时不影响极片厚度,而且有利于箔材微孔中气体的排出,不影响涂布外观。提升了活性物质与集流体之间的附着力,减少界面电阻,从而降低电池内阻;而且正负极片的均一性得到改善,提高所述电芯的电化学性能。本发明应用于锂电池技术领域。
本发明公开了一种锂离子电池制造用涂布阀高速间隙控制装置,包括伺服涂布阀传动组件、伺服涂布阀导向组件、涂布阀进料回料组件。导向组件有两组,分别装在传动组件两侧,通过重型卡箍与涂布阀进料回料组件连接。传动组件带动传动阀芯上下运动,利用传动阀芯凸槽结构并配合伺服涂布阀导向组件实现精确导向;由涂布阀杆、回流阀杆、涂布阀芯与回流阀芯组成固定型的涂布阀进料回料组件实现涂料稳定进出,通过控制伺服电机速度曲线实现涂布参数的调节。解决现有涂布阀装置响应慢、控制精度不高的问题,提高挤压涂布机的涂布质量和对锂离子电池制造工艺对广泛适应性,大大提高了生产效率及涂布阀装置的使用寿命,降低了维修成本。
本发明公开了一种新型复合正极及其制备方法,并应用于全固态电池制造,属于全固态锂电池制造领域。本发明中所述的新型复合正极由集流体、正极层和电解质层组成,其制作工艺与现有锂离子电池正极极片的制造工艺相容性好,促进了正极材料层与电解质材料层间的紧密结合,降低全固态电池的界面阻抗。所制备的复合正极及其制作工艺可应用于各类型全固态电池的制造过程,方法简单,便捷。
本发明公开了一种基于氧化镧纳米棒的锂硫电池正极材料的制备方法:(1)在乙酸镧水溶液中加入氢氧化钾和氢氧化钠,进行水热反应,反应结束后对反应产物洗涤、煅烧,得到氧化镧纳米棒;(2)将所述氧化镧纳米棒分散于碳/硫复合材料中,得到氧化镧改性的碳/硫正极材料。本发明将一维氧化镧纳米棒应用于锂硫电池正极材料中,氧化镧纳米棒的一维棒状结构为离子的快速穿梭提供了通道,氧化镧纳米棒的极性金属氧化物的特性,促进多硫化物的氧化还原反应动力学,增强活性物质利用率,改善高载硫电极下的高倍率循环性能。
本发明公开了一种表面包覆型锂离子电池正极材料前驱体,为核壳结构,该核壳结构由内核与包覆在内核表面的壳层组成,内核为NixMnyMz(OH)2,壳层为Co(OH)2。其制备方法为:先配制含镍锰以及掺杂元素M的混合盐溶液;然后向反应釜中加入纯水作为底液,然后加入氨水,控制底液中氨水浓度为2‑6g/L;再向反应釜中通入氮气,将混合盐溶液、沉淀剂、氨水加入反应釜中进行搅拌、反应;最后向反应釜中加入CoSO4和氨水继续反应,过滤、洗涤、烘干,得到表面包覆型锂离子电池正极材料前驱体。本发明中前驱体在内核的外部设有Co(OH)2壳层,不仅极大降低生产成本,还能保证其具有良好的循环性能和倍率性能。
本发明公开了一种具有导电性复合包覆层的锂离子电池正极材料,由正极活性物质基体和包覆在该基体表面的纳米In2O3和Li2B4O7复合层组成。还公开了一种工艺路线简单,湿法包覆混合的液固比低,易于实现工业化生产的电池正极材料制备方法。一方面,纳米In2O3具有良好的电子导电性,Li2B4O7具有良好的离子导电性,二者协同作用使锂离子电池正极材料同时兼具良好的离子导电性和电子导电性,提升了正极材料的倍率性能;另一方面,纳米In2O3提供键能较大的In‑O键,Li2B4O7能在较宽的电压范围内保持电化学惰性,二者复合包覆于正极材料表面能提高正极材料的化学稳定性。
一种纳微结构锂离子电池负极复合材料,其制备方法包括以下步骤:(1)将Ti3AlC2粉末加入氢氟酸水溶液中,加热搅拌;(2)离心、洗涤、超声分散、离心、干燥;(3)将Ti2C3材料加入去离子水中,超声分散,得Ti2C3分散液;(4)将柠檬酸、氯化亚锡加入到Ti2C3分散液中,搅拌溶解,得混合溶液;(5)将硼氢化钠加入去离子水中,搅拌溶解;加入到步骤(4)所得混合溶液中,先在冰浴条件、惰性气体保护下搅拌,然后再依次离心、洗涤,干燥,得黑色粉末;(6)将所得黑色粉末在惰性气氛中进行热处理,即得。本发明中所组装的锂离子电池倍率性能好、循环稳定性好、离子传输效率高;操作简单,成本低,可控性强。
本发明涉及锂离子电池生产设备技术领域,具体为一种可调节加注量的锂离子电池生产用电解液加注装置,包括装置主体和驱动电机,所述装置主体包括装置底板,所述装置底板的下表面固定连接有支腿,所述支腿的一侧固定连接有驱动电机,所述装置底板的上表面固定连接有装置架体,所述装置架体的内壁一侧固定连接有电解液加注箱,所述装置架体的上表面设置有传动机构,所述装置架体的上表面设置有调节机构。本发明通过连接杆带动活塞进行上下移动,当活塞上下移动时就会通过输气管给气囊的内部进行加压,从而使气囊的体积扩大,当气囊的体积变大时添加在电解液加注箱内部的电解液容量就会减小,从而可以控制电解液加注箱内部的电解液容量。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!