本发明涉及金属陶瓷用固溶合金粉末的材料技术领域,具体涉及一种金属陶瓷用固溶合金粉末的材料及制备方法。本发明提供的金属陶瓷固溶合金粉末的主要化学式为(Ti,M)(C,N),M为主要活性金属元素W,Mo,Mn,Ta,Nb,Cr,V,Zr,Re中的任一种或多种组成;其包括以下组分:主要活性金属M为10~50%,Ct为8.5~12.5%,N为8.5~12.5%,Cf≤0.35%,其余含量为合金元素Ti。本发明提供的制备方法克服了传统采用单相化合物粉末作原料加入时在烧结过程中需要高烧结温度以及在液相烧结固溶体形成阶段所引起的金属陶瓷合金粘结骨相不完整的缺点,其活性元素在原料中作为固溶体添加能有效地强化最终金属陶瓷性能,该生产工艺简便易于控制,适用于工业化生产。
本发明公开了一种刀具材料的复合硬质合金的制备方法,该复合硬质合金材料由下列重量份数的组分制得:按如下重量份准备原材料:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化钨7-9份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化硼1-3份、铜粉1-5份。该方法包括如下步骤:备料、制备贫碳合金粉末、制备预烧结基体、渗碳处理和分步烧制。本发明制备的复合硬质合金强度高、韧性好、耐磨、热冲击性能好。
发明公开了一种微观非均匀成份及结构的硬质合金及其制备方法。该硬质合金中总Co含量为3~30wt%;Co相中含W的不均匀典型含量的质量百分数分别为38%,27.4%,11%,7.6%,5.0%,1.0%,最高含量处和最低含量处相差27%(质量百分数);该硬质合金的密度14.38g/cm3、抗弯强度2480kg/mm2,HRA硬度为86.8,断裂韧性16.3MPa﹒m1/2。其制备方法采用含不同碳量WC?Co合金团粒和不同碳量的普通WC粉末复配来调整预混合金粉中各组分的比例,然后经掺胶压制和烧结,得到微观非均匀成份及结构的硬质合金。本发明制备的微观非均匀成份及结构的硬质合金同时具有非均匀成分和结构,因此耐腐蚀、韧性高、耐磨损,其制备方法不需要新的生产设备,简单易行。
本发明公开了一种圆鼻铣刀的制造方法及其数控磨床,其特征是通过添加钌元素,并进行液氮处理,制备出高密排六方相含量的硬质合金材料;然后采用五轴五联动数控磨床进行磨制,控制冷却液形成湍流,实现磨削过程中对硬质合金刀具的高效冷却,硬质合金刀具不发生密排六方向面心立方的相变;再进行循环热处理使面心立方相全部转变为密排六方相,进行TiN涂层后的圆鼻铣刀保持粘结相密排六方结构,其抗弯强度≥3500MPa。本发明克服了现有圆鼻铣刀铣刀的强度不足的问题,可用于各种机械零件的铣削加工。
本发明公开了核电用Al2O3‑Gd2O3可燃毒物陶瓷材料及其制备方法,解决了现有技术中未见能够有效适用于核电运行环境下,并有效提高核电的安全性和经济性目的的Al2O3‑Gd2O3可燃毒物材料的问题。本发明包括(1)制备Gd(NO3)3和Al(NO3)3的混合溶液,制备饱和(NH4)2CO3溶液;(2)将饱和(NH4)2CO3溶液加入到混合溶液中反应,反应后获得沉淀物;(3)沉淀物清洗后烘干得到前躯体粉末;(4)将前躯体粉末放置到480~520℃条件下保温4~6h后取出研磨得到粉体;(5)粉体压制成型,再经过烧结后得到成品。本发明具有致密度高、强度高,适用于先进核电水冷动力堆,固有安全性高等优点。
本发明涉及一种MAX相陶瓷的连接方法,属于陶瓷焊接领域。将石墨烯、碳纳米管等碳纳米材料与异丙醇混合制成浆料均匀涂覆在抛光后的MAX相陶瓷表面,两片MAX相陶瓷叠加后在1200°C~1400°C之间,真空度10‑2 Pa以上,2~5 MPa压力下焊接20 min即可实现任意两种MAX相陶瓷材料的无缝连接。通过该方法获得的陶瓷连接强度可达到母材强度的80%以上,而且该工艺适用于任意相同以及不同类型的MAX相陶瓷之间的连接。
本发明公开了一种高致密度细晶钛合金的热等静压制备方法,目的在于解决目前采用传统粉末冶金法所制备的钛合金存在致密度较低,显微组织较为粗大的问题。该方法包括制备钛合金混合粉末、冷等静压成型、致密体烧结、热等静压致密化、脱模等步骤。本发明制备钛合金的致密度可达到100%,且具有晶粒尺寸细小、力学性能优异、比强度高的特点,能够满足航空、航天领域对高致密度、高性能钛合金的需求。本发明设计合理,能够有效解决前述问题,对于钛合金的制备具有重要意义。
本发明公开了一种3,3’,4,4’‑二苯酮四酸二酐的制备方法,该方法以结构式1所示的邻二甲苯和二氯甲烷为原料,在路易斯酸的作用下进行反应生成结构式2所示的双(3,4‑二甲基‑苯基)甲酮,所述双(3,4‑二甲基‑苯基)甲酮在双氧水和Ru的氧化作用下,反应生成结构式3所示的3,3’,4,4’‑二苯酮四甲酸,对所述3,3’,4,4’‑二苯酮四甲酸进行脱水,得到结构式4所示的3,3’,4,4’‑二苯酮四酸二酐。通过本发明制备方法不仅避免了使用双(三氯甲基)碳酸酯危险品的问题,而且还实现了催化剂可重复利用、安全环保的目的,此外还实现了大规模生产、降低成本、提高安全系数和收率的目的,值得大力推广使用。
本发明公开了一种硬质合金耐磨烧结焊条及其制备方法,其原料包括如下重量份组分:金刚石颗粒0.2~3.0份、碳化钨硬质合金球粒15~50份、球形铸造碳化钨颗粒10~50份、镍基合金粉30~60份;将所有原料混合后烧结,即得。本发明提供的硬质合金耐磨烧结焊条具有良好的焊接性能和耐磨性能。
本发明公开了一种稀土永磁材料的制备方法,其通过雾化粉碎缩短了稀土永磁材料的制造周期,并使稀土永磁材料的磁能积能够有较大提高。
本发明公开了一种钛或钛合金粉末注射成型加工方法,包括步骤:S1,将钛或钛合金粉末与粘结剂混合后形成注射料,对注射料进行造粒处理,使注射料呈颗粒状;S2,通过注射成型机将颗粒状的注射料加工形成坯件;S3,对坯件脱脂处理,脱去粘结剂后得到粗品件;S4,将粗品件置于烧结盒内,烧结盒上设置有与其内腔相连通的窗口,窗口处安装有开关门,烧结盒内放置有海绵钛,烧结盒为金属制品;关闭烧结盒的开关门后将烧结盒置于烧结炉的烧结腔中,向烧结腔内通高纯氩气,进一步脱脂和烧结粗品件后得到样品。使样品具有良好性能,符合用作外科植入物的参数要求,合格率高。还能实现一次性烧结多个粗品件,降低了成本。
本发明涉及一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法,属于金属陶瓷材料制备技术领域。所述的添加石墨烯粉末的Ti(C,N)基金属陶瓷材料所用原料为:混合粉末组成为:碳氮化钛粉末(1~5μm)40‑60wt%;钴粉和镍粉:10‑20wt%;碳化钨和碳化钼粉(0.5~3μm):10‑30wt%;石墨烯粉末:0.2‑2.0wt%,各组分重量百分之和为100wt%;将混合粉末按重量百分比称量后进行机械混合处理,球磨时间10min‑24h,球磨机转速为30‑1400r/min;球料比为5:1‑20:1,将混合粉末冷压成型后烧结制备Ti(C,N)基金属陶瓷,烧结温度1300‑1470℃,烧结压力为0‑60MPa,烧结时间为5‑120min。通过上述方法可以制备得到性能优异的添加石墨烯的Ti(C,N)基金属陶瓷,便于大规模的工业化应用和生产。
本发明涉及二氧化硅气凝胶生产技术领域,公开了一种规模化制备低成本二氧化硅复合气凝胶的方法,该发明通过偏铝酸钠改性后的水玻璃,通过高温活化处理,再与碱性液水溶液进行反应,得到含有氢氧化铝胶体的复合凝胶,通过氢氧化铝胶体的支撑,在常压干燥即可得到低成本二氧化硅复合气凝胶。本发明的优势在于原料便宜,并且不需要溶剂交换和表面改性,制备工艺简单、成本低,实现了规模化生产。且得到的二氧化硅复合凝胶具有良好的柔性。大大降低了生产成本,适合大规模工业化生产。
本发明公开了一种碳化钨包覆的复合硬质合金材料及其制备方法。该合金材料包括基体和碳化钨包覆层,所述基体由下列重量份数的组分制得:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化铝1-3份、钛粉1-5份。本发明的复合硬质合金材料强度高、韧性好、耐磨、热冲击性能好。
本发明公开了一种金属陶瓷模芯料,它包括成分基体TI(C.N),成分基体TI(C.N)包括按重量百分比为70‑80%TI(C.N)、8.1‑12.4%碳化钨粉末、2.1‑5.6%钴粉、1.8‑5.8%Ta(Nb)C粉末和9.1‑13.8%镍粉。本发明的有益效果是:解决硬质合金材料大大孔径、高温工作条件下,对于软材料拉拔挤压,寿命、质量不高的问题,提供一种制造工艺简单、提升了材料的硬度和耐磨性、成型出的模芯具有很高的使用寿命。
一种金属陶瓷型材的生产方式,挤压生产工艺流程包括:配料‑‑→湿磨‑‑→混合(添加成型剂)‑‑→压制成型‑‑→干燥‑‑→半加半检‑‑→烧结‑‑→成品检查。本发明的金属陶瓷型材的生产方式利用改变成型剂的成分比例,同时调整搅拌频率,延长搅拌时间,使得搅拌出来的料粒子适中,密度均匀,最终产品尺寸合格,基本无变形。
本发明公开了一种金属陶瓷胎体材料制造方法,其特征是先将球形铸造碳化钨和高熵合金粉末进行干式混合,并利用明胶溶胶形成金属陶瓷料浆,再注入石墨模具进行干燥形成金属陶瓷骨架预制件,最后进行熔渗,制备出了组织均匀且含有面心立方结构高熵合金相的金属陶瓷胎体材料。本发明克服了现有胎体材料制造方法存在的强韧性不足等问题,其力学性能优异,硬度≥25HRC,抗弯强度≥500MPa,冲击韧性≥5J。
本发明公开了一种从含钒石煤矿中提钒的方法,包括将石煤矿粉碎至≤50mm、将粉碎后的石煤矿筛分成多个粒级、将合适粒级的石煤矿在真空或惰性气体条件下加热并回收单质硫、干法磨矿、干式磁选和将磁选后的含钒石煤预富集精矿、阴极碳、硫酸和水按照100:5~20:20~40:15~30的比例混合后放置一段时间,然后加水浸泡等步骤。该方法可有效解决现有的方法中存在的在对钒回收过程中造成环境污染和钒的回收率低的问题,同时还可解决废弃的电解铝阴极碳处置问题,具有生产成本低,回收率高的优点。
本发明公开了一种复合硬质合金材料及其制备方法,该复合硬质合金材料由下列重量份数的组分制得:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化钨7-9份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化铝1-3份、钛粉1-5份。本发明的复合硬质合金材料强度高、韧性好、耐磨、热冲击性能好。
本发明公开一种碲化镉粉末的制备工艺,包括:取碲样、镉样,装入缩口石英管中,与真空系统连接,抽真空,火焰烧结密封,得到密封后的带料石英管,所述镉样为镉粒,所述碲样与所述镉样摩尔比1:1;所述密封好的石英管摇匀,放置于合成炉中加热,恒温,分段式降温,停炉,冷却,得到加热熔化合成反应物石英管;所述恒温过程多次摇动所述石英管。所述合成反应物石英管出炉,冷却清洗石英管外表面并晾干后,得到碲化镉块状半成品;所述碲化镉半成品球磨,筛分,得到碲化镉粉末。所述工艺过程对环境和对操作人员友好,制得的碲化镉粉末纯度高。
本发明公开了一种制备多孔生物医用金属、陶瓷或金属/陶瓷复合材料的方法,该方法基于二次造粒技术,即以窄粒度分布的金属微粉或/和陶瓷微粉为一级颗粒;以这些一级颗粒为原料,加入粘结剂,通过离心造粒的方法进行二次造粒,得到二级近球形颗粒;将筛分后的具有窄粒度分布的二级近球形颗粒以密堆积方式在具有特定形状和尺寸的模具型腔中成型,经高温烧结后得到具有特定多孔结构和组成的医用材料或产品。本发明与现有技术的多孔生物材料制备工艺方法相比,具有工艺简单、重复性好、易于实现批量生产,同时可制备梯度多孔结构、力学强度高的多孔生物材料等优点,尤其适用于承力部位骨缺损修复的骨移植材料。
本发明公开了一种Ni代Co硬质合金耐磨零件及其制备方法,粘接相为Ni,含量为8~10%,其余为超细WC。其生产工艺为混料,球磨,压制成型和真空烧制成型。该方法生产的耐磨件具有高的硬度,强度和良好的热导率,适合各种耐磨领域。
本发明公开了一种无钼Ti(C,N)基金属陶瓷耐磨耐蚀材料及其制备方法,其特征是采用超声分散处理的超细(W,Cr,V)C取代Mo2C作为Ti(C,N)基金属陶瓷中的必要添加剂,利用超细原料的烧结活性以形成Ti(C,N)和Ni之间的过渡环形相,改善润湿性。超细(W,Cr,V)C的引入还可以避免以Cr3C2、VC、WC等单一碳化物的形式添加而引起的各成分难以混合均匀的问题。本发明的无钼Ti(C,N)基金属陶瓷通过以钨代钼,不仅克服了钼对金属陶瓷耐腐蚀性的不利影响获得了高性能的耐磨耐蚀材料,还具有相对的资源优势。?
本发明公开了一种热膨胀系数可调且热导率增强型二氧化铀基燃料芯块及其制备方法,通过向二氧化铀芯块基体中添加高导热率高热膨胀系数的金属铍(Be),以及高热导率低热膨胀系数的金属钼(Mo),通过调控Be/Mo的成分配比,经高温烧结致密化后的燃料芯块,在增强二氧化铀燃料芯块热导率、对二氧化铀芯块的热膨胀系数进行调节的同时,兼具降低燃料芯块的残余热应力、延长其服役周期的优势,进而满足包壳‑芯块燃料元件在反应堆正常工况下和事故工况下更为苛刻的堆工设计要求,改善现役的商用压水堆的安全性和经济性,在事故工况下可有效推迟包壳与燃料芯块间的气隙闭合时间,延缓燃料与包壳的力学相互作用,既而大幅提升反应堆在事故工况下的安全裕量。
本发明公开了核电用TiO2‑Gd2O3可燃毒物陶瓷材料及其制备方法,解决了现有技术中未见能够有效适用于核电运行环境下,并有效提高核电的安全性和经济性目的的TiO2‑Gd2O3可燃毒物材料的问题。本发明包括(1)制备Gd(NO3)3和Ti(NO3)4的混合溶液,制备饱和(NH4)2CO3溶液;(2)将饱和(NH4)2CO3溶液加入到混合溶液中反应,反应后获得沉淀物;(3)沉淀物清洗后烘干得到前躯体粉末;(4)将前躯体粉末放置到500~550℃条件下保温5~7h后取出研磨得到粉体;(5)粉体压制成型,再经过烧结后得到成品。本发明具有致密度高、强度高,适用于先进核电水冷动力堆,固有安全性高等优点。
本发明公开了一种超粗硬质合金的制备方法,解决了现有技术中超粗晶硬质合金的制备方法均存在工艺复杂的问题。本发明包括向固体原料中加入湿磨介质进行混合湿磨,湿磨的研磨体采用柱状的合金棒,湿磨后进行干燥制成平均粒径为3.0~5.0的混合料;所述固体原料包括成型剂、钴粉和粒径为15~26的超粗碳化钨;将混合料压制成压坯,压坯烧结后,再经过低压以及表面处理后即可制成超粗晶WC‑Co硬质合金。本发明具有有效增加晶粒度、降低成本、减少生产时长等优点。
本发明所述烧结富铈稀土永磁材料,包含的组分及各组分的质量百分数如下:RE1为20%~28%,RE2为4%~15%,Fe为60.5%~70.5%,B为0.8%~1.2%,Tm为0.1%~5%;主相为Nd2Fe14B或(Nd, Pr)2Fe14B,主相晶粒周围分布有Ce,或Ce和La;所述RE1为Nd、Nd和Pr、以Nd为主的稀土元素、或者以Nd和Pr为主的稀土元素,所述RE2为Ce,或Ce和La,所述Tm为Co、Cu、Al、Ga、Nb、Zr、Mo、Mn、Cr中的至少一种。本发明还提供了上述稀土永磁材料的制备方法。本发明能解决用Ce、La部分替代Nd、Pr制备富铈稀土永磁材料对材料内禀磁性能的影响问题,同时降低稀土永磁材料的成本。
本发明多孔金属材料领域,具体涉及一种梯度多孔钛及其制备方法。针对现有方法制备的多孔钛不能孔隙率和力学性能双优的问题,本发明提供一种梯度多孔钛及其制备方法,步骤如下:a、将钛粉、造孔剂按重量比80~90﹕10~20混匀,得到物料A,钛粉、造孔剂按重量比55~65﹕35~45混匀,得到物料B,钛粉、造孔剂按重量比40~50﹕50~60混匀,得到物料C;b、将物料A、B、C分别加入最内层、中间层、最外层模具中;c、采用液压机压制成型,于电阻炉中预烧结后,转入真空中烧结,冷却即得梯度多孔钛。本发明的梯度多孔钛,具有较好的力学性能和生物相容性,可作为优质的硬组织修复材料;本发明的操作方法简单,设备要求不高,便于推广使用。
本发明公开了一种表层硬化的WC‑Co基硬质合金及其制备方法,该制备方法以WC粉、超细W粉、Co粉为原料,以TaC为抑制剂,依次进行湿法球磨、筛分、干燥、造粒、成型、低压烧结制备得到表层硬化的WC‑Co基硬质合金,本发明通过采用粉末冶金法结合低压烧结的方式,并在烧结时采用W粉和刚玉粉混合粉的方式作为填埋料进行埋烧,制备出脱碳相层厚度可达200μm的WC‑Co基硬质合金,可以提升WC‑Co基合金耐磨工具/零件使用寿命,降低更换频率,从而降低生产成本,并实现优质高效的生产。
中冶有色为您提供最新的四川有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!