本发明提出一种从重金属污泥中回收镁的方法,包括以下步骤:将重金属污泥按照纯水与污泥干物质质量比8:1~15:1加入纯水,用0.4g/L~0.6g/L的稀硫酸调节pH至7.0~8.0,在80~85℃,搅拌机搅拌10~15min,水洗1~3次,所得水渣混合物经板框压滤脱水,所得滤液即为镁液。本发明提出一种从重金属污泥中回收制备高纯阻燃型氢氧化镁的方法,包括以下步骤:预处理水洗,将重金属污泥按照纯水与污泥干物质质量比8:1~15:1加入纯水,用0.4g/L~0.6g/L的稀硫酸调节pH至7.0~8.0,在80~85℃,搅拌机搅拌10~15min,水洗1~3次,所得水渣混合物经板框压滤脱水,所得滤液为精制镁液镁液;精制镁液依次进行除钙,除硅,加碱液沉镁,表面改性,陈化,水热处理,脱水、洗涤、烘干等步骤后制得高纯阻燃型氢氧化镁。本发明过程中,在保证贵金属钴镍回收率的同时,进一步提高了阻燃型氢氧化镁产品的纯度。
一种从含锗铜钴合金中回收锗的方法,包括:将经过预处理得到的含锗铜钴合金进行一段浸出、过滤后,得到一段浸出液和一段浸出渣;将一段浸出液中加入单宁,对锗进行富集,过滤后煅烧得到第一锗精矿;将一段浸出渣进行二段浸出、过滤后得到二段浸出液;向二段浸出液中加入铁粉置换铜,铁粉的加入质量为二段浸出液中铜质量的1.05‑1.1倍,60℃‑70℃下反应0.5h进行置换,经过滤得到铜粉和置换后液;然后向置换后液中加入氯酸钠,所述氯酸钠的加入质量与置换后液中锗质量比为9.5‑11:1,然后加入液碱调节pH为3.0‑3.5,经过滤得到第二锗精矿。采用本发明,可以有效回收含锗铜钴合金中的有价金属。
本发明公开了一种三元协萃体系回收锰生产电池级硫酸锰的方法,包括以下步骤:将三元萃取剂和液碱混合进行皂化,得到皂化后有机相;三元萃取剂的组分及其体积分数为:P507:1%~10%、C272:15%~20%、TBP:1%~5%、其余为溶剂油;将三元萃取剂和液碱混合进行皂化的皂化率为40%~60%;将含锰料液与皂化后有机相混合再进行逆流萃取锰,得到萃取液和萃余液;将萃取液洗涤后依次经过反萃取锰段、反萃取铁段、洗氯段,得到反萃液,再将反萃液精制,得到电池级硫酸锰;将萃取液洗涤时采用的洗涤液、反萃取锰段采用的反萃剂、反萃取铁段采用的反萃剂均是稀硫酸,洗氯段的洗涤液为纯水。本发明流程短、能够高效回收锰。
本发明公开一种车用动力电池镍钴铝酸锂正极材料的再造工艺。该工艺至少包括以下步骤:1)对失效的镍钴铝酸锂正极片进行裂解处理,得到裂解物料;2)将步骤1)得到的裂解物料进行筛分处理,收集筛分得到的镍钴铝酸锂粉料;3)对步骤2)获得的镍钴铝酸锂粉料进行旋风分级处理,收集镍钴铝酸锂材料;4)将步骤3)得到的镍钴铝酸锂材料与锂盐进行混料处理,并将混料处理得到的混合物料置于流动的氧气气氛中进行烧结处理。本再造工艺对有对活性物质的物化性能损伤较小,具有修复率高、成本低,污染小等的优点,适于推广应用。
本发明提供了一种矿液中离子的提取方法。该提取方法包括如下步骤:1)将P204有机相进行钠皂后再加入硫酸镍进行镍皂反应,直至镍离子置换完有机相中的钠离子,得镍‑P204有机相;2)向所述镍‑P204有机相中加入矿液,相比O:A为1:2~4:1,充分反应后得第一萃取相和第一萃余液;3)向第一萃取相中加入0.1~2N硫酸,充分反应后得第二萃余液和第二萃取相;4)向第二萃取相中加入0.01~2N盐酸,充分反应后得第三萃余液和第三萃取相;矿液中至少含有铁、镍、钴、锰、镁、铜、锌和钙;矿液的pH值为4~5。本发明的提取方法可以有效地分离出铜、镍、钴、锰、锌,回收率均在90%以上。
本发明公开了一种粗制氧化钪的提纯方法,包括以下步骤:(1)一段酸浸:将粗制氧化钪加水调浆后,加入无机酸调节浆料的pH至1.0‑3.0,反应后过滤,得一段浸出渣和一段浸出液;(2)二段酸浸:将所得一段浸出渣投入无机酸溶液中,反应得到富含钪的二段浸出液;(3)草酸沉钪:向上述二段浸出液中加入草酸溶液,并加入回调剂调节反应物料的pH至0.5~2.0,反应后过滤,即得草酸钪沉淀;(4)煅烧:将所得草酸钪沉淀烘干后煅烧,即得提纯精制后的氧化钪。本发明有效利用杂质与氧化钪酸溶性的差异,将杂质与氧化钪分别浸出,杂质分离效果好,极大的简化了现有氧化钪的提纯工艺和操作流程,也在一定程度上节省了操作成本。
本发明适用于破碎搅拌物料技术领域,提供一种结块物料的处理装置,包括破碎机和筛选机构,破碎机包括箱体,箱体顶部设有盖板,箱体左右两侧均安装有旋转电机,旋转电机的输出轴穿入箱体后固定有转盘,转盘上设置一组搅拌棒,两组搅拌棒交错设置,筛选机构包括筛选箱,筛选箱内设置有输送带,筛选箱内且位于输送带上方安装有若干辊筒,每根辊筒表面均匀设置有多组转耙,筛选箱背面安装有用于驱动辊筒转动的驱动电机,本发明通过交错设置的两组搅拌棒对物料进行破碎,便于物料从出料口卸出,同时在辊筒表面均匀设置有多组转耙,能有效将物料里的塑料薄膜清除出去,防止塑料垃圾影响物料的品质,本发明具有结构简单和使用方便的技术特点。
一种废旧锂离子电池的智能化连续浸出系统及方法,系统包括依次连接的第一反应釜、浆料输送泵、第二反应釜、第三反应釜、第四反应釜、输出泵;第一反应釜的上端配置有给料器和进料管、侧壁设有液位计,进料管上设有自动阀门和流量计,进料管与进料泵连接,液位计与进料泵、进料管上的自动阀门联锁;浆料输送泵配置有变频器;第二、第三、第四反应釜均包括釜体,釜体上端设有带阀门和流量计的酸输送管、还原剂输送管,第二反应釜的釜体上端还设有阀门和流量计的浆料输送管;釜体上还配置有氢气报警器和在线PH计。本发明的方法实现了废旧电池的连续浸出,能够实现浸出过程的智能化控制,缩短时间,提高设备产能利用率。
本发明公开了一种含钠铵废液应用于红土镍矿的综合处理方法,其步骤包括配矿预浸、氧压浸出、部分中和、沉淀除杂和碱化沉镍钴锰;所述部分中和步骤具体包括:在经过所述氧压浸出步骤后得到的浸出液中,先加入含钠铵废液,再加入第一中和剂至pH值为1.0~2.5,得到部分中和液。本发明通过氧压釜进行反应浸出后再加入含钠铵废液的方式,在保证高镍钴锰浸出率的基础上,避免了含钠铵废液因带有机物而引发钛材质氧压釜的燃烧,保障安全生产;同时,本发明对工业生产中难以利用的含钠铵废液进行合理再利用,显著减低了红土镍矿的处理成本。
本发明公开了一种从红土镍矿中综合提取有价金属的方法,包括:将红土镍矿经球磨、浓密后得到的底流,加入硫酸进行预浸得到料浆;将料浆加入配矿后进行压力浸出得到第一浸出液、第一浸出渣,将第一浸出渣进行中和反应后经固液分离得到第二浸出渣和第二浸出液;(3)将第二浸出渣经过酸洗、萃取、洗涤、反萃、沉淀后得到氢氧化钪;将第二浸出液经过碱化除杂、络合沉淀后得到氢氧化镍钴锰。采用本发明的方法,投资成本低、酸耗低、有价金属回收率高。
本发明公开了一种磷酸铁锂黑粉的浸出方法,包括以下步骤:(1)将磷酸铁锂电池进行前处理,得到磷酸铁锂黑粉;(2)将磷酸铁锂黑粉加入酸溶液和第一氧化剂进行氧压浸出,得到氧压浸出液;酸与磷酸铁锂黑粉的质量比为(0.1~0.5):1,氧压浸出的工艺条件为:反应温度为120℃~200℃、反应压力为0.28Mpa~2Mpa、反应时间为1h~4h;(3)将氧压浸出液加入碱性物质和第二氧化剂进行除杂,得到锂盐溶液;除杂的工艺条件为:除杂温度为25℃~100℃、除杂时间为0.5h~6h。本发明能够将报废磷酸铁锂电池中的锂元素进行回收再利用、高效低成本。
本发明提供一种从钴镍工业含钴镁溶液中回收镁制备高纯阻燃剂的方法,其特征在于,包括以下工序:工序一:取萃取镍后含钴镁溶液,调节pH,逆流萃取;工序二:调节萃余液pH值,加入聚合氯化铝和聚丙烯酰胺,过滤得总溶液1;工序三:调节总溶液1的pH值,反应后过滤,得总溶液2;工序四:向总溶液2中硫化钠反应,加入聚合氯化铝和聚丙烯酰胺,过滤得滤液3;工序五:调节滤液3的pH值;工序六:加入氢氧化钠,然后过滤得滤液4和滤饼4;工序七:将滤饼4浆化洗涤然后过滤,得滤饼5,浆化洗涤,然后过滤,得滤饼6,将滤饼6烘干、粉碎得成品。通过本发明的方法能够制备高纯氢氧化镁阻燃剂。
本发明提供一种从重金属污泥中回收利用镁的方法,包括以下步骤:1)将重金属污泥与纯水按一定比例混合,调节pH至弱碱性,经板框压滤脱水得滤液1,将滤渣用热水洗涤过滤脱水得滤液2,滤液1与滤液2合并即为镁液;2)取一定量的步骤1中所得镁液,按过量系数3~8倍的用量加入AR级氨水沉镁,充分反应得到氢氧化镁沉淀;3)向步骤2所得产物中加入表面改性剂十二烷基苯磺酸钠改性氢氧化镁;4)将步骤3中所得产物先升温至85‑90℃恒温处理3‑5h后,再在65‑80℃下陈化2‑6h,得到渣样;5)将步骤4所得渣样用真空泵抽滤脱水、使用热水与酒精交替洗涤、在100‑105℃下烘干后制得阻燃型氢氧化镁粗产品。本发明过程中,在保证贵金属钴镍回收率和产品纯度的同时,提高了镁的一次回收率。
本发明提供一种从钴镍工业含钴镁溶液中回收镁制备氢氧化镁的方法,包括以下工序:工序一:取含钴镁溶液,加入3~6mol/L的氢氧化钠调pH值,控温,搅拌,使钴充分沉淀;工序二:过滤,得到滤液1和滤饼1,对滤饼1加水浆化,再过滤,得滤液2;工序三:将滤液2与滤液1混合得滤液3,加入硫化钠溶液,控温,搅拌,然后加入聚合氯化铝,再过滤,得滤液4;工序四:将滤液4加入碱溶液中,调节pH值,控温,搅拌;工序五:陈化,然后过滤,获得滤饼3;工序六:将滤饼3浆化洗涤,然后过滤,得滤饼4;工序七:对滤饼4浆化洗涤,然后过滤,烘干、粉碎得成品。通过本发明的方法能够简单、高效地从钴镍生产过程中回收镁制备氢氧化镁。
本发明公开了一种废旧锂离子电池综合回收利用方法,以废旧锂离子电池为原料,开发联合制备电池级碳酸锂和氢氧化锂产品的工艺,可同步回收钴镍锰等金属用于制备前驱体,又可回收提取锂元素制备电池级碳酸锂和氢氧化锂用于正极材料的正向制造,既可将废物资源化保护环境,又可实现经济利益最大化,节约资源。
本发明公开一种从镍铁合金中回收镍和铁的方法,属于合金废料回收利用技术领域。一种从镍铁合金中回收镍和铁的方法,包括以下步骤:S1、将镍铁合金作为阳极放入装有硫酸溶液的电解槽中,再将镍铁合金进行恒压电解,得到含有镍和铁的硫酸溶液;S2、向溶液中先加液碱调节pH至1.5‑2.0,再加入沉淀剂,并控制反应过程的pH为3.0‑3.5生成硫化镍沉淀并分离;S3、继续向沉镍后的溶液中先加入磷酸再加入氧化剂,再向溶液中加入氨水调节pH至1.8‑2.0生成二水磷酸铁沉淀。本发明提出的方法制得了高纯度的硫化镍和二水磷酸铁。
本发明属于锂电池回收技术领域,公开了一种三元废料中镍钴锰与锂的分离回收方法,具体包括以下步骤:(1)含锂溶液的制取:将三元废料加水制浆,制浆后加入磷酸混合溶液调节浆液pH<4,然后加入还原剂进行反应,反应完全后加入碱试剂A调节pH至7.0~11.0,然后分离得到含锂溶液和滤渣A;(2)镍钴锰精制溶液的制取:将步骤(1)得到的滤渣A加水进行制浆,制浆后加入三价铁盐进行复分解反应,反应完成后加酸试剂调节体系pH至1.9~2.0,进行陈化、分离得到镍钴锰粗溶液和滤渣B,继续往镍钴锰粗溶液加入碱试剂B调节pH至4.0~5.0进行沉淀,分离得到镍钴锰精制溶液和滤渣C。
一种废旧线路板裂解工艺,包括以下步骤:步骤一、将废旧线路板进行破碎,将破碎后的废旧线路板送入振动筛进行筛分出直径小于20~40mm的破碎物料;步骤二、将破碎物料送入裂解炉进行裂解,破碎物料经裂解后得到混合金属渣和废气;破碎物料进入裂解炉后,在炉膛内从上到下经过六层裂解室裂解,通过每层设置的耙臂的耙动下,使物料的运动轨迹呈螺旋式下降;步骤三、将混合金属渣进行冷却,送入滚筒筛,进行筛分,筛选出粗料和细料。通过将线路板破碎及筛选,挑选出小颗粒的物料送入裂解炉进行裂解,分解出废旧线路板的可回收的金属成分,通过冷却和筛选,将金属分离,得到金属回收产物,采用本方法处理废旧线路板,金属回收效率高,分离效果好且环保无污染。
本发明公开了一种镍铁合金料与含镍原料的联合处理方法,该方法包括以下步骤:将镍铁合金料放入电解槽阳极篮内进行电化学溶解,镍和铁失电子后以离子形式溶解到电解液中,将电解后含有镍和铁的电解液与含镍原料混合配浆,将混合好的矿浆转入高压釜,通氧进行加压反应,对加压反应后的浆料进行固液分离,得到富含镍的溶液和富含铁的渣,含镍溶液进一步净化提纯回收镍,从富铁渣中回收铁。本发明充分利用镍铁合金料电解液中铁和残酸高的特点,利用电解液中的残酸及铁离子高压水解沉淀释放的酸浸出含镍原料,既实现了酸的有效利用,又同时处理了两种物料,实现了镍和铁的分离富集,具有一举多得的效果。
本发明涉及冶金设备技术领域,且公开了一种冶金矿石循环研磨的装置,包括研磨装置主体,所述研磨装置主体的内部固定安装有收粉装置,所述收粉装置的左侧固定安装有支撑杆,所述支撑杆的顶部固定安装有电机,所述电机的右侧固定安装有毛刷杆,所述电机的左侧固定连接有电线,所述收粉装置的内壁固定安装有塑性套筒。通过凸轮将导电块推入电路后,毛刷杆在塑性套筒内旋转从而使得塑性套筒外面带有磁性吸引研磨后的粉末,且在电路导通后电磁继电器吸引滑块右移,从而使得收粉装置底部打开,且在导电块离开电路后,电磁继电器关闭收粉装置将会关闭,达到了研磨后粉末的收集且被吸引后的粉末不会在掉入到研磨区的效果。
本发明适用于废物处理技术领域,提供了一种用含氨氮废水处理钴镍铜尾渣的方法,包括制备第一溶液、络合反应、回收钴镍铜等步骤。本发明用含氨氮废水处理钴镍铜尾渣的方法,通过将含氨氮废水用于钴镍铜废渣的处理,大大减少了含氨氮废水中氨氮含量,减少了对环境的污染,同时使得钴镍铜废渣中的钴镍铜得到有效的回收,具有重大经济效益;本发明用含氨氮废水处理钴镍铜尾渣的方法,操作简单,成本低廉,非常适于工业化生产。
本发明公开了一种利用含铁酸处理红土镍矿的方法,包括以下步骤:(1)将含铁酸与红土镍矿混合配浆,含铁酸与红土镍矿配浆的液固比为1:1‑10:1;(2)将混合好的红土镍矿浆加入到高压设备中进行加压浸出反应,加压浸出反应的温度为150‑270℃,加压浸出反应过程中向高压设备中通入氧气,氧气分压为反应总压力的5%‑30%;(3)分离提纯,回收铁和镍。本发明利用钴镍冶金萃取废酸高酸高铁的特点以及铁离子高压水解沉淀释放酸的特性,用钴镍冶金萃取废酸对红土镍矿进行高压浸出,既充分利用了钴镍冶金萃取废酸的残酸和铁离子水解沉淀释放的酸,有效提取了红土镍矿中的镍,节约了红土镍矿提取镍的成本,又回收了废酸中的铁,避免了铁资源的浪费。
本发明公开了一种磷酸铁锂综合回收的方法,包括以下步骤:(1)将磷酸铁锂废料加水浆化后采用硫酸、双氧水进行浸出,得到混合溶液;(2)将混合溶液依次进行一段除杂、二段除杂,得到硫酸锂溶液;(3)向硫酸锂溶液中加入碳酸钠,得到粗制碳酸锂;硫酸锂溶液中的硫酸锂与碳酸钠的摩尔比为1:(1.0~1.5);(4)将粗制碳酸锂溶解后氢化,得到氢化液;(5)采用离子交换树脂将氢化液中的钙镁含量降至小于等于1mg/L,得到钙镁含量降低后的氢化液;(6)将钙镁含量降低后的氢化液热解,得到高纯碳酸锂。本发明能够实现浸出液中PO43‑、铁降到低含量,从而提高锂产品品质。
本发明公开了一种废旧电池正极材料回收再利用工艺,将废旧锂电池进行彻底放电,之后在惰性气体保护下进行一级破碎,破碎后风选除掉隔膜纸,之后低温热解,然后分选分别除去铁料和铝料,再次粉碎获得电极粉,根据电极粉物相组成确定浮选药剂制度,在浮选槽中进行浮选,将浮选槽槽底产品过滤、烘干得到正极材料;根据正极材料的Li/M比,计算出需要补加的锂源粉末,将水溶性分散剂和锂源粉末与水混合配置成混合溶液;将待修复的正极材料加入混合溶液中在高温高压蒸煮活化,然后在常压下蒸干,得到均匀的混合物粉体,将混合物粉体有氧下焙烧得到再生修复的锂离子电池正极材料。本发明修复成本低廉,修复后活性高,具有较大推广应用价值。
本发明公开了一种废旧磷酸铁锂电池的回收方法,包括如下步骤:步骤1,对废旧磷酸铁锂电池进行放电,剥离电池外壳并拆分后得电池正极、负极以及隔膜;步骤2,将步骤1的电池正极、负极和隔膜进行焙烧、粉碎后过筛,得含锂正极材料;步骤3,将步骤2中的含锂正极材料和粘结剂进行球磨混合,之后压制成块进行煅烧,得混合物;步骤4,将步骤3的混合物与还原剂球磨混合后依次进行高温真空还原、真空蒸馏以及真空冷凝,得到金属锂;本发明摒弃了常规废旧电池回收过程中采用的湿法酸浸,利用高温还原以及蒸馏的方法,避免了大量高盐废水的产生;且本发明流程短、化学药剂来源广泛、工艺条件简单,提高了废旧磷酸铁锂电池的回收效率。
本发明公开了种从废旧动力电池三元正极材料中回收有价金属的方法,该方法包括以下步骤:1)对废旧三元正极材料进行还原处理;2)将上述还原后的三元正极材料放入水中进行水浸,获得水浸出液和水浸出渣;3)对上述浸出渣依次进行酸洗和硫酸酸浸,获得酸洗液和酸浸镍钴锰硫酸溶液;4)将上述水浸出液与酸洗液合并后,加入沉淀剂进行沉淀,获得Li2CO3沉淀;5)采用氢氧化钠调节上述酸浸镍钴锰硫酸溶液的pH值,再向调节后的体系中加入KMnO4进行沉淀反应,获得钴镍溶液和MnO2沉淀;6)对上述钴镍溶液进行萃取得到含镍的盐溶液和含钴的盐溶液。采用本发明方法回收得到的每种有价金属化合物或金属盐溶液的杂质较少,纯度高。
本发明公开了一种利用萃取有机废气高效分离萃取水相中油份的装置及方法,包括萃取槽、负压循环系统、有机气泡发生器,所述萃取槽设有依次布置的初始混合室、第一澄清室、气浮混合室、第二澄清室,有机气泡发生器顶部具有与气浮混合室连通的管道,初始混合室和气浮混合室顶部具有与负压风机相连的管道,负压风机另一端通过管道与有机气泡发生器连通;所述第一澄清室、气浮混合室、第二澄清室上方连通。本发明有效解决有机相挥发损耗、改善作业环境,提高除油效果,使水相中的油份降低到5ppm以内。
本发明适用于废物处理技术领域,提供了一种铜电解贫液除锰方法、连续除锰工艺及设备。该方法包括如下步骤:按氧化剂和铜电解贫液中亚铁离子摩尔比0.5-2∶1向铜电解贫液中加入氧化剂,反应10分钟-5小时,得到第一溶液;按高锰酸钾和该第一溶液中锰离子摩尔比0.67-0.8∶1向该第一溶液中加入高锰酸钾,在温度为40-80℃条件下反应10分钟-5小时,过滤得到除锰后铜电解贫液。本发明除锰方法操作简单、成本低廉,生产效益高,非常适于工业化生产。本发明铜电解贫液除锰设备,结构简单,生产效益高,能够实现自动化连续生产,非常适用于工业生产。
本发明适用于工业废弃物资源综合回收利用技术领域,提供一种从提钨后渣中高效浸出钴、镍的方法,该方法将提钨后渣用硫酸溶液进行酸性浸出,同时加入氢氟酸作为添加剂,酸浸完毕后,经过滤实现液固分离,得到浸出渣和富集钴、镍的浸出液,浸出渣用沸水进行洗涤,然后将洗涤水返回浸出液,实现了提钨后渣中钴、镍的高效富集,本发明通过加入氢氟酸作为添加剂,有效破坏并溶解了包裹钴、镍氧化物相的二氧化硅相,强化了钴、镍的浸出反应,提高了钴、镍的浸出率和浸出效率,并有效降低了酸耗,从而降低了钴、镍的回收成本。
中冶有色为您提供最新的湖北荆门有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!