本发明涉及一种废旧锂离子动力电池无害化综合回收利用方法,包含如下步骤:将废旧电池包拆解,测量、收集良好的电池单体重新配组进行梯级利用;将不良的废旧锂离子动力电池单体充分放电,动力电池于隔氧环境中化拆解;将取出的芯包于加热炉进行热处理,采取冷凝方式将蒸出的溶剂进行收集;将溶剂已蒸干的芯包拆包得到隔膜材料、正极片和负极片;将正、负极片置于200-600℃下回转窑中热处理;将热处理后极片分别用粉碎机和粉末分选机进行分选,得到铝粉、铜粉、废旧正极粉和废旧负极粉;在分别对正极粉和负极粉进行修复。该方法采用全干法闭路回收工艺,实现动力电池无害化回收利用。
本发明公开了一种具有极高选择性的测定锌电解液中Co2+含量的络合物吸附波极谱法,包括将待测样品与检测体系反应,测定产生的Co2+络合物吸附极谱波,获得二阶导数波峰电流,计算待测样品中的Co2+浓度;所述检测体系包括底液氨?氯化铵缓冲液,掩蔽剂乙二胺四乙酸盐,络合剂丁二酮肟或者络合剂丁二酮肟和亚硝酸钠。本发明方法以乙二胺四乙酸盐为掩蔽剂,对钴具有极高的选择性,不仅可以完全掩蔽高浓度基体成分Zn2+,消除Zn2+波对Co2+测定的影响,而且也可掩蔽锌电解液中其他共存杂质金属离子的干扰,选择性极好,不需要对锌电解液进行任何预处理,没有沉淀生成,分析速度快,易实现自动化,适合在线分析检测使用。
一种从锡渣中回收锡锑铅并富集铟的方法,是将含锡、锑、铅、铟、砷氧化物的锡渣粉末,用盐酸、氯化钠、水合肼混合液作为浸出液,进行电位控制两段逆流还原浸出锑,一段浸出液中和水解产出粗锑白,二段浸出渣用氯化钠溶液浸出铅,浸铅后液冷却结晶得粗氯化铅,浸铅后渣洗钠得含锡49.52~55.69wt%、含铟1.04~1.2wt%的高铟锡精矿。粗锑白、粗氯化铅纯度分别为93.58wt%、99.67wt%,锡、锑、铅、铟直收率分别高达98.68wt%、84.616wt%、95.136wt%、95.3wt%,本发明具有流程短、分离效果好、工作环境好等优点。
本发明公开了一种从含镓和锗的高酸浸出液中选择性萃取镓和锗的方法,该方法是将含镓和锗的高酸浸出液用肟类螯合萃取剂进行液液萃取I,将液液萃取I所得的负载有机相用氢氧化钠溶液进行反萃I后得到锗酸钠溶液;在液液萃取I所得的萃余液中加入调节剂调节后,用磷酸酯或膦酸酯类萃取剂进行液液萃取II;将液液萃取II所得负载有机相用硫酸溶液进行反萃II得到硫酸镓溶液,或者将液液萃取II所得负载有机相先用盐酸洗涤后,再用硫酸溶液进行反萃II得到硫酸镓溶液;该方法依次使用肟类螯合萃取剂和磷酸酯或膦酸酯类萃取剂在含镓和锗的高酸浸出液中依次选择性高效萃取分离出锗和镓;锗的萃取回收率最高可达98%,镓的萃取回收率最高可达99%;本发明方法工艺简单,成本低,极易实现工业化。
本发明公开了一种从含银硫化锌精矿中提取银并提高锌精矿品质的方法,首先将含银硫化锌精矿与适量氧化铅烟尘、钠盐及还原剂混合后升温并充分反应;反应结束后,得到含银粗铅及冶炼渣。含银粗铅通过电解得到电铅及银粉。而冶炼渣则进行水浸反应;水浸反应结束后,进行液固分离,滤液进行蒸发浓缩结晶,得到可返回作为熔剂使用的钠盐;而浸出渣则为更高品质的脱银硫化锌精矿。采用本发明的方法可以实现含银锌精矿的高效脱银、脱砷、脱镉、脱氟氯,产出电铅、银粉及高品位硫化锌精矿产品,同时作为熔剂的钠盐在反应中不消耗,反应结束后通过蒸发浓缩结晶再生,实现熔剂的循环使用。本方法具有流程短、环保好、经济效益高等优点,适合工业化推广应用。
一种从羟硅铍石类铍矿中浸出铍的方法按以下步骤进行:A、破碎球磨:将羟硅铍矿石破碎后球磨,球磨后矿石粒度小于200目。B、预处理:将浓度大于98%的浓硫酸与球磨后的矿石放入搅拌池中混合均匀,在180℃的温度条件下,保温处理时间不少于4小时;浓硫酸与矿石的质量比为0.8~1:1。C、浸出:将预处理后的矿石从搅拌池中取出放入浸出池中浸取,当矿石温度降低至80~100℃时,加入自来水进行搅拌,常温下搅拌浸出时间不小于4小时,自来水加入量与矿石质量比为2~5:1。D、固液分离:浸出结束后,进行固液分离,获取铍浸出液,用自来水洗涤矿渣,自来水用量与矿石质量比为1~2:1,洗液返回浸出。
从低品位复杂混合铜钴矿中分离提取铜、钴镍的方法,以低品位复杂混合铜钴矿(硫化物与氧化物)为原料,采用矿石粉碎磨浆、湿法酸性氯盐浸出、还原置换提取铜粉、硫化沉淀镍(钴)、沉淀母液浓缩—干燥—低温焙烧水解等工艺流程来提取铜、钴镍中间产品。主要技术要点是对混合铜钴矿中的金属元素先用常压酸性氯盐溶解浸出,用还原剂还原沉淀浸出液中铜,用硫化剂沉淀钴镍得到中间产品,沉镍钴后母液经过浓缩—干燥—低温焙烧水解得到含铁、镁等的金属氧化物、金属氯氧化物和氯化氢;并回收氯化氢得到盐酸,水浸焙烧固体得氯化物溶液;回收盐酸和氯化物溶液用于矿浆的浸出。本发明综合回收铜、镍钴等,具有铜、钴镍浸出率高、能耗少、成本低、氯(盐酸)闭路循环以及项目工程投资少等特点。整个工艺简要、清洁,对环境友好。本发明尤其适应大规模工业生产。
本发明公开了一种有机化合物及其制备方法和应用,该有机化合物具有式Ⅰ所示的结构:
一种浮选银精矿搭配处理锌阳极泥综合回收的方法,包括以下步骤:采用浮选银精矿及锌阳极泥与锌电解废液混合调浆,将浆化后银精矿矿浆加入到反应釜内进行高温浸出,将浸出液进行中和降酸、过滤得到中和渣和中和后液;在所得中和后液中缓慢加入磷酸盐和氧化剂,得到磷酸铁沉淀,合成后液返锌系统回收锌;将磷酸铁浆洗水洗,得到高纯磷酸铁;将浸出渣进行还原反应,得到硫酸锰溶液和富银浸出渣;将硫酸锰溶液转入净化槽,反应完成后过滤得到净化液和净化渣;对得到的净化液进行合成,干燥后得到锰产品。本发明解决了现有技术中不能将所含有的锌、铁、锰、铅、银分离与富集从而使各自得到有效回收的技术问题。
本发明提供一种矿浆电池,包括反应槽、隔膜、阳极、阴极、阳极浆料、阴极电解液和导线,隔膜将反应槽分成阴极反应槽和阳极反应槽;阴极的一端设于阴极反应槽中,阳极的一端设于阳极反应槽中,阴极的另一端与阳极的另一端通过导线连接,形成闭合回路;隔膜为阴离子交换膜;阴极电解液置于所述阴极反应槽中,阴极电解液包括酸性金属盐溶液,金属为锰、锌、铁、钴、镍中的至少一种;阳极浆料置于阳极反应槽中,阳极浆料包括矿物、导电碳和酸溶液,pH为0‑7;矿物包括铜矿和/或铁矿。本发明提供的矿浆电池,可以同时实现金属提取与能源储存/转换且有效解决传统金属冶炼过程中能耗高、环境污染严重、条件苛刻等问题。
本发明涉及一种从钨矿物中酸碱联合提取钨的方法。该方法包括:步骤一、酸分解:将钨矿与盐酸溶液混合,并加入H2O2进行搅拌反应,得到固体钨酸和酸分解母液;步骤二、固体钨酸的碳酸钠溶解:将所述固体钨酸与碳酸钠溶液混合进行搅拌反应,反应完成后过滤得溶解渣和钨酸钠溶液;步骤三、钨酸钠溶液的树脂离子交换处理:将步骤二得到的所述钨酸钠溶液用硫酸中和至pH为3‑6以作为交前液,所述交前液用大孔弱碱性阴离子交换树脂对其中的钨进行吸附,并用去离子水洗涤吸附钨的大孔弱碱性阴离子交换树脂;洗涤完成后,用氨水作为解吸剂进行解吸得到钨酸铵解吸液,经进一步除杂后蒸发结晶,得仲钨酸铵。该方法在简化工艺流程的同时确保了钨的回收率。
本发明涉及一种连续分解白钨矿的方法,包括如下步骤:1)将白钨矿与母液连续加入反应1区,充分搅拌混合,所得浆料进入反应2区;2)向反应2区中连续补加磷酸,充分搅拌混合,所得浆料进入反应3区;3)向反应3区中连续补加硫酸,充分搅拌混合,所得浆料以此进入反应4区、反应5区、反应6区;4)在反应6区中浆料进行分流,一部分浆料回流至反应1区,另一部分浆料进入反应7区;5)将反应7区中所得浆料过滤,浸出液提钨,所得母液返回反应1区继续与白钨矿混合。采用本发明所述方法可避免白钨矿浸出条件的波动,简化了操作,改善了效果,从而实现了大规模稳定生产。
本发明公开了一种从析出碲中精炼脱砷的方法,包括以下步骤:将析出碲熔化;向熔化的析出碲中加入氢氧化钠和氧化剂,使砷形成砷酸钠进入渣中;待渣上浮至表面时,捞渣;将捞出的渣进行浇铸。本发明工艺简单易行,操作简便,脱砷效果好,碲损失少,可以将砷降至0.0005%以下,保证产品质量合格。
本发明提供了一种碱浸液中氧化沉淀分离铅的方法。首先向碱浸液中加入10~20%的HNO3或NaOH调节体系pH值为11~13.9,再加入过剩系数为1.2~1.8的Na2S2O8或H2O2作为氧化剂,在20~50℃温度下机械搅拌反应时间30~120min,使碱浸液中的铅以PbO2形式沉淀分离,液固分离得到的沉铅渣经还原熔炼即可产出粗铅,H2O2氧化沉铅后液可直接返回碱浸工序循环利用。本发明具有工艺简单,铅沉淀pH值高,沉铅温度低,铅分离率高,试剂消耗少,能处理多种含铅碱浸液等优点。克服了传统硫酸中和沉铅法酸、碱消耗量大,除铅后液难以循环利用的缺点,也克服了传统硫化沉铅法中Na2S易被氧化为多硫化物,Na2S消耗量大,易产生酸雾,操作环境恶劣等诸多缺点。
本发明提供了一种废弃电路板金属资源的回收方法,首先将废弃电路板整体进行机械破碎得到2mm以下的粉末,利用磁选机进行除铁,再利用静电分选机进行金属与非金属分离,得到废弃电路板金属粉末;然后采用油浴离心分离,将金属粉末中的焊锡熔化,采用离心分离的方式将熔化后的焊锡进行分离;再采用真空蒸馏的方法,分离锌和油浴分离过程中附带的柴油,得到较高纯度的铜为主体成分的金属资源。本发明使用的方法和装置简单、无污染、成本低、效率高,通过对整体破碎废弃电路板金属粉末进行分离焊锡和锌,提高金属资源回收的纯度,利于后续贵金属的提纯处理,适用于工业化应用。
本发明涉及一种镍钼矿的湿法浸出钼的工艺,属于钼的湿法冶炼技术领域。本发明以镍钼矿浆为原料,按摩尔比Cl-:Mo=2-3 : 1,将水溶性氯盐加入矿浆中,搅拌、在通入含氧气体的条件下进行电解,电解时槽电压为5-7.5V电流密度为20-50A/dm2,电解温度为40-60℃。本发明通过矿浆电解技术浸出钼,其钼浸出率≥95%,其电解电流效率≥90%,可有效综合回收镍钼矿中的钼,提高钼资源利用率。同时本发明反应温度低,反应速度快,能耗低,经济、环保、安全、钼的浸出率高,便于实现产业应用。
一种对电解锰阳极液进行除镁的方法,包括以下步骤:将电解锰工业产生的电解锰阳极液加入一结晶槽内,然后向结晶槽内一边加入浓硫酸,同时一边通入液氨,持续调节液氨的通入量并控制结晶槽内溶液体系的pH值接近中性;待反应原料全部添加完毕后,自然冷却析出复合盐晶体,结晶一段时间后,再进行固液分离;分离出的上清液循环用于电解锰化合浸出。本发明具有工艺简单、流程短、操作简易、易于实现、经济性好、且除镁效率高等优点。
本发明公开了五种可用于配制嗜酸铁氧化微生物复合菌剂的菌株,包括嗜酸铁质菌CS1、耐冷嗜酸铁氧化菌CS12、嗜酸氧化亚铁硫杆菌CS9、嗜铁钩端螺旋杆菌CS13、嗜酸硫化芽孢杆菌CS5,这五种菌株共混后配制而成的嗜酸铁氧化微生物复合菌剂,可用于浸提综合或分质的电镀污泥中的重金属。本发明的配方简单、经济性好、适应性好且通用高效,可高效用于浸提电镀污泥中的重金属。
一种利用磁黄铁矿筛选浸矿菌种的方法。本发明根据不同浸矿菌株生理特性的差异,经过培养、富集,在不同铁、硫比的磁黄铁矿中形成不同的优势菌株群,通过磁选方法将磁黄铁矿分选出来,吸附在矿石上的相应菌株群亦被筛选出。筛菌效率显著高于常规人工培养基分离筛菌的方法;筛选的菌株性能优异,以氧化亚铁硫杆菌为例,与常规的9K培养基分离的菌株相比,传代时间缩短、比生长速率增加、氧化活性提高。
一种从铋精矿或含铋物料中提取铋的方法。包括从铋精矿或含铋物料中选择性浸出铋,对浸出液进行初步净化和还原,以有机胺盐做萃取剂从净化还原液中萃取铋,采用配合—反萃法反萃铋,反萃后得到的富铋溶液,可以直接用于制取铋化学品,也可直接提取金属铋。本发明的特点在于用萃取法提纯及提取金属铋或制取铋化合物,流程闭路循环,污染少,较好地解决了传统湿法提铋工艺中普遍存在的消耗高、设备腐蚀严重、铋回收率低、废水排放量大等问题;同时,本发明还具有原料适应性强、金属回收率高的优点。
本发明涉及一种烧碱处理含铅废水的方法,包括以下步骤:将含铅废水放入搅拌池中;向所述搅拌池中加入烧碱,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,然后进行过滤,得到沉淀污泥;将所述沉淀污泥置于室外进行自然风干;将干燥后的沉淀污泥溶于稀硝酸中,得到初级溶液;将所述初级溶液进行萃取,得到萃取液;将所述萃取液进行反萃,得到反萃液;将所述反萃液进行电解,得到金属铅。本发明工艺简单,反应条件容易达到,反应也易控制,处理废水量大,工艺流程绿色环保,能耗小,易于实现工业化规模生产。
本发明公开了一种深度净化钨酸铵溶液的方法,包括以下步骤:向粗处理的钨酸铵溶液在搅拌条件下加入过量(NH4)2S,至S2‑达到设定的浓度,然后在设定温度下进行硫化反应,使钨酸铵溶液中的钼转换为硫代钼酸根离子(MoS42‑),得到硫化后的钨酸铵溶液;在搅拌条件下,向硫化后的钨酸铵溶液中加入钙剂,然后在设定条件下进行搅拌反应,反应完毕后,得到钨酸钙沉淀和含氨水的母液;将钨酸钙沉淀在设定温度和搅拌条件下,加入盐酸溶液中,接着保温搅拌反应,反应完毕后过滤,得到精制钨酸和酸分解母液;接着将精制钨酸洗净后,置于氨水中进行氨溶,过滤后,得到氨溶渣和钨酸铵深度净化液。
本发明公开了一种使用改性膨润土吸附剂去除锂云母矿中性浸出液中氟的方法,其特征在于,包括如下步骤:(1)将钙基膨润土、硫酸和改性剂聚二十二烷基三甲基氯化铵混合均匀后,于50‑55℃反应1‑1.5h;反应结束后,经洗涤至中性后过滤,所得滤饼于110‑130℃干燥活化制得改性膨润土吸附剂;(2)调节锂云母矿中性浸出液的pH值至7.5‑9,加入改性膨润土吸附剂,使其浓度不低于30g/L,经固液分离即可得负载氟的改性膨润土吸附剂固体和脱氟锂云母浸出液。该方法制备的除氟剂可以有效的将锂云母矿浸出液中的氟含量降至达标,直接提升了碳酸锂产品的质量,并且成本低廉,具有可观的社会经济价值。
本发明涉及一种从钨酸中清洁制取低钠低钾钨酸铵溶液的方法。该方法包括以下步骤:1)偏钨酸铵溶液的制备:将氨水中NH3的加入量按钨酸中所含WO3摩尔量的0.9‑1.5倍计与钨酸混合并进行搅拌反应,或将碳酸铵水溶液中(NH4)2CO3加入量按钨酸中所含WO3摩尔量的0.45‑0.8倍计与钨酸混合并进行搅拌反应,之后加入硫酸将溶液的pH值调整至2.0‑4.5,过滤得到氨溶渣和偏钨酸铵溶液;2)偏钨酸铵溶液中钨的提取:用大孔弱碱性阴离子交换树脂吸附或用含弱碱性胺类的萃取剂萃取步骤1)得到的所述偏钨酸铵溶液,之后解吸被吸附的钨或者反萃被萃取的钨,得净化后的钨酸铵溶液。该方法能够得到钾、钠等金属阳离子杂质含量低的钨酸铵溶液。
本发明涉及一种镀锡铜废碎料和铜电解液的联合处理方法,将表面无覆盖物的镀锡铜废碎料置于待处理铜电解液中,浸出,待铜电解液蓝色褪去后,进行固液分离,获得浸出液、脱锡后的铜废碎料和主要成分为海绵铜的置换渣;向所述浸出液中鼓入空气或氧气,使得Sn2+被氧化成Sn4+;再调节浸出液的pH值至4.5‑5,使得浸出液中的Sn4+和杂质元素转化为沉淀物,然后进行固液分离,获得净化后液和滤渣。本发明镀锡铜废碎料取自“城市矿产”或电子垃圾等固废,无需经过特殊预处理,即可直接用于铜电解液净化,资源、环境及经济效益明显。通过同一流程,即可将铜电解液中铜、锡、砷、锑、铋、铁等元素一并脱除,工艺流程简单,消耗低。
本发明提供了一种从含稀土的钼酸盐中分离稀土和钼方法,将含稀土钼酸盐置于包含OH‑、CO32‑的联合浸出剂溶液中,再在100‑160℃的温度下水热浸出,随后经固液分离,得富集含钼的碱浸液和富集有稀土的碱浸渣;所述的联合浸出剂溶液中,OH‑的浓度为1~4moL/L;OH‑/CO32‑的摩尔比为1~4:1。本发明技术方案,可选择性地将稀土保留在浸出渣中,钼转移至浸出液中,且有效降低稀土的同步浸出量,显著提升稀土和钼的分离选择性,不仅如此,还能够有效提升稀土和钼各自的回收率。
本发明公开了一种从高砷废酸体系中选择性回收铼的方法,包括以下步骤:(1)利用混合萃取剂萃取高砷废酸,得到富含铼的有机相;所述混合萃取剂包括三辛胺、N1923、异戊醇和磺化煤油,所述三辛胺、N1923、异戊醇和磺化煤油的质量占比以百分比计分别为8‑25%、2‑5%、10‑20%和50‑80%;(2)用水洗涤步骤(1)中得到的富含铼的有机相,然后利用反萃剂反萃,收集反萃液即为铼富集液。本发明采用优化后的混合萃取剂萃取高砷废酸,混合萃取剂对铼的选择性萃取好,产品铼化合物的纯度更高,无需后续大量的纯化操作,洗涤废水量更少。
本发明公开了一种氧化预处理含锌二次物料的方法,包括以下步骤:在对所述含锌二次物料进行氨浸之前,向含锌二次物料中加入至少两种氧化剂进行氧化预处理反应,反应完成后过滤,即得预处理后的含锌二次物料,所述至少两种氧化剂包括过氧化氢和过硫酸盐。该方法杂质元素脱除效果好、不引入其他杂质离子、锌损失少、大大简化了后续净化处理步骤,解决了现有的湿法脱除含锌二次物料中杂质元素的方法脱除效果不好、容易引入杂质离子、还需进行复杂的后续净化工艺的问题。
本发明公开了一种分离并回收废弃线路板中金属的方法,包括以下步骤:1)热解;2)破碎与筛分;3)摇床与磁选。本发明利用铜与锡机械强度的差异,通过破碎筛分的方式,首先将废弃线路板中的铜分为两个部分①大颗粒铜单质、②小颗粒铜与铜锡合金混合物大颗粒铜单质单独分离可以避免进一步进行铜锡分离,从而降低后期铜锡分离的总量,达到降低成本,简化步骤的效果。本发明利用金属与碳与玻璃纤维混合物的特性,通过摇床分离,使得金属物料与非金属物料进行分离。本发明通过磁选步骤使得铁与铜、铜锡合金得到分离,最终回收线路板中的铁金属。本发明中也使得锡合金得到了富集,可以使后续锡的回收更方便,提高金属回收效果。
本发明公开了一种浸出风化壳淋积型稀土的方法,包括以下步骤:1)将离子型稀土矿进行破碎和干燥处理,得到处理后的矿石;2)将一种或多种有机酸或者有机酸盐配置成设定浓度的水溶液,然后加入硫酸和氢氧化钠调节溶液的pH值至设定的范围,即获得浸出剂溶液;3)将处理后的矿石置于浸出柱中,然后注入浸出剂溶液,浸出过程中可循环喷淋,当浸出达到平衡后,即可得到含有稀土元素的浸出液。本发明采用有机酸及其盐类实现离子型稀土矿的选择性高效浸出,减少杂质溶出,利于后续浸出液中稀土元素的分离;浸出剂具有高效、绿色环保、低成本、原料易获取等优点,有机酸盐中盐离子浓度和使用量较低,不会造成环境污染,并且浸出剂成分有利于生态环境修复及改善。
中冶有色为您提供最新的湖南有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!