一种多孔梯度Ti-12Mo-6Zr-2Fe合金的粉末烧结方法,包括以下步骤:取TiH2、Mo、Zr和Fe粉末。取造孔剂碳酸氢铵粉末。按质量比TiH2∶Mo∶Zr∶Fe=83.09-83.59∶11.75-12.25∶5.75-6.25∶1.75-2.25的比例取四种粉末,混合成金属粉末混合物。从金属粉末混合物中至少取出三份分别与造孔剂混合,制成至少三种金属粉末与造孔剂的混合物,并依次放入模具制成坯料。坯料放入真空烧结炉中,加热首先使造孔剂分解,坯料内生成孔隙。然后继续加热,使氢化钛粉末分解。然后再继续加热完成烧结。本合金具有与人体硬组织匹配的弹性模量,其结构与人体松质骨的微观结构相似,可用于人体硬组织如骨骼、牙根等的替换与修复。本发明工艺简单,节能效果好,造孔质量高,孔隙度范围宽,平均孔隙尺寸范围宽。
一种可吸收骨修复材料及其制备方法,属于生物医用金属材料领域。材料组成包括具有三维连通的多孔支架结构的金属材料和填充物;填充物位于多孔金属的空隙内;所述三维连通的多孔支架结构的金属材料由金属丝绕制而成;所述可降解填充物为可降解聚合物或可吸收的生物陶瓷材料;制备方法:1)选取金属丝和可降解填充物;2)绕丝与编织,形成缠绕式的螺线卷几何体;3)冲压成型,获得骨修复材料骨架;4)电阻焊或真空烧结,获得强度提高的骨修复材料骨架;5)填充可降解填充物,成型后制得可吸收骨修复材料。本发明材料具有足够的力学强度,在骨骼愈合过程中逐渐降解,保持骨骼愈合过程中正常的应力环境。
一种高矫顽力烧结钕铁硼的制备方法,具体包括:将原材料按比例配料,后采用中频真空速凝甩带炉制备合金薄片;将合金薄片在氢碎炉的反应釜内常温吸氢、加热脱氢,制备出粒度为60~80目的粗颗粒;氢破后的粗粉由气流磨磨至平均粒度为2.0~4.0μm的细粉末;在氩气保护氛围中,采用喷气式法向上述粉料中添加一种或几种稀土纳米添加剂并混合均匀;将混后的粉料在氮气保护下经1.8~3.0T磁场取向成型、等静压;在充满氮气的封闭手套箱内将钕铁硼生坯装入真空烧结炉中,进行三次连续烧结后快冷,最后进行两次时效处理,制得性能达到国标中相应的钕铁硼磁体。该方法成本低、工艺简单、节能环保、稀土利用率高。
本发明涉及一种制备泡沫钢的方法,将钙颗粒与成型剂混合,使钙颗粒浸润;同时将钙粉与铁粉进行混合,再将浸润钙颗粒与钙粉铁粉混合物进行混合,混匀后经压制成块得到压制块,压制块再经真空烧结,使钙以液体的形式从压制块中熔除,得到纯净的泡沫钢。本发明采用金属钙作为造孔材料,通过烧结过程使金属钙以液态形式从泡沫钢中熔除,钙在铁基体中无残留,保证了泡沫钢的性能;同时,在烧结过程中钙对钢中的氧、硫等杂质元素进一步进行脱除,起到净化钢质的作用,从而进一步提高了泡沫钢的性能。
一种石墨烯增强的高硅铝基复合材料及其制备方法,复合材料含有成分按质量百分比:硅:15.0~20.0%,铜:2.0~4.0%,镁:0.5~1.0%,钛:0.05~0.07%,硼:0.02~0.05%,石墨烯:0.3~0.6%,余量为铝;制备方法:1)将原料各成分,在气体保护下,混料得合金粉末;2)将合金粉末压制成块状烧结坯料后,真空烧结得烧结后的坯料;3)针对不同硅的含量,对其进行淬火处理+回火处理,或多向锻造+退火处理,制得石墨烯增强的高硅铝基复合材料;本发明的方法使增强相颗粒分布更均匀,并且在材料内部产生大量位错,位错胞破碎成亚晶或细晶,达到细晶强化;其抗拉强度提高到400MPa以上;同时材料的屈服强度提高到236MPa以上。
本发明公开一种快速回收陶瓷结合剂CBN砂轮中高纯磨料的方法:(1)将陶瓷结合剂CBN砂轮放入烧结炉烧结处理,以便去除砂轮基体得到砂结体;(2)将砂结体放入真空烧结炉高温煅烧处理后放入水中急冷;(3)将急冷料放入球磨机进行水磨,水磨后过筛,烘干;(4)将烘干料放入酸性溶液煮沸一定时间后放入振荡器中震荡,(5)将烘干料放入碱性溶液煮沸一定时间后放入振荡器中震荡,然后通过超声波清洗机洗涤反应沉降后,烘干后得到CBN磨料。本发明的技术方案优点如下:1.本发明工艺简便快捷,回收砂轮中昂贵的磨料成本低;2.在回收的磨料粒度允许的范围内,本发明不影响磨料的多次使用;3.本发明不影响磨料性质的情况下,磨料回收率可达85%。
一种泡沫TiMoCu合金及其制备方法,合金由Ti、Mo和Cu元素组成;按质量比,Ti∶Mo∶Cu=(100‑x‑y)∶x∶y,其中x=10~25;y=5~20;该泡沫TiMoCu合金具有近球形的孔隙结构,平均孔隙尺寸为100~460微米,孔隙度为14.94~67.50%;制备方法:1)混合Ti粉,Mo粉和Cu粉,并取碳酰胺颗粒,备用;2)将上述原料混合后,制得金属粉末‑造孔剂混合物;3)在模具中,压制成坯料;4)分两段式真空烧结,制得泡沫TiMoCu合金;本发明制备的泡沫TiMoCu合金,力学性能与人体松质骨的力学性能相匹配,孔隙结构与松质骨相似,对军团菌、金黄色葡萄球菌等有抑制作用。
一种轮毂的制作方法,是按照以下步骤完成的:将12公斤的粉料混合物,其中包含钴粉和碳化钨粉末,余量为钢粉末2~5μm,使用转速度为8转/分钟的凹模,作为下模。使用冲床将置于所述凹模内的所述粉料混合物压制成坯料,之后进行烧结。然后将其车加工成一个内径300毫米,外径500毫米的金属圆盘。将8公斤的粉料混合物,其中包含镍粉和铈粉末,余量为铁粉末4~8μm,真空烧结成多个轮辐。在圆盘上通过摩擦焊焊接多个轮辐。本方法加工精度高,轴承外圈表面质量好,弧面完整度高,安装时更加方便并且能保证装配精度。
本发明涉及一种用于真空结晶炉中保温组件的材料的生产方法。主要是为解决现有的由钼或石墨毡制成的保温组件对结晶炉内产生污染,影响晶体质量等问题而发明的。方法是将生产态粒度为2.55um,研磨态粒度为2.3um的W颗粒和生产态粒度为2.65um,研磨态粒度为2.4um的Mo颗粒混合,其中W和Mo的重量相等,混合后再加入占W颗粒和Mo颗粒总重量0.2%-0.5%的CeO,和占W颗粒和Mo颗粒总重量0.05%-0.1%的ZrH2,混合均匀后经冷等静压机压制成型,最后在温度为2350℃以上的高温真空烧结炉内烧结。优点是不会对真空结晶炉内产生污染,不影响晶体质量。
本发明属于制动摩擦材料制备技术领域,公开了一种制动铜铁基复合摩擦材料及其制备方法,在Fe‑Cu粉基体中添加强化组元Ni,合金组元Mn和Cr,摩擦组元WC,润滑组元石墨烯和铜包石墨,具体制备工艺为:1、选择原辅粉料;2、按照质量配比称量粉末;3、使用超声分散法与机械搅拌混合粉末;4、将混料冷压成圆柱形压坯;5、将压坯放入真空烧结炉热压烧结;6、取出试样超声清洗后风干;7、检测试样性能。本发明通过组分优化设计和工艺探索,所得粉末冶金铜铁摩擦材料孔隙率低且分布均匀,增强润滑膜的连续性,石墨烯在摩擦过程中产生的热能更好的传导至摩擦材料之外,结构不被破坏,保持石墨烯的完整性的同时减少团聚。
本发明制备的高矫顽力和高耐蚀性烧结钕铁硼永磁材料及制备方法,属于磁性材料技术领域。将平均粒径50-90纳米的M(这里的M代表?Mg、Al、Cu及其混合粉)粉末进行表面改性;再加入2-4微米钕铁硼粉末中混合均匀,加入量为?0.1-2.0wt%?;在?2.5T的磁场中取向并压制成型,再经20-40MPa冷静压后,置入真空烧结炉内;然后升温,在200-300℃,800-900℃分别停留1-2小时和2-3小时,在1020-1120℃?烧结2-6小时,最后进行二级热处理,一级热处理温度900-950℃,时间2-3.5小时;二级热处理温度480-630℃,时间1-3小时,获得烧结钕铁硼永磁材料。本发明纳米粉及其混合粉的加入,使得烧结钕铁硼基永磁材料的矫顽力和耐蚀性得到了提高。
本发明公开了一种钕铁硼稀土永磁体的预烧结方法和设备,所述的真空预烧结是在连续真空预烧结设备中进行,烧结料架依次进入连续真空预烧结设备的准备室、脱脂室、第一脱气室、第二脱气室、第三脱气室、第一预烧结室、第二预烧结室和冷却室进行预热脱脂、加热脱氢脱气、预烧结和冷却,冷却采用氩气,冷却后烧结料架从连续真空预烧结炉取出再将料盒装到时效料架上,时效料架吊着送入连续真空烧结时效炉进行烧结、高温时效、预冷却、低温时效和快速气冷。
发明公开了热蒸发硅法生成碳化硅涂层的方法。?本发明在聚丙肺腈碳纤维表面合成SiC涂层。将硅粉或硅块碎片放入石墨坩锅底部,碳纤维横置于坩锅顶部,为了尽可能增加碳纤维与硅蒸汽的接触并固定碳纤维,倒置同样大小的坩锅于搁置了碳纤维的坩锅上,硅碎片和碳纤维之间始终保持距离。把这个装置放入高温真空烧结炉中,机械泵预抽真空1~5Pa,然后充入氩气保护气,再次用机械泵及扩散泵抽至10-4~10-2Pa,然后再次充入氩气保护气,关闭氩气源。然后升温到硅的熔点之上,保温1~9小时,关掉电源,冷却后取出纤维,纤维表面生成了一层碳化硅涂层。本发明具有设备简单、无需氯硅烷或聚碳硅烷先驱气体和氢气等一系列优点。
本发明公开了一种磨料水喷嘴加工工艺,包括以下几个步骤:步骤一,按配比将钴Co,碳C,钨W金属粉末称好并搅拌均匀成为硬质合金粉末;步骤二,在弹性橡胶管内中心轴线处设置硬态弹簧钢丝,并沿着钢丝圆周方向涂覆一层蜡模;步骤三,在弹性橡胶管外壁套置不锈钢套,且不锈钢套径向加工有若干通孔;步骤四,将选好成份的硬质合金粉末装入到弹性橡胶管内,并捣实,捣实后将弹性橡胶管两端通过橡胶塞封堵;步骤五,进行冷等静压成型处理;步骤六,把冷等静压成型后的素坯连同弹簧钢丝从橡胶管中取出,然后对素坯进行低温预烧结,待硬态弹簧钢丝外壁蜡膜熔化后取出弹簧钢丝;步骤七,对磨料水喷嘴进行真空烧结加工。
一种蛋白质发泡制备生物医用可降解多孔锌的方法,按以下步骤进行:(1)将锌粉、蛋白质发泡剂、蔗糖和去离子水混合均匀;(2)球磨混合制成球磨浆料;(3)加热至70~110℃进行发泡,随炉冷却;(4)静置固化或者烘干制成固化预制体;(5)进行真空烧结或覆盖石墨烧结,150±2℃、180±2℃、260±2℃、290±2℃、320±2℃、390±2℃和435±2℃时保温25~35min;200±2℃、230±2℃、360±2℃和435±2℃时保温55~65min;随炉冷却。本发明的方法选择蛋清和胶原蛋白作为发泡剂,对身体无害,发泡效果优良,发泡程度可控;产品孔隙率相对较高;与人体松质骨匹配,能够满足人体植入材料的要求。
一种高纯度、低成本二硅化钼的制备方法,将原料三氧化钼、二氧化硅和高纯石墨粉,加入工业干粉成型剂,在混料器中混料,按照1公斤每份放入油压机压制,获得压制块料;将压制块料用500公斤真空无压烧结炉真空烧结,送电抽真空至3Pa,350℃烧结1小时‑2小时,1620℃保温,炉内真空度为20Pa‑25Pa之间继续升温;1850℃保温10小时‑15小时,降温,温度降低1250℃,真空度抽到3Pa‑4Pa,保温5小时,硅和钼充分化合,停电降温,得到二硅化钼。以氧化钼为原料,原料成本低廉,且整个工艺合理可控,可以制备出单相高纯度二硅化钼,适合工业化生产。
本发明涉及防护和控制材料技术领域,具体涉及一种富集10B的碳化硼中子吸收屏蔽材料的制备方法。本发明是将97~99质量份的富集10B碳化硼粉体与1~3质量份的胶黏剂以去离子水为介质混合形成混合物料烘干,将烘干后物料放入真空烧结炉内进行有压或无压烧结,控制炉内真空度达到5~40Pa,得到密度为1.8~2.48g/cm3的富集10B碳化硼中子吸收屏蔽材料。本发明的碳化硼粉末压制的制品,中子吸收能力大大提高,在反应堆内使用的过程中,不会引入其他杂质,能够保证反应堆的安全运行和使用寿命。
一种多孔Ti-15Mo合金的粉末烧结方法,是按88.55∶15的配比取TiH2和 Mo粉末混匀,再加入0-40%的碳酸氢铵,并放入混料器中混合24-48小时, 再通过模具压成设定形状,然后放入真空烧结炉中,收≤50℃/分钟的速度加热 至780-820℃,保温1-2小时制成坯料,将该坯料加热至1050-1150℃,保 温4-8小时完成烧结,经冷却即得。Ti-15Mo合金孔隙度为7.9-68.5%,平均 孔隙尺寸为12-206μm。本发明工艺简单,节能效果好,造孔质量好,孔隙度 达到7.9-68.5%,平均孔隙尺寸为12-206μm。
一种新型碳化物颗粒增强铁基粉末冶金材料,将石墨粉添加到包含Fe‑40%V、Fe‑60%Mo和Fe‑57%Cr合金的物化铁粉中,以硬脂酸锌作为润滑剂进行球磨混合,然后压制、真空烧结。随着烧结温度的提高,碳化物由块状M6C碳化物向针状M2C碳化物转变;材料的相对密度和硬度先升后降,硬度在1270℃时达到最大,抗弯强度和冲击韧度在1240℃时最高;在晶界上呈半连续网状分布的针状碳化物脆性大,降低了材料的力学性能。高温退火能有效消除晶界上半连续网状分布的针状碳化物,使其分解、球化,从而显著提高材料的性能;其中密度略有提高,硬度、抗弯强度和冲击韧度分别提高了11.8%,20.8%和72.7%。
本发明公开了一种耐磨、耐腐蚀Ti(C,N)金属陶瓷材料,由下述质量百分比的粉末原料组成:TiC 28‑45%;TiN 3‑5%;Ni 35‑50%;Cr 11‑13%;余量为4‑6%的Mo、Ti、Al、Cr3C2、VC混合。其制备方法为将原料粉末按照配比配制成混合粉末,混合粉末在真空振动混料机混料,混料后不需要添加任何成型剂,采取模压成型压制成坯料,坯料经塑封后,进行冷等静压,之后进行真空烧结。本发明金属陶瓷材料,具有耐磨、耐酸蚀、耐汽蚀性好,高强度、高硬度、制造工艺流程简洁,不需要添加成型剂、制造成本低等优点。
一种粉末冶金法制备医用可降解开孔泡沫锌的方法,按以下步骤进行;(1)将锌粉和造孔剂烘干后混合;(2)加入酒精;(3)填充到模具中压制成型;(4)置于烧结炉内,进行真空烧结或覆盖石墨粉烧结,随炉冷却;(5)烧结物料置于水中,使造孔剂溶于水中,剩余物料取出烘干。本发明的方法可以控制孔径的大小和孔隙率;可由烧结温度和时间来控制样品的力学强度和力学性能,所制备的开孔泡沫锌抗压强度高于人体松骨质,而弹性模量与松骨质相匹配,能够满足人体植入材料要求。
一种掺杂稀土铈的铪酸钡陶瓷闪烁体的制备方法,涉及一种陶瓷材料的制备方法,该制备方法包括如下步骤:(1)按Ba1-xHfO3 : Cex称取原料硝酸钡Ba(NO3)2、氯氧化铪HfOCl2和硝酸铈Ce(NO3)3;(2)采用共沉淀法合成粉体;(3)选择滴定方式;(4)控制滴定速度、体系温度及滴定终点的pH值;(5)清洗,抽滤;(6)恒温干燥;(7)研磨过120~200目筛;(8)还原性气氛下煅烧;(9)干压成型;(10)真空烧结。本发明的闪烁体可应用于医学成像及无损检测系统,该方法可实现准确掺杂,工艺简单,成本低,适宜大批量生产。
本发明涉及一种石墨烯纳米片/铝复合材料及其制备方法,制备方法主要步骤如下:(1)将石墨烯纳米片分散到无水乙醇溶液中,制得石墨烯纳米片的无水乙醇分散液;(2)在氩气的保护下通过球磨将球形铝粉转变为片状铝粉;(3)在充有氩气的手套箱中将片状铝粉移入石墨烯纳米片的乙醇分散液,机械搅拌制得石墨烯纳米片/片状铝粉的复合浆料;(4)抽滤、干燥制得石墨烯纳米片/片状铝粉复合粉末;(5)冷压、真空烧结制得石墨烯纳米片/铝复合材料坯料;(6)通过热挤压制得石墨烯纳米片/铝复合材料。该制备工艺具有石墨烯纳米片结构损伤小、分散均匀,石墨烯纳米片‑Al界面结合良好的特点,制备的石墨烯纳米片/铝复合材料强度高、塑性好。
本发明提供一种溅射靶材用硅硼母合金及其制备方法,硅硼母合金为采用高纯硅粉和高纯硼粉为原料,依次经高能球磨、造粒后采用粉末冶金压制成形技术和真空烧结制备的所得产物。本发明制备的硅硼母合金中具有含硼量高、颗粒分布均匀、杂质含量低、粉末活性高、易于掺杂等特点,并且,掺杂该种硅硼母合金制备的多晶硅靶材,较制备的硅靶材具有产品出成率高,电阻率分布均匀等特点。
一种多孔梯度TiNb合金的制备方法包括以下步骤:按一定的质量比称取钛粉和铌粉以及造孔剂氯化钠颗粒,备用。分别按不同的造孔剂含量将金属和造孔剂混合成多个具有不同孔隙度的生坯混合物,而后依次放入模具的多个套筒中,制成坯料。将所压制得坯料浸没在70‑80 OC的纯净水中清洗15‑‑20次,使造孔剂溶解。将坯料放入真空烧结炉中加热至1160‑‑1350OC并保温4‑‑8小时,经冷却得到多孔TiNb合金。本材料具有与人体硬组织匹配的弹性模量,其结构与人体松质骨的微观结构相似,具有仿生材料的特点。可用于人体硬组织如骨骼、牙根等的替换与修复。
本发明公开了一种稀土永磁真空热处理炉以及真空热处理方法。真空热处理炉主要包括炉壳、加热室、风冷换热系统、加热电源、控制系统、真空系统和充放气系统。真空系统中包括真空粉尘收集器,风冷换热系统包含风冷粉尘收集器,真空粉尘收集器和风冷粉尘收集器都采用旋风收集器的结构。加热室设置在炉门和炉体构成的真空容器内,加热室包括前端盖、加热筒体、后端盖和炉床,热处理的工件放置在炉床上;前端盖包含前端金属屏、前端保温体和前端框架,前端盖与炉门相连;加热筒体从内到外包含加热器、筒体金属屏、筒体保温体和筒体框架。该真空热处理炉可用于稀土永磁的真空烧结、真空时效和真空渗金属处理。
一种多孔钛及其制备方法,属于材料技术领域,多孔钛为通孔骨架结构,骨架成分为金属钛,宏孔孔壁上分布着微孔,宏孔孔径范围为200~1000μm,微孔孔径范围为5~55μm,孔隙率35~85%。制备方法为:以钛粉为原料,以镁颗粒、镁粉为造孔剂,以无水乙醇为分散剂和粘结剂,先将镁粉和钛粉混合均匀,然后用无水乙醇将镁颗粒充分润湿并倒入镁粉、钛粉的均匀混合物,再次混合均匀,然后将压制的预制坯用真空蒸馏除去金属镁,再对多孔钛前驱体进行真空烧结。本发明采用的方法在反应过程中不生产氧化物,造孔剂可全部回收;制备的多孔钛结构均匀、孔结构可调、孔隙率高、杂质少、力学性能好。
本发明公开了一种基于晶粒重组的烧结钕铁硼永磁铁及其制造方法,永磁铁具有重稀土RH含量高的主相分布在重稀土RH含量低的主相周围的复合主相,复合主相内部无连续的晶界相;复合主相外围的平均重稀土RH含量高于复合主相心部的重稀土RH含量,复合主相的平均晶粒尺寸6-14μm;重稀土RH包含Dy、Tb、Ho、Gd、Y元素一种以上;制造方法包含熔炼第一合金工序、熔炼第二合金工序、氢破碎工序、合金片混合工序、气流磨制粉工序、磁场成型工序、真空烧结和时效工序;熔炼第一合金工序包含制备含有Pr、Nd元素的第一合金片的过程;熔炼第二合金工序包含制备含有重稀土RH元素的第二合金片的过程。
一种激励元素呈连续梯度分布的氧化钇激光透明陶瓷材料及其制备方法,其基质材料为Y2O3,激励元素RE为Yb、Tm或Nd,其特征在于:激励元素RE在基质材料中的浓度沿基质材料轴向呈连续梯度分布;制备方法为:(1)配制Y(NO3)3溶液、RE(NO3)3溶液和尿素溶液;(2)制备RE:Y2O3球形纳米粉体;(3)制备Y2O3球形纳米粉体;(4)将粒径相同的Y2O3球形纳米粉体和RE:Y2O3球形纳米粉体混合制成混合粉体,球磨分散,再超声分散,获得高悬浮稳定性浆料;(5)离心分离去除液相;干燥后获得梯度坯体;(6)素烧后真空烧结,再退火。本发明采用普通的陶瓷材料制备工艺,工艺简单,成本低廉,适合大规模生产。
中冶有色为您提供最新的辽宁有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!