本发明公开了一种耐腐蚀的复合永磁材料及其制备方法,涉及新材料技术领域,包括改性丙烯酸交联树脂、纯铁、工业纯金属钕、铜、铈、镓、钴和铋铁合金。以丙烯酸交联树脂作为永磁材料的基料,经过改性后生成交联网络结构,增加了永磁材料的耐磨性和使用寿命;将永磁材料用在污水处理中,永磁材料本身的磁性可以对污水中的金属元素进行吸附,有助于污水中金属杂质的清除,并且后期可以根据处理后污水中重金属离子的浓度可以判断分水器磁阀是否还具有磁性,以便于分水器磁阀的及时更换,提高污水处理的效率。
本发明涉及增材制造领域,提供了一种金刚石/立方氮化硼—陶瓷复合材料DLP成型方法,其制备方法包括将金刚石或立方氮化硼粉体、陶瓷粉体与烧结助剂混合均匀;将混合粉体加入到含光敏树脂的溶液中,加入金属盐溶解于该溶液中,从而配置成DLP浆料;进行DLP打印;将打印获得的样品进行排胶、还原、烧结,获得金刚石/立方氮化硼‑陶瓷复合材料DLP打印样件。本发明提供的金刚石/立方氮化硼—陶瓷复合材料DLP成型方法能够有效制备具有复杂形状及内部结构的超硬材料工具,确保金刚石/立方氮化硼或立方氮化硼在高温烧结过程中的稳定性,解决了传统成型工艺难以获得具有复杂结构的问题。
本发明涉及一种氧化铝陶瓷导轨的制备方法,属于陶瓷导轨制备技术领域。本发明包括以下步骤:(1)将氧化铝、助烧剂混合,再将混合物、水、分散剂、粘结剂混合,进行球磨,得到所需浆料;(2)将浆料进行喷雾干燥,得到造粒粉,待用;(3)将造粒粉采用冷等静压成型工艺,得素坯;(4)将素坯使用线锯设备进行内孔切割得到方孔陶瓷导轨素坯;(5)将生坯烧成得坯体,铣加工,然后进行烧结,即得到粗品;(6)将粗品再进行精磨加工和抛光加工,即得。本发明设计科学合理,制备的陶瓷导轨具有体积密度低、硬度高、弹性模量大、热膨胀系数低、高硬度、高耐磨性的优点。
本发明公开了一种射孔弹药型罩多工位复合成形工艺,将已制备好的造粒粉放入冲盂模中,用数控双旋轮旋压机施加总压制压力的15%‑30%,然后施加总压制压力的70%‑90%的压力,冲压出可采用旋压的药型罩毛坯,然后将冲压形成的药型罩毛坯取下,采用酸洗钝化的工艺进行毛坯处理,然后将经过酸洗钝化后的药型罩毛坯加入至数控双旋轮旋压机的芯模端面上,使之沿轴向逐点依次塑性成型,制备出药型罩。本发明通过两次的压制获得具有高密度、密度均匀,制品精度好的射孔弹粉末罩制品,能够制备高密度、密度均匀,制品精度好的射孔弹粉末罩制品,具有材料利用率高、产品精度高,环境污染小、生产效率高、成本低等优点。
一种超细钛粉制备高性能粉末冶金钛及钛合金的方法,属于粉末冶金钛领域。本发明以海绵钛、海绵锆铪(固氧剂)为原料,混合均匀后经氢化、破碎、脱氢工艺得到超细氢化脱氢粉,成形烧结后即可获得高性能粉末冶金钛制品。本发明中,利用超细粉实现粉末冶金钛合金的烧结全致密,并保证晶粒细小,为降低超细粉中高氧含量对钛基体的不利作用,利用锆铪作为固氧剂,在烧结过程中与钛、氧元素形成Ti‑Zr(Hf)‑O有序相,大幅度降低钛基体中氧含量,同时起到强化作用,提高材料力学性能。具有制备工艺简单,无需额外设备即可解决超细钛粉氧含量过高的问题,保证最终钛制品的力学性能,适合大规模工业化生产,有利于推动粉末冶金钛工业化发展。
本发明涉及一种自润滑陶瓷材料及其制备方法,属于冶金技术领域。本发明通过3D打印技术将氧化铝微粉、钼粉平铺于选择性激光烧结成型设备中进行3D打印成空间有序的蜂窝结构材料,再利用类石墨烯结构二硫化钼、银、硫酸钡、共晶粉组成的复合粉末作为固体润滑剂,利用表面空间有序的蜂窝结构的自身减摩抗磨性能和填充的固体润滑剂的协同作用,可进一步降低材料在室温、中温下的摩擦系数,进而实现该层状复合材料在室温到800℃温度范围内的连续自润滑;本发明利用银从涂层内部扩散到表面形成一层连续的润滑膜,该润滑膜可以抑制钼的氧化,还使材料的纳米硬度和弹性模量得到提高,力学性能得到提升。
本发明提供了一种碳化硅陶瓷球,由重量份如下的原料经混料、造粒、制种、成型、烧结和研磨而制成:主料:碳化硅细粉87%~96%、高残碳酚醛树脂5%~11%、烧结助剂1.2%~5%,所述烧结助剂为B、C、B4C、Al2O3和Y2O3中的至少一种;辅料:粘结剂、分散剂,其用量依次为主料重量的0.9%~11%、0.5%~3.5%,粘结剂为聚乙烯醇、糊精和羧甲基纤维素中的至少一种;分散剂为聚乙二醇、四甲基氢氧化铵、磷铝酸盐、聚丙烯酸中的至少一种。本发明碳化硅陶瓷球密度大,化学性质稳定;能够满足多规格粒径的碳化硅陶瓷球的制备,范围广,从1mm‑50mm均能生产;一次性投资少,扩产容易。
本发明一种粉末冶金分体式成形后组合烧结工艺,具体工艺步骤:步骤1、原材料准备:准备好粉末冶金用粉末基材和添加剂,并将粉末基材和添加剂混合搅拌至均匀;步骤2、零部件分体式成形:将一个复杂零部件拆解成两个或多个简单零件,并对这两个或多个简单零件分别成形;步骤3、组合后脱脂:将成形后的两个或多个简单零件组合成需要的零部件结构,并对该组合后的零部件进行脱脂;步骤4、组合烧结:对脱脂完成的零部件进行烧结;步骤5、后续处理:对烧结完成的零部件进行后续处理。能扩大粉末冶金生产应用范围,真正有效降低结构复杂零部件的生产成本,适用于结构复杂无法一次成形的粉末冶金零件,或是几个粉末冶金零件需可靠连接在一起的情况。
本发明公开一种基于汽车模具生产的复合型材料刀具,该刀具中各材料的质量百分比为:氧化铝4.2%‑4.6%、氮化硅5.7%‑6.5%、碳化钛8.4%‑9.2%、氧化钛6.7%‑7.7%、碳化钼1.3%‑1.6%、碳化钨2.2%‑2.8%、氧化钼3.2%‑3.5%、镍0.6%‑1%、氧化铬0.8%‑1.2%、碳化钒1.6%‑2.1%、碳3.5%‑4.5%、五氧化二铌0.2%‑0.4%、氧化钇0.1%‑0.2%、三氧化二镧0.1%‑0.2%、余量为铁;本发明开公开了一种基于汽车模具生产的复合型材料刀具的制备方法,本发明制造工艺简单,使用原材料价格低,相比传统的金刚石涂层刀具,生产成本大大降低,通过采用复合型材料制成刀坯,有着硬度高、抗压强度高和抗弯强度高的特性,在刀坯上通过化学气相沉积法镀不同材料的两层镀层,耐磨、耐腐蚀以及耐冲击等性能得到提高,大大提高了其工作性能和使用寿命,具有很好使用和经济价值。
本发明公开了一种稀土钕铁硼超细粉回收利用方法,所述方法包括以下步骤:(1)将超细粉充分氧化,得到超细粉氧化颗粒;(2)将超细粉氧化颗粒添加至正常粉料中进行混料,所述超细粉氧化颗粒占总混料质量的0.01~2.5%;(3)在转速为100~600rpm/min下,混料60~100min后,将混合好的粉料制备磁体,得到烧结磁铁。本发明采用钕铁硼气流磨生产过程产生的超细粉添加至正常粉料提高了材料利用率,实现了钕铁硼废料的循环利用,且无需烧结处理,工艺简单,安全性高,杂质含量低。
本发明公开了一种烧结钕铁硼磁钢,由以下成分组成:稀土元素R:27.5‑30.5wt%,Al:0.5‑1.0wt%,Pr:0.03‑0.06wt%;C:0.03‑0.06wt%,Cu:0.35‑0.5wt%,Nd:0.08‑0.12wt%,Ga:0.2‑0.4wt%,Pm:0.2‑0.5wt%,Co:0.6‑1.2wt%,B:0.75‑1.35wt%,Fe余量;所述稀土元素R为Ce、Ho、Sm、Dy、Tm的混合物,其混合的质量比为Ce∶Ho∶Sm∶Dy∶Tm=5∶4∶1∶0.3∶2。同时公开了其制备方法,制备方法易操作;添加Ho和Ce、Sm、Dy、Tm等稀土元素,替代部分昂贵的Nd和Pr,降低成本,Ho的添加能够有效改善烧结钕铁硼磁钢的耐腐蚀性,减少失重;Ce替代Nd此题的共晶温度下降,使得烧结回火温度下降,节约了成本,同时保持了较好的性能。
本发明公开了一种TiC增强铜基电接触复合材料的制备方法,该制备方法包括原料准备、碳源制备、粉末压块与烧结和TiC自生反应合成等步骤。本发明具有制备工艺简单稳定、成本低、效率高、适合工业化生产和应用等特点。该制备方法所用碳源是通过球磨得到的Cu‑石墨包覆TiC混合粉末,合成的TiC粒径在0.5‑2.0m之间,在铜基体上分布均匀。所制备的TiC增强铜基电接触复合材料致密度高,可通过调整TiC的含量,实现复合材料强度、硬度和导电、导热性的优良结合,具有高强高导特性。
为了改善不锈钢粉末冶金零件的硬度、耐磨性,设计了一种凝胶离心成型制备的TiC‑316L复合材料。采用316L气雾化不锈钢粉末为原料,经过配料、球磨、干燥、制粒、成形、球磨、凝胶离心工艺成功制备了具有优异力学性能的凝胶离心成型制备的TiC‑316L复合材料。其中,所研制的凝胶离心成型制备的TiC‑316L复合材料,强度高于普通压制成型的坯体,并且坯体具有机加工性,经真空脱胶烧结,1380℃保温1h可制备出316L‑TiC合金管,烧结体收缩均匀无变形。所制得的凝胶离心成型制备的TiC‑316L复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。本发明能够为制备高性能的TiC‑316L复合材料提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种放电等离子烧结制备的钛基磷酸三钙陶瓷复合材料。采用硝酸钙,磷酸铵,氨水,钛粉为原料,所制得的放电等离子烧结制备的钛基磷酸三钙陶瓷复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,Ti/α‑TCP复合材料的抗压强度随钛含量增加而提高。在Ti/α‑TCP复合材料的高温烧结过程中,Ti与α‑TCP发生化学反应,温度越高,反应越复杂,在70Ti/α‑TCP中添加钛网作为骨架制备70Ti/α‑TCP/钛网复合材料,抗压强度提高,在烧结温度为870℃时抗压强度为632MPa。且具有优异的生物活性,可作为骨替换材料。本发明能够为制备高性能的钛基磷酸三钙陶瓷复合材料提供一种新的生产工艺。
为了改善粉末合金的硬度、耐磨性,设计了一种Ni基+WC等离子喷焊涂层。采用38CrMoAI,Ni45粉末,Ni55粉末,WC粉末为原料,所制得的Ni基+WC等离子喷焊涂层,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,Ni55喷焊层的显微硬度明显高于Ni45喷焊层,Ni45喷焊层的硬度不会对其他零部件产生过大的磨损,其热膨胀系数也居中,且与基体的热膨胀系数很接近,能有效减少热应力的产生,其热导率属于居中水平,保证了一定的导热性能。强化层硬度、热物性参数等综合性能良好,达到了对柴油发动机缸套内壁进行强化的效果。本发明能够为制备高性能的等离子喷焊涂层提供一种新的生产工艺。
本发明涉及一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法,属于金属陶瓷材料制备技术领域。所述的添加石墨烯粉末的Ti(C,N)基金属陶瓷材料所用原料为:混合粉末组成为:碳氮化钛粉末(1~5μm)40‑60wt%;钴粉和镍粉:10‑20wt%;碳化钨和碳化钼粉(0.5~3μm):10‑30wt%;石墨烯粉末:0.2‑2.0wt%,各组分重量百分之和为100wt%;将混合粉末按重量百分比称量后进行机械混合处理,球磨时间10min‑24h,球磨机转速为30‑1400r/min;球料比为5:1‑20:1,将混合粉末冷压成型后烧结制备Ti(C,N)基金属陶瓷,烧结温度1300‑1470℃,烧结压力为0‑60MPa,烧结时间为5‑120min。通过上述方法可以制备得到性能优异的添加石墨烯的Ti(C,N)基金属陶瓷,便于大规模的工业化应用和生产。
本发明涉及切削工具领域,尤其涉及一种钢件加工用涂层刀片及其制备方法,钢件加工用涂层刀片包括硬质合金基体和涂层;硬质合金基体上的脱β层厚度为5~10μm。该钢件加工用涂层刀片制备方法如下:将Co、TaNb8、(W、Ti)CN和WC与成型剂混合均匀后倒入滚筒式球磨机进行球磨;然后将球磨完的混合物进行压制、烧结制成硬质合金基体刀片;在硬质合金基体刀片涂覆涂层,经喷砂处理后得钢件加工用涂层刀片。本发明提供的钢件加工用涂层刀片制作工艺简单,提高了刀片的耐磨性,可以有效抑制月牙洼磨损并减少积屑瘤的产生。
本发明公开了一种批量熔铸制备石墨烯增强铝合金基纳米复合材料的方法,包括以下步骤:将铝合金粉末与石墨烯粉末混合均匀得到复合粉体;将复合粉体压制成预制块体;将预制块体进行烧结,得到预制沉降块;将预制沉降块分割成若干一定质量的沉降块体;将铝锭加热熔化,得到铝合金溶液;将铝合金溶液移到容器中,边搅拌,边将沉降块体添加到铝合金溶液中,沉降块体中的石墨烯在熔化过程中均匀的分散到呈半固态的搅拌后的合金熔液中;将合金熔液浇铸到金属模具中,冷却凝固,得到石墨烯均匀分散的石墨烯增强铝合金基纳米复合材料,该方法能够解决石墨烯密度小难以下沉的问题,改善金属溶液的粘度,减轻基体和石墨烯发生的化学反应,实现批量生产。
本发明公开了一种宏观梯度硬质合金锥形柱齿及其制备方法,包括以下步骤:分别制备WC粒度不同、Co含量相同、碳含量不同的混合料A和混合料B;依据实际收缩系数设计模具,采用正向压制,先将混合料B加入模具中预压,再加入混合料A压制成混合压坯;烧结时,在1280℃‑1430℃进行分压烧结,通入氩气20‑60mba,冷却时,在1430℃‑1350℃缓慢冷却,在1350℃‑1250℃快速冷却,1250℃‑室温,自然冷却至室温,出炉得到宏观梯度硬质合金锥形柱齿。本发明的宏观梯度硬质合金锥形柱齿的表层具有高韧性、芯部具有高硬度和耐磨性,提高了锥形柱齿的使用寿命。
本发明涉及Cf‑SiC复合材料制备技术领域,且公开了一种轨道交通刹车盘用Cf‑SiC复合材料的制备方法,包括以下步骤:步骤一:将40~60份碳化硅(SiC)陶瓷粉和硅烷偶联剂一起进行一次球磨处理,得到一次球磨产物;步骤二:将一次球磨产物和40~60份碳纤维粉(Cf)一起进行二次球磨处理,得到二次球磨产物;步骤三:将二次球磨产物经过热压高温烧结处理,制备得到轻质、高致密度、低孔隙率、摩擦性能优异的Cf‑SiC复合材料。本发明解决了目前用于制备Cf‑SiC复合材料的化学气相渗透法(CVI),存在的制备出的Cf‑SiC复合材料的致密度较低(一般都存在10~15%的孔隙率)的技术问题的技术问题。
本发明公开了一种高熵合金粉芯丝材电弧熔覆加工工艺,包括以下步骤:1)、表面清理;2)、表面粗化处理;3)、电弧熔覆:使用粉芯为Fe‑Co‑Ni‑Mn‑Cu混合粉末的高熵合金粉芯电弧熔覆丝材进行电弧熔覆;4)、电弧重熔:利用钨极氩弧焊设备产生的电弧对电弧熔覆层加热使之熔融;本发明将电弧熔覆技术和熔化技术顺次实施,将电弧熔覆层用电弧加热,利用高温物理化学冶金过程,使表面层与基体材料实现冶金结合;对熔覆层进行重熔处理能消除喷熔覆层中的气孔和氧化物夹渣,井与金属基材产生溶解扩散冶金结合,从而大幅度提高致密性和结合强度,使熔覆层有更好的耐腐蚀、耐磨损和抗冲击性能。
本发明公开了一种大厚度钕铁硼磁钢及其制备方法。该制备方法包含以下步骤:S1.将钕铁硼压坯进行烧结,得到钕铁硼烧结体;其中,钕铁硼压坯为一分层结构,包括基体层和分隔层,基体层和分隔层之间设有石蜡层或聚乙二醇层;S2.将所述钕铁硼烧结体在惰性气体和H2条件下活化后,以重稀土元素为扩散源进行晶界扩散处理,即可。本发明方法能够制备得到剩磁Br高于14.8kGs,矫顽力Hcj高于20kOe,取向方向>20mm的大厚度磁钢,且重稀土添加量少,成本低。
本发明提供一种微滤膜及其制备方法、应用,属于膜分离技术领域。其中,微滤膜的制备方法包括:对预设的多种金属粉末进行混合并压制成型,以得到压坯,对压坯进行多阶段烧结处理,并控制烧结升温速率处于预设的烧结升温速率范围内,得到微米级多孔支撑体,并在微米级多孔支撑体上构筑纳米级三维网状结构,以得到微滤膜。本发明通过控制烧结过程可以获得微米级多孔支撑体,通过化学气相沉积、控制氧化、以及化学反应可实现在微米级多孔支撑体上构筑纳米级三维网状结构,形成微米/纳米双孔径的微滤膜,以实现对不同粒径的待过滤粒子进行处理,且耐高温、耐酸碱腐蚀,并具有很高的过滤效果以及较长的使用寿命,可适用于常温或高温条件下。
本发明涉及一种新型集成化高效相变离心换热器,包括导磁轴、套设在导磁轴上端外侧的动盘、套设在导磁轴中段外侧的静盘、设置在导磁轴下端的外转子电机组件、与动盘底部外周相连且套设在静盘外侧的导磁环、设置在动盘底面与静盘顶面之间且位于导磁环内的吸液芯结构、填充在吸液芯结构内腔中的液态工质、设置在导磁轴外壁与静盘内壁之间的第一永磁体与第一极靴、设置在静盘外壁与导磁环内壁之间的第二永磁体与第二极靴、设置在第一极靴的内壁与导磁轴外壁之间的第一磁流体以及设置在第二极靴的外壁与导磁环内壁之间的第二磁流体。本发明解决了快速传热和快速散热为一体的问题,并利用磁流体动密封的原理,解决了高速旋转下的密封问题。
本发明公开一种基于电射流的WS2软涂层刀具的制备工艺,属于机械切削刀具制造技术领域。上述基于电射流的WS2软涂层刀具的制备工艺,是利用电射流方法将WS2软涂层沉积于刀具基体表面,与常用的物理气相沉积(PVD)涂覆WS2软涂层相比,该工艺具有设备简单、可控性强、沉积速率高等特点。所制备的WS2软涂层刀具可广泛应用于干切削和难加工材料的切削加工。
本发明涉及一种合金的制备方法,特别是一种高强度合金材料的制备方法,包括以下步骤:真空球磨;将球磨后的混合粉料压块,而后放入烘箱进行烘干处理,烘箱的温度为50℃;将烘干后的混合粉块放入真空管式炉中,采用真空泵进行抽真空,而后在氩气的气氛下进行烧结,所述烧结温度为1350℃,真空管式炉的加热速度为30℃/min,保温20h;而后将烧结后的压块在线通过感应加热装置,进行感应加热,感应加热温度为500℃;将感应加热后的压块在空气中冷却至室温。本发明制备工艺过程简单,制备的合金材料强度高,导电性良好。
本发明公开了一种抗高温氯化腐蚀的Ni‑Cr‑Si多孔材料。其制备方法是将一定粒度的Ni、Cr、Si进行机械混合均匀,其质量百分比分别为70~80、18~25、2~10,然后加2%~4%硬脂酸造粒、干燥、模压冷成型,最后采用分段式真空无压烧结而得。本发明制得的Ni‑Cr‑Si多孔材料孔隙丰富均匀,孔隙度为35%~60%,最大孔径为150~240μm,透气度为900~1100m3·m‑2·s‑1·KPa‑1 ,径向膨胀为6%~8%,抗高温氧化性能和抗氯气腐蚀性能极好,可用于生物质燃烧中的过滤器件以解决其高温氯化腐蚀问题。
本发明提供一种带有止裂通孔的碳化硼‑铝合金复合板的制备方法,先制备出大厚度碳化硼陶瓷板,之后将陶瓷板与铝合金直接浇注,使铝合金在三维空间上对碳化硼陶瓷进行约束和固结,形成铝包裹碳化硼的一体结构材料。陶瓷板上均匀分布的止裂孔也有利于浇筑过程中液态铝的流动和贯通,使铝合金与碳化硼陶瓷的结合更加牢固。
一种超大型细晶钼平面靶的制备方法,采用纯度>99.95%的钼粉制得,其中,钼平面靶的长度>450㎜,宽度>320㎜,厚度>75㎜,制备方法是:取钼粉装入胶膜内,静压成型,后置于中频炉,氢气气氛下烧结成板坯后,置入模具中,锻打板坯模具,后置入回火炉,退火,形成细晶组织,精细加工、清洗、干燥后制得钼平面靶。本发明克服了烧结和锻打的工艺缺陷,工艺简单,易工业化生产控制,降低污染,成本低,质量提高,生产效率极大提高。
本发明公开了特别适合于磷酸铁锂制备的磷酸铁前驱体的制备方法及其制备的磷酸铁,以及磷酸铁锂的制备方法和由其制备的磷酸铁锂;磷酸铁的制备方法包括以下步骤:向含有硫酸和有机酸的水溶液中加入还原铁粉,于60‑90℃反应5‑10小时,反应完成后高磁过滤,得到硫酸亚铁水溶液;向硫酸亚铁水溶液中,滴加由过硫酸铵、磷酸铵、纳米粒子控制剂组成的混合液,于60‑80℃、pH值3以下进行沉淀,搅拌混合反应5‑8小时,反应结束后去磁过滤,压成滤饼,漂洗、喷雾烘干、制粉,得到磷酸铁产品。本发明通过对磷酸铁锂制备工艺和原料、磷酸铁的制备工艺和原料以及最初原料硫酸亚铁的成分进行改进,而使最终得到的磷酸铁锂的导电性能、振实密度和性能稳定性得到充足提高。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!