本发明涉及一种钛精矿球团的生产方法,属于钢铁冶金领域。本发明所解决的技术问题是提供一种新的钛精矿球团的生产方法,使钛精矿球团氧化固结,生产强度高、含硫量低、粒度均匀的熟球。该方法包括如下步骤:A、配料:按重量百分比称取钛精矿60%‑80%、铁氧化物20%‑40%;外配膨润土1.0‑1.5%的膨润土;B、造球;C、干燥:生球干燥;D、预热、焙烧;E、冷却,自然冷却即得钛精矿球团。本发明主要是利用铁氧化物在高温焙烧时的晶间固结机理,同时这种添加剂对钛渣的品位不造成影响,可以得到粒度均匀的熟球团,从而在电炉冶炼时稳定电炉内的反应速度,减少高级能源的消耗,同时这种球团由于在焙烧时具有脱硫作用,为钛精矿球团的生产提供一种全新的方法。
本发明公开了一种有机物精制除钒尾渣热装钠化工艺,属于冶金技术领域。本发明为充分利用有机物精制除钒尾渣中的钒和余热,降低能源消耗和生产成本,提供了一种有机物精制除钒尾渣热装钠化工艺,包括:将150℃~350℃的有机物精制除钒尾渣和钠化剂装入回转窑中,装料完毕,通入空气,650℃~700℃进行焙烧,焙烧完毕,得钠化焙烧熟料。本发明方法避免了精制尾渣中钒的挥发,保护环境的同时,实现了钒资源的最大化利用;利用精制尾渣中的活性炭燃烧产生的热供给自身反应,降低能源消耗,大幅降低生产成本。
本发明公开了一种钒氮合金除尘灰的资源化利用方法,属于冶金固废资源化利用领域。钒氮合金除尘灰的资源化利用方法,包括如下步骤:a.将钒氮合金除尘灰与钒渣按照质量比15‑25∶100混合均匀后焙烧,焙烧温度为700‑800℃,焙烧完全后得到熟料;b.将步骤a得到的熟料水浸,水浸后固液分离得到含钒浸出液和滤渣。本发明针对钒氮合金除尘灰中含有较多钠、钾资源的特点,将钒氮合金除尘灰作为钠盐用于钒渣钠化焙烧,本发明的方法不仅可以减少现有钒渣提钒工艺中的碳酸钠消耗,同时还实现了除尘灰的资源化利用,可有效解决现有技术回收利用除尘灰的工序复杂且回收利用率低的问题。
本发明涉及冶金化工领域,公开了一种利用四氯化钛精制尾渣提钒的方法。该方法包括:(1)将四氯化钛精制尾渣在100‑300℃下焙烧5‑30min,得到预处理渣;(2)将步骤(1)得到的预处理渣与碳酸钠混合,在600‑900℃下焙烧60‑120min,得到焙烧熟料;(3)向步骤(2)得到的焙烧熟料中加水,进行搅拌浸出,然后固液分离,得到含钒浸出液和浸出残渣。该方法通过两段焙烧实现了对四氯化钛精制尾渣的脱氯过程,同时能够有效减少钒的挥发损失。
本发明涉及化工冶金技术领域,公开了一种含钒精制尾渣预氧化提钒的方法。该方法包括以下步骤:(1)将含钒精制尾渣、五氧化二钒和三氧化二钒按照100:(20~30):(20~30)的质量比进行混合;(2)将混合料置于坩埚中,并在氧气气氛下进行预氧化焙烧,焙烧温度为400~600℃,焙烧时间为1~4h,焙烧尾气通入碱性溶液中进行吸收;(3)对焙烧物料进行研磨,并将研磨后的物料加入碱性溶液中搅拌浸出,其中,浸出温度为80~90℃,浸出时间为0.5~2h,浸出液固质量比为(5~10):1;(4)过滤浸出浆液,得到浸出液和浸出残渣。该方法操作简便、氧化脱氯效率高、脱氯尾气中的氯能循环回用,同时钒收率较高。
本发明涉及一种钛合金材料及其制备方法,尤其涉及一种高铌钛铝合金及其制备方法,属于冶金技术领域。本发明的高铌钛铝合金钛含有:55~63.2重量份的Ti、26.8~40重量份的Al和5~15重量份的Nb。其制备方法包括如下步骤:a.配料:取钛白粉27.3~30重量份、铝粉24.6~30.3重量份、氧化钙23.5~28.5重量份、氟化钙14.3~20重量份,五氧化二铌3~8重量份;b.混匀:将a步骤配好的料混合均匀;c.焙烧:将b步骤混匀的原料焙烧,焙烧温度1450~1600℃,焙烧时间10~40min;d.冷却:将c步骤焙烧后的原料冷却,实现高铌钛铝合金和熔渣的有效分离。本发明以钛和铌的氧化物为原料,电铝热一步还原合成制备高铌钛铝合金,可以降低生产成本、缩短工艺流程,具有较大的现实意义。
本发明涉及冶金技术领域,公开了一种四氯化钛精制尾渣制备钒铁合金的方法。该方法包括以下步骤:(1)将四氯化钛精制尾渣破碎磨细,于回转窑中氧化焙烧,得到含钒焙烧熟料;(2)将含钒焙烧熟料和钒氧化物与铁粒、还原剂、造渣剂、发热剂混合均匀作为钒铁冶炼混合料,然后将钒铁冶炼混合料均匀分布于冶炼炉中,进行冶炼;(3)冶炼结束后,待炉体和渣、金自然冷却后,拆炉并分离渣、金,得到钒铁合金饼和冶炼渣。该方法将四氯化钛精制尾渣焙烧得到含钒焙烧熟料,和钒氧化物作为混合含钒原料,按照电热还原工艺和自蔓延冶炼工艺进行冶炼,不仅能够制备得到合格的钒铁合金产品,钒冶炼收率高,而且产生的冶炼渣可作为提钛原料进一步资源化利用。
本发明涉及一种钛合金材料及其制备方法,尤其涉及一种钛铝钒合金及其制备方法,属于冶金技术领域。本发明提供的钛铝钒合金材料含有:55~63.2重量份的Ti、26.8~40重量份的Al和5~15重量份的V,其制备方法包括如下步骤:a.配料:取钛白粉25~29.2重量份、铝粉24.5~26.3重量份、氧化钙20~28.6重量份、氟化钙14~20重量份,五氧化二钒2.9~7.5重量份;b.混匀:将a步骤配好的料混合均匀;c.焙烧:将b步骤混匀的原料焙烧,焙烧温度1450~1700℃,焙烧时间20~50min;d.冷却:将c步骤焙烧后的原料冷却。本发明的钛铝钒合金材料钛含量低,合金密度低,原料成本低,合金的塑性好,脆韧转变温度低。其制备方法成本低、工艺和设备要求简单、原料来源广。
本发明涉及一种亚铁盐溶液的提纯方法, 本法是 先用炼钢转炉污泥铁粉和碳酰胺将钢板酸洗溶液的pH值调至 3~5, 然后鼓空气氧化, 加入阴离子型或非离子型有机絮凝剂搅 拌混合, 静置过滤沉淀, 即可得到纯化的亚铁盐溶液。本发明的 优点在于工艺简单, 去硅效果较好, 并能充分利用冶金二次资源, 增加高档氧化铁粉产量, 可将亚铁盐溶液中SiO2含量从600ppm降至10ppm以下, 同时还能有效的去除Al、V、Ti、Ca、Mg等杂质, 铁损较少, 所得纯化液可进而用湿法结晶沉淀或喷雾焙烧法制取高纯氧化铁粉。
本发明公开了一种钙化提钒尾渣回收提钒的方法,属于冶金技术领域。本发明为了解决目前经过一次钙化焙烧提钒残留的尾渣提钒难度大、提钒浸出率低、资源浪费严重的技术问题,提供了一种钙化提钒尾渣回收提钒的方法:将钙化提钒尾渣的水分控制在30~35wt%,烘干、粉碎后,得物料A;向物料A中补充石灰石,控制体系钙钒比为0.3~0.8,混合均匀,经焙烧、冷却,得焙烧料;将焙烧料研磨后,采用硫酸溶液进行浸出,得提钒溶液和提钒渣。本发明通过对一次钙化焙烧提钒尾渣进行二次焙烧、浸出,进一步提取尾渣中含钒成分,实现钒渣中钒的充分回收利用,转浸率可达60%以上,避免资源浪费。该方法使用简单易行具有广泛推广的价值。
本发明公开了一种钒分级浸出的方法,属于冶金领域。一种钒分级浸出的方法:通过依次调节含钒浸出料浆pH,依次进行分级浸出,包括10≤pH<13的一级浸出,7≤pH<10的二级浸出,6≤pH<7的三级浸出,4≤pH<5的四级浸出,2.5≤pH<3的五级浸出;1.5≤pH<2.5的六级浸出,1.0≤pH<1.5的七级浸出。本发明方法根据V5+在不同pH浸出液中的存在形式和颜色,创造性的提供了一种钒分级进出方法,产生不同的浸出产品,显著提高了钒浸出率,分级累计浸出率可到96%以上;可以根据钙化焙烧熟料中V5+的存在形式,灵活选择浸出级别,减少分级次数,降低成本,现场实施性强,具有广阔的推广价值。
本发明公开了一种从钒钛磁铁矿中回收利用有价元素的方法,包括将矿石或精矿破碎后配入钠盐、氧化焙烧,将钒和铬转化为可溶于水的钒酸钠和铬酸钠,水浸到溶液中,从溶液中分离钒铬得到五氧化二钒和三氧化二铬产品。浸出后残渣可配入煤粉造球,在转底炉内还原,磁选分离铁和钛,得到磁性铁粉可作为粉末冶金或炼钢的原料,和含TiO2大于50%的非磁性产品作为提钛的原料。或者将浸出后残渣在电炉内将铁还原,得到铁水作为炼钢的原料,和含TiO2大于50%的电炉炉渣作为提钛的原料。本方法不仅工艺流程短,经济合算,而且铁钒钛铬的回收率高。
本发明公开了一种钛白废弃物综合利用方法,属于冶金领域。本发明方法是要解决现有技术中不能低成本充分利用钛白废弃物的技术问题。钛白废弃物综合利用方法,包括以下步骤:a、氯化钙溶液的制取:向盐酸溶液中加入石灰石,充分反应得到氯化钙溶液;b、石膏的制取:向氯化钙溶液中加入钛白废弃物,充分反应后过滤得二水硫酸钙,经烘干处理得到产品石膏;c、铁精矿的制取:向步骤b所得滤液中加入氢氧化钠溶液,充分反应后生成氢氧化亚铁沉淀和氯化钠溶液,所述氢氧化亚铁沉淀经洗涤、压滤、焙烧制得铁精矿。本发明方法充分利用了钛白废弃物硫酸亚铁和工业废盐酸,生产多种化工产品,解决了钛白废弃物对环境污染的问题,具有很好的推广前景。
本发明提供了一种高铬型钒钛磁铁球团矿及提高高铬型钒钛磁铁球团矿质量的方法,涉及冶金技术领域。一种高铬型钒钛磁铁球团矿通过以下方法制备而得:将水分质量百分比含量为6~7%的高铬型钒钛磁铁精矿与粘结剂按照98.4:1.5~1.7的比例进行混合搅拌,得到混合料;对混合料进行造球,并使得造球后的生球的水分质量百分比含量为9~10%;将生球依次进行筛分以及焙烧后得到熟球,且焙烧是在氧化气氛中进行的。通过上述提高高铬型钒钛磁铁球团矿质量的方法制备而得到,此高铬型钒钛磁铁球团矿的冶金性能优异,质量高,不仅可以满足中小高炉对入炉球团矿的要求,还特别适用于特大高炉的入炉球团矿的要求,具有较大的工业生产前景。
本发明涉及从提钒尾渣中回收铁、钒、铬和镓的方法,属于冶金领域。本发明所解决的技术问题是提供了一种从提钒尾渣中回收铁、钒、铬和镓的方法。本发明从提钒尾渣中回收铁、钒、铬和镓的方法包括如下步骤:a、物料混合:将提钒尾渣、还原剂、氧化钙、粘结剂按下述重量配比混匀:提钒尾渣∶还原剂∶氧化钙∶粘结剂=100∶12~25∶15~25∶2~4;b、造球:a步骤混匀后的物料造球得到生球团;c、初步还原:生球团于1000℃~1200℃下还原,得到金属化球团;d、熔炼及深还原:金属化球团于1450℃~1600℃下熔炼分离和深还原,得到炉渣和含钒、铬、镓的生铁。本发明方法为矿物中钒、镓和铬资源的利用提供了一种新的选择,具有广阔的应用前景。
本发明属于冶金领域,具体涉及一种炼高钛渣用钛球团矿及其制备方法。本发明炼高钛渣用钛球团矿,其主要成分为TiO2?41%~49%,TFe?31%~34%;FeO?0.3%~2%,Fe2O3?42%~47%;粒度为5mm~20mm的钛球团矿质量百分数大于90%;主要原料为钛精矿及占其总质量0.5%~1.0%的由聚丙烯酰胺和氧化钙混合而成的有机成型添加剂。本发明还提供了炼高钛渣用钛球团矿的制备方法,包括以下步骤:配料,烘干,细磨混匀,滚动成型,氧化焙烧,冷却。本发明方法所制备的钛球团矿用于冶炼高钛渣。
本发明公开了一种高钒生铁及其制备方法,属于冶金技术领域。制备方法包括:将钒钛磁铁矿金属化球团以及占钒钛磁铁矿金属化球团的3‑10wt%的碳质还原剂混合置于熔炼炉中熔炼,将熔炼温度升至1500‑1550℃、保温10‑30min后立即放出低钒铁水,保留炉渣;以及将熔炼温度重新升至1550~1600℃,在3~5min中内分3~5次加入碳质还原剂与氧化钙粉形成的混合料,保温10~60min后,立即放出高钒生铁水,凝固后得到高钒生铁。本发明制备的高钒生铁钒含量高,其生产的高钒渣可以适用于直接生产钒铁合金。
本发明涉及球团矿冶炼领域,尤其是一种有效改善高钛炉渣的冶金性能的含氟钒钛球团矿的生产方法,包括如下步骤:将按重量计93~97份的钒钛铁精矿粉矿、1~3份的萤石矿粉以及1~3份的膨润土充分混匀后,经球磨机润磨5~10min,然后经圆盘加水造球得到8~16mm的球团,其中,生球中的水分含量为6~10%,生球进行干燥的温度为200~600℃,干燥的时间为10~15min,球团预热温度为800~1000℃,预热时间为15~25min,球团进行焙烧温度为1150~1300℃,焙烧时间为20~40min,焙烧之后得到含氟钒钛球团矿。本发明解决了萤石粉矿的使用问题,可较均匀的提高炉渣CaF2含量,含氟钒钛球团矿加入高炉冶炼也可以有效改善高钛炉渣的冶金性能,尤其适用于含氟钒钛球团矿的生产制备之中。
本发明公开了电炉冶金领域中一种机械性能高的用于大型钛渣电炉的自焙电极及其生产工艺。该自焙电极采用电极糊焙烧而成,其直径为800mm~1200mm,体积密度为1.45g/cm3~1.5g/cm3。该自焙电极其抗折强度>5.5MPa,耐压强度>19MPa,可适应大型钛渣电炉冶炼工况条件。该自焙电极的生产工艺是将加入电极壳内的电极糊进行焙烧形成自焙电极,并将电极糊中挥发分的重量百分比控制在12.5%~15%,将电极糊柱高度控制在4m~4.5m。采用上述工艺可以焙制出机械性能高,可适应大型钛渣电炉冶炼工况条件的自焙电极,使大型钛渣电炉能够采用自焙电极进行冶炼,大幅度降低电炉的生产成本。
本发明涉及从高钙金属渣中提取金属的方法,属于冶金领域。本发明所解决的技术问题是提供了一种可以有效的从高钙金属渣中提取金属的方法。本发明从高钙金属渣中提取金属的方法包括如下步骤:a、配料:取高钙金属渣和添加剂混匀得到混合物料,其中,所述的高钙金属渣中的金属为钒、铬中至少一种;所述的添加剂为铝酸钠,或碳酸钠、碳酸氢钠、氢氧化钠中的至少一种与氢氧化铝、铝氧化物中的至少一种的混合物;高钙金属渣以金属元素含量计与添加剂以Na2O计的重量配比为0.8~2.5;b、焙烧:混合物料于700~1000℃有氧焙烧2~7h;c、浸出:焙烧后的物料浸出,得到含该金属元素的溶液。
本发明公开了一种钛精矿与钒铁精矿混合精矿酸性氧化球团及其制备方法,属于冶金领域。一种钛精矿与钒铁精矿混合精矿酸性氧化球团的制备方法,该方法包括以下步骤:将钛精矿、钒铁精矿和有机粘结剂,混合均匀后,经造球、干燥、氧化焙烧、冷却,得钛精矿与钒铁精矿混合精矿酸性氧化球团。本发明同时利用了微细粒级钛精矿和钒铁精矿,并外配入有机粘结剂用于造球,在高温氧化气氛下焙烧制备酸性氧化球团,通过对各物料配比和造球、干燥、焙烧工艺的控制,使脱硫率达95%以上,钛精矿与钒铁精矿混合精矿酸性氧化球团的抗压强度>1800N/球,S含量<0.015%,应用前景非常可观。
本发明涉及一种钛合金材料及其制备方法,尤其涉及一种钛硅合金及其制备方法,属于冶金技术领域。本发明的钛硅合金材料含有:37~60重量份的Ti、40~63重量份的Si。本发明的钛硅合金材料的制备方法包括如下步骤:a.配料:取钛白粉35.7~38.5重量份,硅粉26.9~32重量份,氧化钙25~34.6重量份;b.混匀:将a步骤配好的料混合均匀;c.焙烧:将b步骤混匀的原料焙烧,焙烧温度1450~1600℃,焙烧时间10~30min;d.冷却:将c步骤焙烧后的原料冷却,实现钛硅合金和熔渣的有效分离。本发明利用电硅热还原钛白粉一步合成制备钛硅合金的,工艺简单,无需在惰性气体或真空环境下进行,能耗较低,能规模化的生产制备,具有较大的应用前景。
本发明是采用煤基火法直接还原工艺,使攀枝花钒钛铁多金属矿不经冶炼工序,直接从精矿粉中实现金属铁、金属钛、金属钒有效地分离。主要工艺为:将钒钛铁精矿粉与焦粉、添加剂等均匀混合造球后加入隧道窑,以1050-1300摄氏度焙烧,形成的金属化球团经磨细、磁选、还原、分离处理后,分离的铁、钛、钒含量分别为:铁粉含铁量:85-99%钛渣含钛量:70-85%钒渣含钒量:80-98%由于分离后的金属更纯、有害成分更低,所以用途更广市场更好。还原铁粉可代替废钢、生铁入炼钢炉炼钢,也可作为粉末冶金原料;还原钛粉可做海绵钛和钛白粉的原料;还原钒可做钒铁合金和五氧化二钒的原料。本工艺具有工序流程短、节能、环保、资源综合利用率高和产品用途广等特点。
一种含钒钢渣中钒的回收工艺,属于冶金及固废综合利用技术领域。回收工艺包括:将回收原料进行预还原处理,得到预还原物料,回收原料包括含钒钢渣、铁质原料、改质剂以及第一碳源还原剂;将预还原物料与第二碳源还原剂进行熔炼,将熔渣和含钒铁水分离;将含钒铁水进行吹氧提钒,得到钒渣与提钒铁水。采用预还原工序对回收原料进行预还原处理后进行熔炼,可选的铁质原料采用钒钛磁铁矿精矿粉提高含钒量,可选的预还原工序之前进行球磨造球提供反应动力学条件,解决了含钒钢渣在火法回收工艺中回收成本高、收率低的技术问题,回收成本低、收率高。
本发明涉及钒火法冶金技术领域,公开了一种钠化钒渣的分级处理方法。该方法包括以下步骤:(1)将出炉熔融态的钒渣加入冶炼炉中并加入钠化剂,然后对钒渣喷吹氧气或空气进行反应,反应过程中通过外部供热使钒渣始终保持熔融状态,其中,钒渣与钠化剂的用量比为3~10:1;(2)反应结束后停止外部供热以及喷吹氧气或空气,同时在冶炼炉上加保温盖使钒渣随炉自然冷却,待钒渣中的富钒相充分上浮后,脱模得到钒渣饼;(3)分离钒渣饼中的富钒相,并将富钒相加入水中进行浸出;(4)浸出结束后进行过滤,得到含钒溶液和提钒尾渣。该方法具有热损失少、钒渣处理量小、钒浸出率高、浸出时间短等优点。
本发明涉及火法冶金生产装备领域,尤其是一种仅需一套浇钢车装置即可完成车铸线和坑铸线浇铸,从而提高浇钢设备利用率的浇钢车装置及浇钢操作方法,包括底部设置有浇口的钢水吊包,包括横移装置和设置于横移装置上的升降装置,所述钢水吊包设置于升降装置上,所述横移装置设置于行走传动装置上,其中,横移装置的移动方向与行走传动装置的移动方向互相垂直。在实际操作时,由于可以通过升降装置、横移装置以及升降装置的配合操作,实现对钢水吊包高度的调节,适应坑铸线和车铸线不同的浇铸高度要求,从而仅需一套浇钢车装置即可完成车铸线和坑铸线浇铸,从而提高浇钢设备利用率。本发明尤其适用于同时需要对坑铸线和车铸线进行浇钢操作的场合。
本发明属于火法冶金技术领域,提供了一种使用氧化镁强化钒钛铁精矿直接还原‑熔分过程的方法。所述方法包括步骤:将钒钛铁精矿、氧化镁和煤粉混合,加入粘结剂并压制成球,形成含碳球团并进行还原,得到钒钛铁精矿金属化球团;将金属化球团进行熔化分离渣铁,得到含钒生铁和熔分钛渣。本发明的方法能够降低直接还原过程还原温度和缩短还原时间,促进金属化球团熔化分离,渣铁分离良好,提高钒在铁中的回收率,从而降低钒钛铁精矿直接还原‑熔分过程能耗,提高生产效率,降低成本。
本发明涉及一种钒钛磁铁矿低温采选冶钛的方法,属于冶金技术领域。具体经过以下步骤:1)500~1100℃低温焙烧;2)焙烧后的产品添加固体还原剂,于1100-1300℃的温度进行还原熔炼,然后通过渣、铁分离,分别得到铁水和钛渣;3)所述钛渣经磁选除杂,得到富钛料;4)所述铁水在直流电弧炉中添加所需金属氧化物精矿,直接合金化炼成合金钢。本发明冶炼方法是一种全新的冶炼方法,将现有的采选铁矿改为采选钛矿,经低温焙烧还原,球团矿在电弧炉熔化、还原、分离的铁水便于添加缺的金属元素的矿物直接冶炼合金钢;钛渣磁选得到富钛料,进一步熔炼成钛合金或金属钛;熔炼渣可作为冶炼稀土金属原料,一次性充分分别利用矿中各元素。
本发明公开了一种利用钒钛磁铁矿尾矿制备钛铁合金的方法,属于火法冶金技术领域。本发明方法包括如下步骤:a.将钒钛磁铁矿尾矿、粘结剂和水按比例混合造球,干燥后得到干球团;b.将干球团和还原剂按比例混匀,然后熔炼得到钛铁合金。本发明方法具有工艺简单、成本低廉、周期短、产品附加值高等优点,能高效地从钒钛磁铁矿尾矿中富集出铁、钛、钒、铬等有价资源,制备出的钛铁合金具有较高的经济效益,可有效解决现有技术回收钒钛磁铁矿尾矿中有价资源回收率较低的问题。
本发明属于火法冶金技术领域,特别涉及一种硫钴精矿的处理方法。步骤如下:(1)氧化焙烧;(2)压力成型;(3)干燥;(4)直接还原;(5)保护冷却;(6)磨矿磁选:最终得到合金化铁粉和炉渣。本发明方法提供了一种硫钴精矿综合利用新工艺技术,解决了湿法冶炼钴镍行业工艺过程复杂、能耗高、副产品多、污染大、效率低、钴镍回收率低等问题,具有工艺简单、周期短、效率高等优点,能高效的从硫钴精矿中分离出铁、钴、镍、铜、硫等有价资源,资源回收率可达95%以上,具有较高的经济效益。同时,所制得的合金化铁粉既可作为炼钢和铸铁的添加剂,也广泛用于制备磁性材料、高温合金等,磁选尾料可用于制备水泥、混凝土、地砖等建筑材料。
中冶有色为您提供最新的四川攀枝花有色金属冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!