本发明一种复合材料切削热分配系数的计算方法属于复合材料切削加工技术领域,涉及一种将碳纤维复合材料纤维方向考虑在内的切削热分配系数的计算方法。该方法根据复合材料不同纤维方向、不同工艺参数及刀具几何参数下所产生的已加工表面回弹量,并结合傅里叶传导定律及其传热反问题的求解方法,得到传入刀具的热量,再通过对加工过程消耗总能量的计算,最终获得加工过程刀具和工件之间的热分配系数。本发明推导的公式中,将纤维方向和刀具角度全部考虑在内,得到刀具前角、刀具后角、切深、纤维方向对切削热分配系数的影响关系;在加工不同纤维方向的复合材料过程中,准确计算出刀具与工件的切削热分配系数,使计算出的温度场分布更接近实际。
本发明公开了一种J字型复合材料加强筋的制造方法,包括以下步骤:制备平面预制体;成型反C字型件预制体;成型反Z字型件预制体;拼合J字型复合材料加强筋;固化J字型复合材料加强筋。本发明通过一次铺放2‑3层预浸料、多次铺放的方法制备碳纤维复合材料预制体,解决了逐层铺放成型效率低的问题。本发明将反Z字型件预制体分成两步成型,其中反Z字型件半成品配套模具的钝角设计使得在热隔膜成型中隔膜能够将预制体压实到模具表面而不产生架桥,克服了热隔膜成型在类深腔的结构中无法成型的问题。本发明通过真空袋法制备碳纤维复合材料平面预制体解决了预浸料层间有气泡问题,通过热隔膜成型方式解决了R角区域褶皱的产生的问题。
本发明公开了一种复合材料的正向‑反向进给螺旋铣孔方法,刀具先正向螺旋铣前半段加工孔,然后反向进给螺旋铣后半段加工孔,可避免复合材料出现超出加工要求的分层、撕裂等缺陷,提高加工质量。在本发明螺旋铣预加工孔的过程中,由于无垫板,可能产生加工缺陷,但加工缺陷会在后续的反向进给螺旋铣孔过程中被切削掉,且该过程不会再产生新的加工缺陷。本发明中刀具正向进给螺旋铣前半段加工孔时,后半段材料可作为前半段加工的垫板,使复合材料在此处的纤维层不出现分层、撕裂等缺陷;在反向进给螺旋铣后半段材料时,复合材料受到的轴向力方向发生改变,前半段剩余材料可作为后半段加工的垫板,使复合材料在此处的纤维层不出现分层、撕裂等缺陷。
一种激光沉积制造氧化石墨烯铝基复合材料及其制备方法,属于金属基复合材料领域。该氧化石墨烯铝基复合材料的制备方法为:将氧化石墨烯溶液、铝基粉材、球磨球、溶剂加入球磨罐中进行湿法球磨,得到氧化石墨烯铝基复合粉材;将其作为原料,采用激光沉积制造(LDM)方法制得氧化石墨烯铝基复合材料。该制备方法通过低温湿法球磨,利用合金粉材与球磨球的协同作用达到氧化石墨烯附着在粉材表面的效果,使氧化石墨烯均匀有效分散在铝基体中,并保证氧化石墨烯不与铝基体发生反应,实现了氧化石墨烯铝基复合材料激光沉积制造的可行性并增强了其机械性能。
一种壳聚糖/有机蒙脱土纳米复合材料的制备方法,属于新工艺、新材料技术领域。其特征是将有机蒙脱土按照一定比例加入到质量分数为0.05%~0.4%、PH值为4.5~5.5的壳聚糖溶液中,50℃~60℃下搅拌反应10H~16H,反应后溶液在80℃~95℃水浴条件下蒸发至无明显液体存在,将所得固体用去离子分散、过滤,洗涤至中性,所得固体80℃~95℃下干燥、研磨过筛,既得壳聚糖/有机蒙脱土纳米复合材料。本发明的效果和益处是用水量少,反应条件温和,作为吸附剂使用后材料易于回收处理,无二次污染,有利于环保。制备的壳聚糖/有机蒙脱土纳米复合材料可有望应用于水处理、防腐剂、抗菌剂等领域应用。
一种激光燃烧合成原位自生陶瓷颗粒增强铁铝基复合材料的方法,属于材料技术领域,按以下步骤进行:将钨矿石粉、铁粉、铝粉和碳粉置于球磨机中球磨获得混合粉料;将混合粉料压制成压坯,采用CO2激光加工机发射高能激光束点燃压坯表面,引发压坯自蔓延烧结,生成原位自生陶瓷颗粒增强铁铝基复合材料。本发明的方法在一种基体上同时生成两种陶瓷颗粒增强相,缩短了复合材料的制备工艺流程、降低了材料制备成本,易于进行大规模生产和应用。
一类含难熔金属颗粒的镧基非晶态合金复合材 料,其特征在于复合材料的成分为:体积百分比,AxBy,x=5~80,y=20~95,x+y=100;其中A为W、Mo、Ta、Hf、Nb、WC、TaC、NbC难熔金属颗粒中的任一种或多种,颗粒的尺寸为10nm至100μm;B为构成复合材料基体的多组元镧基非晶态合金,非晶态合金在发生晶化转变之前出现有明显的玻璃转变,过冷液态温度区间的宽度ΔTx大于30℃。在难熔金属颗粒含量小于50%的复合材料中,难熔金属颗粒弥散分布于镧基非晶态合金基体上,所形成的复合材料比单一非晶相的合金具有更高的强度和更好的热稳定性;在难熔金属颗粒含量大于50%的复合材料中,镧基非晶态合金可作为难熔金属颗粒的结合体,将其结合成为块体材料。
一种光‑热能量转换和热能存储定形相变复合材料,属于功能复合材料领域。一种光‑热能量转换和热能存储定形相变复合材料,所述复合材料由支撑材料和有机相变材料组成,所述支撑材料与有机相变材料的质量比为3:7~1:9;所述支撑材料为片层状,有机相变材料均匀填充在支撑材料层间,构成层状堆叠结构;所述支撑材料为Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2的纳米片;所述有机相变材料为石蜡、脂肪酸、脂肪酸酯或醇类化合物。所述复合材料具有高相变焓值,优异的形状稳定性和热稳定性,在热能存储与利用领域具有广阔的前景。
本发明涉及金属基复合材料和焊接领域,特别提供了一种由金属陶瓷与合金工具钢采用真空钎焊连接技术制备的复合式搅拌摩擦焊接工具,该焊接工具适用于颗粒增强金属基复合材料的搅拌摩擦焊接。所述焊接工具的轴肩和搅拌针采用高强耐磨金属陶瓷材料,而夹持端采用合金工具钢,焊接工具由两种材料通过真空钎焊连接构成。所述焊接工具用高强耐磨金属陶瓷材料是以陶瓷颗粒为增强相,以耐热金属合金为粘结相,通过粉末冶金真空烧结方法制备。本发明的复合式焊接工具与传统钢质焊接工具相比,在搅拌摩擦焊接颗粒增强金属基复合材料时,其耐磨性和使用寿命可提高100倍以上,且不会引入杂质污染焊缝,可获得高的焊缝强度系数和高的焊缝表面质量。
本发明涉及型材加工技术领域,特别是一种圆截面复合材料的螺纹连接件及其制作方法。它包括一个连接件本体和一个与此连接件本体连接的螺纹连接件外套,其特征在于在所述的连接件本体外表和连接件外套内孔上分别开有螺旋凹槽,与此螺旋凹槽截面相对应的钢丝缠入连接件本体外表面的螺旋凹槽内或嵌入连接件外套内孔的螺旋凹槽内。本发明的优点是制作简单,由于本发明采用了上述结构,将钢丝镶嵌在圆截面复合材料的连接件本体的螺旋凹槽内,使钢丝起到了螺纹的作用,由于钢丝表面光滑,有效地避免了圆截面复合材料的连接件本体表面的磨损,且连接可靠紧密,耐磨性好,延长了连接件的使用寿命。
本发明涉及到一种麦饭石及植物纤维复合材料及其制造工艺,该复合材料主料为麦饭石和植物纤维粉,混合助剂采用硬脂酸、钛酸酯、硅烷偶联剂、硬脂酸钙、硼酸锌脂混合物,其中麦饭石和植物纤维粉控制在60‑80目进行混合反应,并且混合及压模较常规热固性工艺需要采用高压较低温进行。本发明兼容麦饭石与植物纤维的两种特性,并且大大提高植物纤维的疏水性,增加复合材料中麦饭石的韧性,又同时保留了密胺树脂材料的优异性能,降低生产成本。并且能够释放微量元素及负离子,适用于日常生活使用。
本发明涉及一种复合材料层合板层间结合强度测量方法,利用层间结合强度测量装置,垂直抓取撕裂复合材料层合板,测量90°剥离的层间结合强度,具体步骤包括:1)将试件水平固定在层间结合强度测量装置上;2)层间结合强度测量装置对试件进行撕裂破坏;3)剥离过程中实时测量垂直方向剥离力,将测得的数值取加权平均数,计算出复合材料层合板的层间结合强度。本发明提出了一种科学合理的复合材料层合板层间结合强度评价与测量方法,该方法简单、易懂,且充分考虑了工程实际中的复合材料层合板层间失效方式,从而弥补了科研与工程中对于复合材料层合板层间结合强度的评价和测量方法缺失。测量装置,操作简单方便、成本低廉。
本发明涉及一种二硼化钛基陶瓷复合材料及其制备方法。其相组成至少包括TiB2、TiC、Ti和(TiO1.20)3.12,其制备方法为将碳源、TiB2粉末和无水乙醇混合均匀,烘干去除无水乙醇,制成TiB2混合粉体;将所述TiB2混合粉体模压成形、干燥、或干燥后碳化,获得TiB2‑C素坯;用Ti、Al2O3和NH4Cl的混合粉末埋住TiB2‑C素坯及Ti块,进行真空熔渗,获得二硼化钛基陶瓷复合材料。本发明的方法步骤简单、温度要求低,在较低制备成本的条件下能够获得致密度高的二硼化钛基陶瓷复合材料,在制备过程中样品尺寸变化<1%,属净尺寸烧结;并且本发明的方法能够生产各种形状复杂的产品。
本发明的一种纤维增强复合材料梁的高精度损伤定位方法,包括:建立纤维增强复合材料梁的多质点集中质量模型;根据质量块划分准则确定幂指数最小值与划分质量块数量;搭建激光扫频测试系统并测试所述复合材料梁的固有频率和振型向量;利用理论计算获得复合材料梁在损伤前的固有频率和振型向量,获得复合材料梁的损伤前的刚度矩阵;利用实验测试获得的复合材料梁的固有频率、振型向量和损伤前的刚度矩阵得到残余力向量,初步确定损伤质量块的位置坐标;根据损伤位置偏差系数判别准则,判断该损伤位置是否满足定位精度要求,如果不满足则提高多质点集中质量模型的质量块划分数量,重新确定损伤质量块的位置坐标,直到损伤位置满足定位要求。
本发明公开了一种无机纳米粒子/热塑性颗粒协同增韧树脂基复合材料及其制备方法,属于复合材料高性能化技术领域。本发明通过简单易行、成本低的方法,将无机纳米粒子和热塑性颗粒同时均匀有效稳定的引入到树脂基复合材料层间,实现了对复合材料的协同增韧,增韧效果远远高于单独使用无机纳米粒子或热塑性颗粒增韧的效果,大大提高了复合材料的层间断裂韧性,扩展了复合材料的应用领域。
本发明公开了一种基于rGO‑SnO2纳米复合材料的NO2气敏元件及其制备方法,属于石墨烯‑金属氧化物复合材料气敏元件技术领域。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的rGO‑SnO2纳米复合材料组成,所述rGO‑SnO2纳米复合材料的微观形貌为在还原氧化石墨烯片层上均匀生长着SnO2纳米球,所述SnO2纳米球直径为40~70nm,为四方锡石相结构。本发明采用一步水热法制备出比表面积大、电阻率低、分散性良好的rGO‑SnO2纳米复合材料,然后将rGO‑SnO2纳米复合材料作为气敏涂层制备出NO2气敏元件。该气敏元件有效地解决了传统NO2气敏元件工作温度较高及石墨烯类气敏元件灵敏度较低、恢复时间较长等问题,具有较好的应用价值和发展前景。
本发明属于材料加工技术领域,具体涉及一种陶瓷颗粒增强镍铝基复合材料的激光烧结合成方法。本发明的技术方案步骤是:将镍粉、铝粉按照原子比Ni:Al=3:1混合,并加入镍铝混合粉总质量0.5-2wt%的钨精矿石粉末,进行球磨获得混合均匀的混合粉料,将混合粉料压制成圆柱形压坯,将压坯置于数控机床上,启动CO2激光加工机,激光功率为900-1200W,激光照射时间为10~20s,将压坯表面点燃并使其发生自蔓延反应,得到激光烧结合成的陶瓷颗粒增强镍铝基复合材料。本发明使基体自身的反应和增强相的生成以及金属基复合材料的制备结合在一起,由于原位自生的增强陶瓷相使得镍铝金属间化合物的高温力学性能能得到了明显的改善与提高。
本发明公开了一种连续纤维增强杂萘联苯共聚芳醚砜共混树脂基复合材料及其制备方法,属于先进复合材料科学技术领域。将树脂基体溶解在有机溶剂得到树脂溶液,将连续纤维通过该树脂溶液,使其浸渍树脂溶液,经热流烘干通道除去有机溶剂,热流烘干通道温度为120℃~280℃,经冷却后得到预浸带;将预浸带裁剪成与模具大小匹配的预浸片,根据复合材料层压板的厚度铺设相应层数的预浸片,并在预浸片之间铺设PPBES或共混树脂薄膜,得到预浸料;将预浸料放于模具中经热压成型工艺,脱模后即得复合材料层压板。本发明对于推动先进复合材料的发展和开拓连续纤维增强高性能热塑性树脂基复合材料在航空航天领域的应用具有实用价值。
本发明涉及一种原位合成铝碳化钛-碳化钛/氧 化铝复合材料及其制备方法。复合材料由氧化铝颗粒增强相、 碳化钛颗粒增强相和铝碳化钛基体组成,其中氧化铝颗粒增强 相的体积百分数为10~53%;碳化钛颗粒增强相的体积百分数 为20~60%,铝碳化钛基体的体积百分数为10-60%。制备 方法:原料为纳米二氧化钛粉、铝粉和石墨粉, TiO2∶Al∶C的摩尔比为3∶ (4.9~5.1)∶(1.8~2.0)。原料粉经物理机械方法混合8~24小 时,装入石墨模具中冷压成型,施加的压强为10~20MPa,在 通有惰性气体保护气氛的热压炉内烧结,升温速率为10~50 ℃/分钟,烧结温度为900~1600℃、烧结时间为0.5~2小时、 烧结压强为20~40MPa。本发明可以在较低温度原位制备出具 有较高强度的 Ti3AlC2- TiC/Al2O3复合材料。
本发明涉及电化学涂敷催化剂领域,具体为一种利用电化学原理在MAX多孔材料基体上涂敷厚度可控纳米稀土氧化物或其复合材料催化剂的方法。本发明通过湿化学的方法来制备结构可控的MAX相催化剂载体材料,进一步利用电化学原理在MAX多孔材料基体上涂敷厚度可控催化剂。以汽车尾气催化用纳米稀土氧化物或其复合材料为涂敷目标物,MAX相多孔催化剂载体材料为阴极,电解液为对应的硝酸盐溶液,浓度为0.5-1.5M,以Pt为阳极进行电化学涂敷,获到厚度可控的、纳米颗粒覆盖均匀的纳米稀土氧化物或其复合材料催化剂涂层。本发明通过湿化学方法制备孔径尺寸和孔隙率可控的多孔催化剂载体,并利用基体导电的特性,利用电化学方法对多孔催化剂载体材料进行催化剂涂敷。
本发明公开一种具有近红外光催化效果的复合材料的制备方法。以氧化钇、氧化铥、氧化镱、氟化铵等为原料,通过简单的水热方法制得YF3:Tm3+、Yb3+上转换发光材料;以硝酸银和氢氧化钠为原料,通过化学沉淀的方法制得YF3:Tm3+、Yb3+/Ag2O复合材料;通过光沉积方法制得YF3:Tm3+、Yb3+/Ag2O@Ag复合材料。通过本发明的方法制备的催化剂稳定性好,化学性质稳定,可以重复使用。利用它可在可见光和近红外光照下降解有机污染物,在环境净化中具有重要的实用价值。
本发明公开了一种复合材料板材,包括从上到下依次连接的上表层、芯层和下表层,所述上表层包括功能面层和其下方的连续纤维增强热塑性复合材料层,所述下表层包括连续纤维增强热塑性复合材料层和其下方的功能面层,所述各层从上到下依次连接后采用冷热压机复合成型。本发明还包括该复合材料板材的制备方法及其应用。本发明的复合材料板材具有防水、防潮、不变形,耐摩擦、耐用和耐腐蚀,使用年限长等优点。本发明的复合材料板材结构科学合理,绿色环保,在节能减排及环境保护等方面具有突出优点,具有良好的应用前景。
一种制备聚苯胺复合材料的方法属于化工技术领域,该复合材料是聚苯胺/金/二氧化锰复合材料,该复合材料使用聚苯胺与氯金酸、高锰酸钾和高锰酸钾直接反应制备而成。并可以通过调节氯金酸和聚苯胺的质量之比来调节聚苯胺/金/二氧化锰复合材料中金纳米和二氧化锰的颗粒和分布,制备的聚苯胺复合材料可以用作超级电容器的电极材料。
本发明涉及一种复合材料内部缺陷类型自动识别检测方法,步骤为:利用红外热波无损检测设备对复合材料进行检测,生成红外图像;对红外序列图像进行相空间重构,确定复合材料缺陷的位置并分割图像的缺陷区域;对具有缺陷区域的红外序列图像进行相空间重构,进行奇异值分解得到奇异矩阵及左右两个投影矩阵,对上述两个投影矩阵分别进行再次矩阵重构,再次通过奇异值分解提取缺陷时间信息和空间信息的代数特征,构造混合特征向量作为缺陷的特征表征;运用RBF神经网络分类器结果完成识别分类判断。本发明对复合材料的部缺陷实现自动识别检测,对复合材料的损伤类型进行快速的检测,对复合材料的使用情况提供快速检测手段,具有重要的实际意义和研究价值。
一种应用于建筑、家具、包装、园林、运输领域中的木塑复合材料带过渡圆角多孔四方形型材,由立板、过渡圆角板、斜板、外腹板、内腹板组成,木塑复合材料带过渡圆角多孔四方形型材的外层由四个外腹板及四个过渡圆角板连接四方形外框架,木塑复合材料带过渡圆角多孔四方形型材的内层由四个内腹板连接四方形内框架,外腹板与内腹板之间分别由四个立板支撑连接,四个外腹板与四个过渡圆角板分别连接,过渡圆角板与内腹板之间分别由四个斜板支撑连接。该实用新型采用先进的加工方法和适当的添加剂,设计能满足多种领域需要的木塑复合材料型材,使该木塑复合材料型材具有环保、耐用、使用寿命长、有木材的外观、比塑料制品硬度高、刚性强、抗酸碱、防虫蛀、阻然性好,零甲醛、无污染以及可循环利用。
本发明风沙环境下旋翼无人机复合材料桨叶可靠性试验装备,包括装备本体,风向调节装置,沙子导向装置、激光测振装置和沙子循环装置,本发明通过多普勒激光测振仪发射激光束,经由激光导向管射向第一反光镜,利用光的反射原理水平射向第二反光镜,第二反光镜的激光束经由椭圆状薄壁反光镜反射射向复合材料桨叶测点位置,通过旋转椭圆状薄壁反光镜实现对复合材料桨叶测点的全局扫描,通过驱动电机控制激振频率进而控制沙子的流量及流量阀和扇叶控制气流大小和方向,实现本发明在风沙环境下对复合材料桨叶多个测点的测量,获取满足在风沙环境下工作的复合材料桨叶,避免因复合材料桨叶破坏、损坏致使多旋翼无人机无法正常工作,甚至酿成安全事故。
本申请属于复合材料层合板冲击损伤评估领域,具体涉及一种复合材料层合板冲击损伤评估方法,包括:当量化复合材料层合板冲击损伤的凹坑区域;当量化复合材料层合板冲击损伤的凹坑损伤区域;当量化复合材料层合板冲击损伤的分层损伤区域;基于当量化的凹坑区域、凹坑损伤区域、分层损伤区域构建复合材料层合板冲击损伤有限元分析模型,对复合材料层合板冲击损伤进行评估。
本发明属于复合材料制备领域,具体涉及一种利用冷气动力喷涂低温下快速制备Al基B4C复合材料的方法。首先按照预定的化学配比将铝或铝合金和B4C粉末混合,随后采用冷气动力喷涂的方法将不同化学配比的铝或铝合金/B4C复合粉末直接喷涂沉积形成块体Al基B4C复合材料,之后可对制备的复合材料进行热处理或热等静压处理,改善复合材料的力学性能。本发明制备的Al基B4C复合材料,制备温度在600℃以下,Al和B4C颗粒之间不会存在界面反应。
耐摩擦复合材料及其制备方法,属于高分子复合材料领域。复合材料中各组分按重量份组成,聚甲醛树脂100份,抗氧剂0.1~1份,聚四氟乙烯5~20份,聚氨酯5~10份,硅灰石5~30份,偶联剂0.1~2份,润滑剂0.5~3份。将处理后的硅灰石与聚甲醛、聚四氟乙烯、聚氨酯、抗氧剂、润滑剂混合,经双辊混炼机混合、平板硫化机压片,得到耐摩擦聚甲醛复合材料。本发明制备的复合材料具有摩擦系数低、力学性能好的特点,在制备轴承、齿轮等耐磨零部件等方面得到应用。
为了改善复合材料的硬度、耐磨性,设计了一种反应熔渗法制备的C/C‑ZrC‑Cu复合材料。采用丙烯,PAN基炭纤维为原料,所制得的反应熔渗法制备的C/C‑ZrC‑Cu复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,用Cu‑Zr混合粉末作为熔渗剂,复合材料的物相组成为ZrC,Cu,C及残留的Zr相。随渗剂中Zr的质量分数增加,ZrC的含量先增加再减少,残余Zr相的含量增加,Cu相的含量降低。ZrC相存在2种分布形态:部分ZrC在炭纤维周围聚集形成ZrC包覆层,部分ZrC颗粒弥散分布在基体的富Cu相内。Zr质量分数增加到60%时,复合材料的硬度和抗弯强度最高,分别为181和294MPa。C/C‑ZrCCu复合材料的弯曲断裂为假塑性断裂,随Cu相含量提高,基体韧性断裂特征更加明显。本发明能够为制备高性能的C/C‑ZrC‑Cu复合材料提供一种新的生产工艺。
中冶有色为您提供最新的辽宁有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!