本发明涉及一种耐磨高强度硬质合金的制备方法,属于金属冶金技术领域。本发明首先以膨胀石墨为模板,通过金属混合盐电镀法在膨胀石墨表面电镀一层混合金属层,电镀后烧结,使得膨胀石墨模板烧结去除,从而得到类膨胀石墨结构的混合金属粉末,本发明还以稻壳为原料,首先通过微生物发酵使得稻壳微腐产生丰富的孔隙,再将钨酸和氨水混合溶解后浸渍微腐稻壳,使得钨酸和稻壳复合,并在还原气体的作用下,原位炭化还原制得具有稻壳遗态结构的多孔粗糙碳化钨硬质料,最后将自制抗磨料和自制硬质料以及粘结金属混合压制并烧结,最终制得耐磨高强度硬质合金,本发明制备的耐磨高强度硬质合金具有极佳的耐磨性和机械强度,具有广阔的应用前景。
本发明公开了一种复合材料拉丝模具,包括模具本体,模具本体由顶部压缩区和底部定径区连接组成,模具本体中心设置有膜孔,压缩区中心的膜孔为锥形孔,定径区中心的膜孔为圆形孔,模具本体按照质量百分比由以下组分组成,WC颗粒72%‑80%、羰基Fe粉3%‑5%、Nb纤维13%‑17%、Nb粉3.5%‑6%和石墨粉0.45%‑0.65%,以上各组分的质量百分比之和为100%;模具本体中的Nb纤维呈网状排布,为中空的网状结构,本发明还公开了一种复合材料拉丝模具的制备方法,采用该方法制备的复合材料拉丝模具具有较高的强度和良好的韧性。
本发明公开的属于复合材料技术领域,具体为一种反应熔渗法制备的CC‑ZrC‑Cr3C2复合材料,包括:Zr‑Cr合金和C/C复合材料。该发明设计了以Zr‑Cr合金为熔渗剂,通过反应熔渗法制备C/C‑ZrC‑Cr3C2复合材料,提高C/C复合材料抗氧化、抗烧蚀性能的方案,研究不同工艺参数对反应熔渗制备的C/C‑ZrC‑Cr3C2复合材料组织结构、力学性能、氧化和烧蚀性能的影响,总结出最佳工艺参数,同时提出在高温烧蚀后的冷却过程中,Cr2O3对ZrO2的稳定作用,以期揭示Cr2O3对ZrO2的相变的抑制机理。
本发明属于新材料领域,更具体地说,涉及一种用于制备含钆化合物的耐磨高纯稀土氧化钆陶瓷球及其制备和使用方法。该氧化钆陶瓷球通过配料、制坯、冷等成型、一次滚圆、预烧、二次滚圆、二次烧结、筛选等步骤制备得到。本发明提供的氧化钆陶瓷球,纯度高、耐磨性好,能够用作制备含钆化合物的球磨介质。用本发明提供的氧化钆陶瓷球作为球磨介质制得的含钆化合物纯度高,光电性能突出。此外,本发明还提供了所述的用于制备含钆化合物的耐磨高纯稀土氧化钆陶瓷球的制备方法;该方法工艺简单,适用于批量生产,制备的氧化钆球尺寸可调,稳定性好,良品率高。
本发明公开了一种空心金属材料的制备装置,包括工作台和固定框架,固定框架由立柱和具有通孔、插销的第一横梁组成,固定框架的内腔中有磁力搅拌水浴锅和浆料容器,浆料容器中有浸渍篮,浸渍篮包括篮框、多孔底板和多孔盖板,篮框两侧连接有分别与第二横梁连接的第一提拉杆和第二提拉杆,多孔盖板上连接有第三提拉杆;同时本发明还公开了一种空心金属材料的制备方法,该方法将内支撑体进行预处理后在金属粉末浆料中浸渍,然后进行烧结,得到空心金属材料。本发明通过浸渍篮防止了内支撑体在浆料中出现漂浮的现象,避免了内支撑体出现的掉渣、滚落和二次污染的不足,实现了批量生产,制备的空心金属材料具有空隙率高、强度高和质量轻的特点。
本发明涉及一种细晶粒富硼碳化硼基陶瓷复合材料及其制备方法,其主要物相是富硼碳化硼和硼化钛,硼化钛分散在富硼碳化硼中,富硼碳化硼和硼化钛物相分布均匀,晶粒之间无裂纹。所述的细晶粒富硼碳化硼基复合陶瓷材料由碳化钛粉体和硼粉混合粉体,经过放电等离子烧结而成,其中按质量百分比计碳化钛粉体39.5%‑44.3%,硼粉55.7%‑60.5%。本发明提供的富硼碳化硼‑硼化钛陶瓷复合材料具有均匀的晶粒尺寸和物相分布,碳化硼硼碳比大且方便调控;材料具有高的致密度和优异的性能。
本发明公开了一种高熵合金及其制备方法,在本发明的实施例中,采用球磨以使高熵合金原料充分混合,并在球磨时进行无氧保护,进而模具成形高熵冶金坯件,燃烧在无氧环境下烧结成型,并在烧结时进行加压,从而获得致密且原料损失少的高熵冶金。
为了改善粉末冶金零件的硬度、耐磨性,设计了一种不锈钢对称功能梯度生物复合材料。采用316L气雾化不锈钢粉末为原料,经过配料、球磨、干燥、制粒、成形、球磨工艺成功制备了具有优异力学性能的汽车用粉末冶金不锈钢零件。其中,所述的不锈钢对称功能梯度生物复合材料,通过控制HA粉末的含量在20%~40%之间时,所得复合材料的抗弯强度和弹性模量分别与人体骨的抗弯强度和弹性模量相匹配,得到生物力学相容性好的复合材料。所述的不锈钢对称功能梯度生物复合材料,界面结合紧密,所得生物材料符合功能梯度材料的设计要求。本发明能够为制备高性能的生物复合材料提供一种新的生产工艺。
本发明提供了一种荧光陶瓷色轮组,色轮采用Al2O3和Y2O3为基料内加入稀土元素中的Eu2O3、Tb4O7和CeO2制作成红色、绿色和黄色等分的三色荧光陶瓷色轮或红色、绿色等分的两色荧光陶瓷色轮,所述色轮镶嵌在色轮框,所述色轮框上设置有散热翅通过特殊结构与色轮卡接,具有固定和散热功能,色轮框和散热翅一同对色轮产生的高热量进行传导,所述色轮一侧还设置有叶轮及其内设置的叶片,加快空气流动,散热效果好,色轮本身也具有耐高温,性能稳定等有益效果,出光效率高,使用寿命长,同时解决了涂覆荧光粉不均匀影响发光效率的问题。
一种粉末冶金深腔焊劈刀的生产工艺,包括以下步骤:S1,制压坯模具,所述压坯模具设有与所述劈刀外形相匹配的型腔,所述型腔内设有与所述穿丝孔相匹配的模仁;S2,制备极细钨粉,通过反应炉用氢气还原三氧化钨得到钨粉,将钨粉中物料粒度较粗的进行筛出粉碎,再掺入极细钨粉内,最后在钨粉中混合;S3,坯料成型,将S2中的制得的极细钨粉铺设在S1中的压坯模具中,通过压坯模具压制得到劈刀坯料;S4,加强劈刀结构,将S3中制得的劈刀坯料放置在炉中进行高温烧结,提高其致密性能,最后冷却得到所述劈刀,本发明采用粉末冶金加工工艺制备特定的劈刀,所加工成型后的劈刀精度高,节省大量的切屑材料,效率更,适合工厂大规模的劈刀生产。
本发明公开了一种基于有机金属框架的晶粒抑制剂制备超细硬质合金的方法。所述方法包括:将铬离子、钒离子与有机配体通过水热法生成含铬和钒的金属有机骨架材料,并将其与硬质合金均匀混合,形成硬质合金复合材料,之后进行球磨、造粒、压制成型、烧结等处理,获得细晶硬质合金。本发明以含铬和钒的金属有机骨架材料作为碳化铬、碳化钒的前驱体,能够实现含铬和钒的金属有机骨架材料在硬质合金中的均匀分布,进而在煅烧过程中直接原位生成纳米尺寸的纳米碳化铬、碳化钒晶粒抑制剂,实现对硬质合金晶粒长大的控制,且晶粒抑制剂利用率高。该方法能够有效改善晶粒抑制剂的在硬质合金中分布的均匀性,同时经济、容易操作,易于工业生产。
一种常压烧结碳化硼陶瓷用的增韧烧结助剂,由摩尔份数2.5份的Al粉、19~20份的TiO2粉、47.5~50份的炭黑、9~10份的SiC晶须和2~3份的B4C粉制成的,先将Al粉、TiO2粉、炭黑、B4C粉、SiC晶须按比例称量,再加入少量分散剂放入球磨机混料容器,加入去离子水进行球磨制浆,所得浆料固体含量为35~55%;所得浆料烘干,破碎、研磨后过筛,制成粉体,将粉体在钢制模具中压坯,然后进行烧结,烧结后随炉冷却至室温,得到烧结体,将烧结体研磨成粉料,即得到含有硼钛铝碳硅的烧结助剂。本发明以硼钛铝碳硅为B4C陶瓷的烧结助剂的主晶相,成本低、使用效果好,有效解决B4C陶瓷制备过程中烧结温度高、成品断裂韧性低的问题。
本发明公开了一种热压烧结氮化铝陶瓷的制备方法,具体涉及一种能够快速制备高热导率氮化铝陶瓷的方法。制备过程通过将不同形状的氮化铝粉末块体进行拼接成型,热压烧结后无须切割即可分开,随后将陶瓷块体进行退火处理,可获得热导率在100‑160 W/(m·K)的氮化铝陶瓷。通过此种方法制备的氮化铝陶瓷晶粒生长的更加完整,热导率更好,生产成本更低。
本发明公开了一种新型耐磨斗齿的制作工艺,包括以下步骤:S1,陶瓷预制体的定型:取40‑70份陶瓷颗粒,30‑60份还原铁粉和4‑5份活性微粉,加入粘结剂,在捏合机中捏合后,放入挤出机中挤出成型,干燥定型,然后放入烧结炉内烧结,陶瓷预制体;S2,六角耐磨镶块的铸模:将陶瓷预制体预热到700℃,放置于六角砂型型腔中,浇铸高铬铸铁熔体,复合后得到六角耐磨镶块;S3,耐磨斗齿的浇铸:向斗齿砂型型腔中浇铸高锰钢熔体,待高锰钢熔体冷却成型后,脱模,得到具有六边形凹槽的斗齿,并镶嵌六角耐磨镶块,得到成品耐磨斗齿。本发明的工艺简单,制备出齿面耐磨性与韧性均较佳的新型耐磨斗齿,使用寿命长,便于对斗齿表面的修复,修复成本小,适合大范围推广。
一种热等静压低温烧结获得高磁性烧结钕铁硼的方法,属于稀土磁性材料技术领域。本发明将烧结钕铁硼磁粉进行半致密化烧结,再将低熔点扩散合金源覆盖在半致密化烧结钕铁硼周围,并放置在玻璃管中,进行真空玻璃封管,再进行热等静压低温烧结、回火,制备得到高密度高磁性的烧结钕铁硼磁体。在热等静压低温烧结过程中,玻璃管呈熔融态在试样表面形成一层玻璃包套,通过作用在玻璃包套各个方面的气压,使半致密的钕铁硼磁体的烧结密度达7.5g/cm3以上;同时,在气压作用下加速扩散元素沿晶界扩散,提高扩散层的深度,样品的厚度达1.5cm以上。热等静压低温烧结的钕铁硼磁体具有扩散深度大、晶界相分布均匀、边界清晰、晶粒细小、高密度、高矫顽力等优点。
本发明涉及陶瓷材料科学技术领域,特别涉及一种氧化铝‑钛碳氧固溶体复合陶瓷材料及其制备方法。本发明技术方案将TiC粉和TiO2/TiO粉按摩尔比混合,在高能球磨机中球磨3小时,球磨后的粉末经过干燥,压制成型后放入高温炉中在氩气保护下处理,然后冷却至室温;烧结后的块体经过破碎、球磨后,再将氧化铝和TiCxO1‑x粉以及适当的烧结助剂,原料经物理机械方法混合5~20小时;混合粉体干燥后装入石墨模具中冷压成型,在放电等离子体烧结炉内烧结,随后随炉冷却至室温,即可制备出Al2O3‑TiCxO1‑x复合陶瓷。
本发明涉及一种VC/V10粉末高速钢复合材料及其制备方法,所述复合材料相对密度>99%,硬度为67.8~69.6HRC;复合材料的基体为V10粉末高速钢,VC粉末作为外加质点均匀弥散分布于基体中,VC粉末的添加量质量分数为3%~15%,复合材料中质量百分含量为:C:2.50~5.50%;Mo1.20~1.30%;Cr:5.25~5.50%;V:10~20%。制备过程中在高压雾化气体雾化10V钢液时,采用超声波分散气体输送将VC粉末由发送罐均匀输送到雾化器的喷嘴处,在喷嘴处高压雾化气体和VC粉末混合形成气粉雾化介质,气粉雾化击碎10V钢液制得预合金化的VC/V10高速钢复合粉末;本发明工艺简单,生产周期短,能够快速高效低成本生产高性能的高钒粉末高速钢。
本发明涉及粉末冶金添加剂技术领域,具体涉及一种粉末冶金制备钕铁硼磁体用的润滑剂及使用方法,所述润滑剂包括溶质与溶剂,溶质选自2‑氨基苯并噻唑、硼酸酯的一种或者两种;溶剂选自三氯甲烷、乙醚和石油醚的一种或者多种,溶质与溶剂的质量比是0.5:99.5~5:95;润滑剂在粉末冶金制备钕铁硼磁体中的使用方法,主要包括将润滑剂通过惰性气体吹进钕铁硼混粉料罐,在3D混料机中混粉,混匀,润滑剂均匀包覆在颗粒表面,再模压成型,高温烧结得到钕铁硼磁体,本发明润滑剂能增加粉的流动性,有效解决粉团聚的问题,润滑性良好,在钕铁硼粉中添加量少,可以以较小的添加量达到润滑的目的,减少了磁体中有害元素的引入。
本发明公开了可降解镁基复合金属生物陶瓷材料的制备方法,该工艺将4‑三甲基‑1,2‑二氢化喹啉、4‑甲基‑6‑叔丁基苯酚、蓖麻酸钙等进行加压反应,添加润滑剂和消泡剂制作材料的有机组份,然后利用球磨工艺将氢氧化钙、碳化硅、氧化锆陶瓷粉、骨料、碳化硼、镁铝尖晶石等原材料混合物进行研磨、干燥、活化、过筛分选,制备陶瓷母料,进一步将上述有机组份和陶瓷母料进行逐级递进烧结,最后利用双螺杆挤出技术进行造粒、真空脱水、塑型、高压蒸汽灭菌等步骤制备得到可降解镁基复合金属生物陶瓷材料。制备而成的可降解镁基复合金属生物陶瓷材料,其安全无毒、质软弹性大,可进行生物降解,具有较好的应用前景。
本发明涉及二极管制作技术领域,尤其是一种高压快恢复整流二极管的制作方法,通过选择合理阻值的N型单晶硅片,设计、测试管芯的厚度与结深,以及采用硼酸与硝酸铝合理配比的硼扩散源,制备得到高压快恢复整流二极管。此方法制备的高压快恢复整流二极管,可以很好的兼容反向工作电压、反向恢复时间、正向压降这三个电性参数,满足反向工作电压1500V以上、反向恢复时间100ns以下、正向压降3V以下的工作要求。
本发明公开了一种填料瓷球及其制备方法,所述瓷球包括以下重量份的原料:氧化铝80~90份、氧化镁3~5份、氧化钛2~3份、氧化锆1~3份、高岭土3~5份、锂辉石1~5份、蛭石3~5份、砾石5~10份、火山岩1~3份和蟹壳粉5~8份。本发明制得的瓷球无裂纹、无气泡,吸水率低,耐酸度和耐碱度高,耐急变温差大,堆积密度大,抗压强度大,全面改善瓷球的品质,更好发挥催化剂的作用,极大提高塔内反应速度和反应效果。而且,本发明蟹壳粉的制备、混料以及烧结等特殊工艺,进一步改善了瓷球品质。
本发明提供一种耐磨螺旋轴涂层的制备方法,首先将钴粉、铬粉、碳化钨粉、粘结剂与水混合,制备成料浆后喷雾干燥,再将所得粉末与镍粉球磨、真空烧成后破碎筛分得到涂层粉末;最后采用超音速火焰喷涂工艺将涂层粉末均匀的喷涂在螺旋轴表面。本发明的涂层配方加入了抗腐蚀的镍成分,大大增强了涂层的抗腐蚀性能;涂层粉末的制备工艺简单,制备得到的涂层粉末成分均匀、流动性好,能满足热喷涂的需求。同时采用超音速喷涂技术,形成了少空隙、低氧化、高粘合力的高质量涂层,大大增加了螺旋轴叶片的防磨、抗腐蚀能力。保障了螺旋轴在腐蚀性介质以及高阻力的多重复杂工矿下正常工作。
本发明公开了一种钛镍钴记忆合金体的制备方法,该方法克服了现有的多孔TiNiCo形状记忆合金制备方法中孔隙率和孔径及孔型均难以控制以及合金产品的阻尼性能及其他力学性能尚需提高的缺陷,本方法处理的TiNiCo形状记忆合金,其内部晶粒尺寸为亚微米量级,细小的晶粒尺寸与析出相可强化TiNiCo形状记忆合金基体,从而降低R相转变为马氏体相的温度,致使R相存在的温度区间扩大。这为进一步利用R相变提供了便利条件,同时改善合金的形状恢复特性,提高合金的循环稳定性。
本发明公开了一种碳纤维增强钕铁硼磁体,以质量百分数计包括80~99%的主合金和1~20%经过碳纤维改性的晶界相合金,其中经过碳纤维改性的晶界相合金包括70~95%的晶界相合金和5~30%的碳纤维;本发明利用碳纤维的高熔点,在烧结晶粒长大过程中,碳纤维部分浸入晶粒内,部分在晶界处,这样在磁体沿晶界断裂经过碳纤维时,深入晶粒中的碳纤维阻止了裂纹沿晶界继续扩散,而转入强度很高的晶粒内,从而大幅提高磁体的强韧性。
本发明公开了一种钴铬钨合金材料、用于滚珠丝杠轴承的钴铬钨合金球及其制备方法、滚珠丝杠轴承,该钴铬钨合金材料由以下质量百分比的组分组成:钴38%~48%、铬31%~41%、钨16%~18%、镍2%~3%、石墨2%~8%,铁和不可避免的杂质元素总量≤1%。本发明的钴铬钨合金材料,以钴、铬、钨、镍和石墨为主要组分,具有良好的强度、耐磨损、耐腐蚀和抗热疲劳性能,能够满足重水、碱性、辐射环境工作条件;采用该钴铬钨合金材料的轴承用合金球,具有耐腐蚀、耐磨损、精度高且使用寿命长等特点,完全能够满足核反应堆装卸料装置传动系统中滚珠丝杠轴承的使用环境和性能要求。
一种碳化硅疏水催化剂及制备方法,该疏水催化剂是通过浸渍的方法将聚四氟乙烯乳液涂覆到多孔碳化硅载体表面上,然后将氯铂酸乙醇溶液或其它金属盐溶液浸渍处理疏水性碳化硅载体,得到负载一定活性金属含量的疏水催化剂前驱体,最后将疏水催化剂前驱体置于等离子体放电装置的电极上或放电管中,通入等比例的氢气和氩气混合气,控制放电时间和电源功率,对前驱体进行等离子体放电还原处理,最后得到具有超细活性金属、金属粒子分散均匀和高稳定性的疏水催化活性新材料。本发明选用碳化硅代替常规高聚物作为疏水性载体,并改变制备工艺中浸渍吸附、高温还原步骤,在近室温条件下实现活性金属的还原,不存在高温还原引起的载体塌陷、粒子团聚等问题,同时等离体作用使活性金属、疏水膜和载体之间的结合力增强,为制备氢同位素交换用疏水催化剂提供了一条崭新的途径。
本发明公开了一种新型铝合金的配方,按重量份数由以下成分组成:铝粉70‑80份、猛粉10‑15份、铜粉5‑10份、铬粉3‑5份、铁粉30‑40份、镁粉2‑5份、硬脂酸铝0.5‑1份、表面活性剂4‑6份和聚四氟乙烯3‑4份,所述上述金属元素纯度为99.99%。用本发明的配方和生产方式生产出来的铝合金,在保留了铝元素原有的物理特性的情况下,增强了铝合金的硬度与韧性,避免了铝合金在使用过程中或使用一段时间后发生断裂的现象,同时提高了铝合金抗腐蚀的能力,延长了铝合金的使用寿命,扩大了铝合金的应用范围。本发明缩短了铝合金的生产过程,提高了企业的生产效率,节约了企业的生产成本,有利于企业经济效益的提高。
本发明公开了一种纳米Cr3C2晶须的制备方法,1)以重铬酸铵、碳质还原剂、卤化剂作为原料,将上述原料置于蒸馏水中,搅拌均匀制得前驱体溶液;2)将前驱体溶液干燥得到蓬松的前驱体混合料;3)将前驱体混合料置于反应炉中,在Ar气或真空条件下,在700~900℃保温0.5~2h进行碳热反应,得到未提纯的纳米Cr3C2晶须;4)将未提纯的纳米Cr3C2晶须在空气中于500-600℃灼烧2-8h脱碳,然后在HF溶液中脱除Cr2O3,最后洗涤干燥制得晶须直径小于100nm的纳米Cr3C2晶须。本发明工艺简单、参数易控、成本低,制备的Cr3C2晶须表面光滑,晶须直径小于100nm。
中冶有色为您提供最新的有色金属真空冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!